
?'-:'^;v /: ., Mft
■ Mi^'

THE NEW PETER NORTON

PROGRAMMER'S GUIDE TO

THE IBM'
PC&PS/Z

The ultimate reference
guide to the entire
family of IBM®
personal computers

Peter Norton

Richard Wilton

Mtaosaft
P R K S S

^ A-., av

THE NEW PETER NORTON

PROGRAMMER'S GUIDE TO

THE IBM
PC&PS/Z

THE NEW PETER NORTON

PROGRAMMER'S GUIDE TO

THE IBM
PC&PS/Z

Peter Norton

Richard Wilton

Mictosoft
p R i: s s

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

First edition copyright © 1985 by Peter Norton
Second edition revisions copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Norton, Peter, 1943- .

The new Peter Norton programmer's guide to the IBM PC and PS/2 :
the ultimate reference guide to the entire family of IBM Personal
Computers / Peter Norton and Richard Wilton.

p. cm.

Includes index.

I. IBM microcomputers—Programming. 2. IBM Personal Computer.
3. IBM Personal System/2 (Computer system) I. Wilton, Richard, 1953- .
II. Title. III. Title: Programmer's guide to the IBM Personal Computers.
QA76.8.I1015N67 1988 88-21104

005.265-dcl9 CIP

ISBN 1-55615-131-4

Printed and bound in the United States of America.

123456789 FGFG 321098

Distributed to the book trade in the United States

by Harper & Row.

Distributed to the book trade in Canada by General

Publishing Company, Ltd.

Distributed to the book trade outside the United States

and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Microsoft®, Flight Simulator®, and GW-BASIC® are registered trademarks of Microsoft
Corporation.

IBM®, PC/AT®, Personal System/2®, and PS/2® are registered trademarks, and Micro Channel
PCjr™, and PC/XT™ are trademarks of International Business Machines Corporation.
Norton Utilities™ is a trademark of Peter Norton.

Project Editor: Megan E. Sheppard Technical Editors: Bob Combs and Jim Johnson

CONTENTS

Introduction

1 Anatomy of the PCs and PS/2s 1

2 The Ins and Outs 17

3 The ROM Software 43

4 Video Basics 67

5 Disk Basics 99

6 Keyboard Basics 125
7 Clocks, Timers, and Sound Generation 141

8 ROM BIOS Basics 155

9 ROM BIOS Video Services 169

10 ROM BIOS Disk Services 197

11 ROM BIOS Keyboard Services 215

12 Miscellaneous Services 225

13 ROM BIOS Services Summary 253

14 DOS Basics 291

15 DOS Interrupts 297

16 DOS Functions; Version 1 321

17 DOS Functions: Versions 2.0 and Later 347

18 DOS Functions Summary 395

19 Program Building 417

20 Programming Languages 431

Appendix A: Installable Device Drivers 457
Appendix B: Hexadecimal Arithmetic 465
Appendix C: About Characters 475
Appendix D: DOS Version 4 489

Index

INTRODUCTION

The world of personal computers has come a long way in the few years
since the original edition of this book appeared, yet the goal of this book
remains a simple but ambitious one: to help you master the principles of
programming the IBM personal computer family. From the time that the
first IBM Personal Computer (known simply as "the PC") was introduced
in the fall of 1981, it was clear that it was going to be a very important com
puter. Later, as PC sales zoomed beyond the expectations of everyone (IBM
included) and as the original model was joined by a sibling or two, the PC
became recognized as the standard for serious desktop computers. From
the original PC, a whole family of computers—a family with many
branches—has evolved. And at the same time the importance of the PC
family has also grown.

The success and significance of the PC family has made the develop
ment of programs for it very important. However, the fact that each member
of the family differs in details and characteristics from its relatives has also
made the development of programs for the family increasingly complex.

This book is about the knowledge, skills, and concepts that are needed
to create programs for the PC family—not only for one member of the
family (though you might perhaps cater to the peculiarities and quirks of
one member) but for the family as a whole—in a way that is universal
enough that your programs should work not only on all the present family
members, but on future members as well.

This book is for anyone involved in the development of programs for
the PC family. It is for programmers, but not only for programmers. It is for
anyone who is involved in or needs to understand the technical details and
working ideas that are the basis for PC program development, including
anyone who manages programmers, anyone who plans or designs PC pro
grams, and anyone who uses PC programs and wants to understand the
details behind them.

Some Comments on Philosophy
One of the most important elements of this book is the discussion of pro
gramming philosophy. You will find throughout this book explanations of
the ideas underlying IBM's design of the PC family and of the principles
of sound PC programming, viewed from experience.

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

If this book were to provide you with only facts—tabulations of
technical information—it would not serve you well. That's why we've in
terwoven with the technical discussion an explanation of what the PC family
is all about, of the principles that tie the various family members together,
and of the techniques and methods that can help you produce programs that
will endure and prosper along with the PC family.

How to Use This Book

This book is both a reading book and a reference book, and you can ap
proach it in at least two ways. You may want to read it as you would any
other book, from front to back, digging in where the discussion is useful to
you and quickly glancing through the material you don't yet need. This ap
proach provides a grand overview of the workings (and the ideas behind the
workings) of PC programs. You can also use this book as a pure reference,
and dip into specific chapters for specific information. We've provided a
detailed table of contents at the beginning of each chapter and an extensive
index to help you find what you need.

When you use this book as a random-access reference to the details of
PC programming, you'll find that much of the material is intricately interre
lated. To help you understand the interrelationships, we have repeated some
details when it was practical to do so and have referred you to other sections
when such repetition was less practical.

What's New in This Edition

As you might guess, this edition of the Programmer's Guide has been
brought up to date for the new generation of IBM personal computers: the
Personal System/2 computers, or PS/2s.

In some ways this book is more complex and more detailed than the
original. There's a good reason for this: The newer members of the PC and
PS/2 family are more complicated computers, and the later versions of DOS
are more complicated and have more features than their predecessors. It
was inevitable that this revised version of the Programmer's Guide would
reflect this greater complexity in the hardware, the ROM BIOS, and DOS.

Still, you'll find that a few members of the extended PC family aren't
covered in this book. The PCjr, the XT/286, and the PC Convertible are used
relatively infrequently, and the PS/2 Model 70 was released too recently to
be included. Nevertheless, each of these machines is similar to one of the

PCs or PS/2S whose innards we will examine in detail, so this book should

be a useful guide even if you are programming a Model 70 or one of the less
widely used PCs.

Introduction

Here are some of the changes you'll find in this new edition:
New video subsystems. Since the original edition appeared, IBM's

Enhanced Graphics Adapter (EGA) became a de facto hardware standard for
PC programmers and users. Then the PS/2s introduced two new video sub
systems, the Multi-Color Graphics Array (MCGA) and the Video Graphics
Array (VGA). These new video subsystems receive extensive coverage in
Chapters 4 and 9.

New keyboards. IBM supports a new, extended keyboard with later
versions of the PC/AT and with all PS/2s. Chapters 6 and 11 have been
expanded to cover the new hardware.

A new focus on C programming. For better or worse, the most recent
versions of DOS have been strongly influenced by the C programming
language. This influence is even more apparent in such operating envi
ronments as Microsoft Windows, UNIX, and OS/2—all of which were

designed by C programmers. For this reason you'll find new examples of C
programming in several different chapters. Of course, we haven't aban
doned Pascal and BASIC—in fact. Chapter 20 examines each of these pro
gramming languages.

A new perspective on DOS. DOS has evolved into a mature operating
system whose design can now be viewed with the clarity of hindsight. The
past several years of working with DOS have helped us view this immensely
popular operating system with a practical perspective born of experience.
Our discussions of DOS emphasize which of its features are obsolescent and
which are pointeris to the future.

Despite these changes, the direction and philosophy of this book
remain the same. When you write a program for a PC or PS/2, you can
actually program for an entire family of computers. Each member of the
family—the PC, the PC/XT, the PC/AT, and all PS/2s—has hardware and
software components that are identical or similar to those in other members
of the family. When you keep this big picture in mind, you'll be able to
write programs that take advantage of the capabilities of the different PC
and PS/2 models without sacrificing portability.

Other Resources

One book, of course, can't provide you with all the knowledge that you
might possibly need. We've made this book as rich and complete as we rea
sonably can, but there will always be a need for other kinds of information.
Here are some of the places you might look for material to supplement what
you find here.

IX

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

For detailed technical information about the PC family, the ultimate
source is IBM's series of technical reference manuals. Specific technical
reference manuals exist for the original PC, for the XT, for the AT, and for
PS/2 models 30, 50, 60, and 80. In addition, the detailed IBM BIOS Interface
Technical Reference Manual summarizes the capabilities of the Basic Input/
Output System in all members of the extended PC family. You should know
a few things about using these model-specific manuals:

• Information specific to one model is not differentiated from
general information for the whole PC family. To be sure of the dif
ferences, you should use common sense, compare the different
manuals, and consult this book.

• Remember that each new model in the PC family adds new
features. If you turn to the manual for a later model, you will find
information on a wide variety of features; if you turn to the
manual for an earlier model, you'll avoid being distracted by fea
tures that do not apply to all models in the family.

There is also an IBM Options and Adapters Technical Reference Manual
for the various options and adapters used by the PC family, such as different
disk drives or display screens. Technical information about this kind of
equipment is gathered into this manual, which is updated periodically. (The
updates are available by subscription.) Little of the information in this
technical reference manual is of use to programmers, but you might find
some parts of interest.

IBM also publishes technical reference manuals for special extensions
to the PC, such as PC Network.

Perhaps the most important of the IBM technical reference manuals is
the series for DOS. These manuals contain a wealth of detailed technical

information which we have summarized in this book.

A number of other sources can provide information to supplement the
IBM manuals:

• For a somewhat broader perspective on the IBM Personal Com
puter—one that is not focused on programming—see Peter
Norton's Inside the IBM Personal Computer, published by Robert J.
Brady Company.

• For a broader perspective on DOS, see the third edition of Van

Wolverton's Running MS-DOS, and The MS-DOS Encyclopedia, both
published by Microsoft Press.

Introduction

Because this book covers the subject of PC programming in a broad
fashion, it can provide you with only a few key details about individual
programming languages. For details on particular programming languages
and the many specific compilers for those languages, you will need more
books than we could begin to list or recommend.

With these introductory remarks completed, it's time to plunge into
the task of mastering the principles of programming the PC family!

Chapter 1

Anatomy of the
PCs and PS/2s

The Microprocessor 2

The 8088 Microprocessor 6

The 8086 Microprocessor 6

The 80286 Microprocessor 6

The 80386 Microprocessor 7

The Math Coprocessor 7

The Support Chips 8

The Programmable Interrupt Controller 9

The DMA Controller 9

The Clock Generator 10

The Programmable Interval Timer 10

Video Controllers 10

Input/Output Controllers 10

Linking the Parts: The Bus 11

The Address Bus 12

The Data Bus 12

Micro Channel Architecture 13

Memory 13

CPU Address Space 14

The System Memory Map 15

Design Philosophy 16

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

From the programmer's point of view, all members of the PC family consist
of a processor, memory chips, and several smart, or programmable, circuit
chips. All the main circuit components that make the computer work are lo
cated on the system board; other important parts are located on expansion
boards, which can be plugged into the system board.

The system board (Figures 1-1 through 1-3) contains the microproces
sor, which is tied to at least 64 KB of memory; some built-in ROM programs,
such as BASIC and the ROM BIOS; and several very important support chips.
Some of these chips control external devices, such as the disk drive or the
display screen, and others help the microprocessor perform its tasks.

In this section, we discuss each major chip and give a few important
technical specifications. These chips are frequently known by more than
one name. For example, some peripheral input/output hardware is super
vised by a chip known as the 8255. This chip is also referred to as the 8255A
and the 8255A-5. The suffixes A and 5 refer to revision numbers and to parts
rated for operation at different speeds. For programming purposes, any
Intel chip part number that starts with 8255 is identical to any other chip
whose part number starts with 8255, regardless of the suffix. However, when
you replace one of these chips on a circuit board, note the suffix. If the
suffixes are different, the part may not operate at the proper speed.

The Microprocessor
In all PCs, the microprocessor is the chip that runs programs. The micropro
cessor, or central processing unit (CPU), carries out a variety of computa
tions, numeric comparisons, and data transfers in response to programs
stored in memory.

The CPU controls the computer's basic operation by sending and
receiving control signals, memory addresses, and data from one part of the
computer to another along a group of interconnecting electronic pathways
called a bus. Located along the bus are input and output (I/O) ports that con
nect the various memory and support chips to the bus. Data passes through
these I/O ports while it travels to and from the CPU and the other parts of the
computer.

In the IBM PCs and PS/2s, the CPU always belongs to the Intel 8086
family of microprocessors. (See Figure 1-4.) We'll point out the similarities
and differences between the different microprocessors as we describe them.

Chapter 1: Anatomy of the PCs and PS/2s

microprocessor

8087 math

coprocessor

f plugs in here8259A

interrupt

controller

8284A clock

generator

8253

programmable

8255

programmable
peripheral
interface

8253

programmable1 Ss

P

Figure 1-1. T/ie IBM PC system board

80287 math

coprocessor

plugs in here

microprocessor

8284A

clock generator

(under shield)

,

system board

iJ; r'QiJ""

jUO.(

;i= • ji.
n serf ijjrn

u
II!: 'lU

ii ^

:; n ;i i
;.—'i.i

iCi ..R-'C

8259A

interrupt

controllers

e

s

r-
g
 .a

O
u
,

0
0

O

O

3

00
o
 ̂

m

H

S

-
1
1
o

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Model Microprocessor

PC 8088

PC/XT 8088

PC/AT 80286

PS/2 Models 25, 30 8086

PS/2 Models 50,60 80286

PS/2 Model 80 80386

Figure 1-4. Microprocessors used in IBM PCs and PS/2s.

The 8088 Microprocessor
The 8088 is the 16-bit microprocessor that controls the standard IBM per
sonal computers, including the original PC, the PC/XT, the Portable PC, and
the PCjr. Almost every bit of data that enters or leaves the computer passes
through the CPU to be processed.

Inside the 8088, 14 registers provide a working area for data transfer
and processing. These internal registers, forming an area 28 bytes in size,
are able to temporarily store data, memory addresses, instruction pointers,
and status and control flags. Through these registers, the 8088 can access 1
MB (megabyte), or more than one million bytes, of memory.

The 8086 Microprocessor
The 8086 is used in the PS/2 models 25 and 30 (and also in many IBM PC
clones). The 8086 differs from the 8088 in only one minor respect: It uses a
full 16-bit data bus instead of the 8-bit bus that the 8088 uses. (The difference
between 8-bit and 16-bit buses is discussed on page 12.) Virtually anything
that you read about the 8086 also applies to the 8088; for programming
purposes, consider them identical.

The 80286 Microprocessor
The 80286 is used in the PC/AT and in the PS/2 models 50 and 60. Although
fully compatible with the 8086, the 80286 supports extra programming fea
tures that let it execute programs much more quickly than the 8086. Perhaps
the most important enhancement to the 80286 is its support for multitasking.

Multitasking is the ability of a CPU to perform several tasks at a
time—such as printing a document and calculating a spreadsheet—by
quickly switching its attention among the controlling programs.

Chapter 1: Anatomy of the PCs and PS/2s

The 8088 used in a PC or PC/XT can support multitasking with the help
of sophisticated control software. However, an 80286 can do a much better
job of multitasking because it executes programs more quickly and ad
dresses much more memory than the 8088. Moreover, the 80286 was de
signed to prevent tasks from interfering with each other.

The 80286 can run in either of two operating modes: real mode or pro
tected mode. In real mode, the 80286 is programmed exactly like an 8086. It
can access the same 1 MB range of memory addresses as the 8086. In pro
tected mode, however, the 80286 reserves a predetermined amount of
memory for an executing program, preventing that memory from being
used by any other program. This means that several programs can execute
concurrently without the risk of one program accidentally changing the con
tents of another program's memory area. An operating system using 80286
protected mode can allocate memory among several different tasks much
more effectively than can an 8086-based operating system.

The 80386 Microprocessor
The PS/2 Model 80 uses the 80386, a faster, more powerful microprocessor
than the 80286. The 80386 supports the same basic functions as the 8086 and
offers the same protected-mode memory management as the 80286. How
ever, the 80386 offers two important advantages over its predecessors:

• The 80386 is a 32-bit microprocessor with 32-bit registers. It can
perform computations and address memory 32 bits at a time in
stead of 16 bits at a time.

• The 80386 offers more flexible memory management than the 80286
and 8086.

We'll say more about the 80386 in Chapter 2.

The Math Coprocessor
The 8086, 80286, and 80386 can work only with integers. To perform
floating-point computations on an 8086-family microprocessor, you must
represent floating-point values in memory and manipulate them using only
integer operations. During compilation, the language translator represents
each floating-point computation as a long, slow series of integer operations.
Thus, "number-crunching" programs can run very slowly—a problem if
you have a large number of calculations to perform.

A good solution to this problem is to use a separate math coprocessor
that performs floating-point calculations. Each of the 8086-family micro
processors has an accompanying math coprocessor: The 8087 math

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

coprocessor is used with an 8086 or 8088; the 80287 math coprocessor is used
with an 80286; and the 80387 math coprocessor is used with an 80386. (See
Figure 1-5.) Each PC and PS/2 is built with an empty socket on its mother
board into which you can plug a math coprocessor chip.

From a programmer's point of view, the 8087, 80287, and 80387 math

coprocessors are fundamentally the same: They all perform arithmetic with
a higher degree of precision and with much greater speed than is usually
achieved with integer software emulation. In particular, programs that use
math coprocessors to perform trigonometric and logarithmic operations can
run up to 10 times faster than their counterparts that use integer emulation.

Programming these math coprocessors in assembly language can be
an exacting process. Most programmers rely on high-level language transla
tors or commercial subroutine libraries when they write programs to run
with the math coprocessors. The techniques of programming the math
coprocessors directly are too specialized to cover in this book.

Approximate Range Significant Digits
Data Type (from) (to) Bits (decimal)

Word integer -32,768 +32,767 16 4

Short integer -2 X 10E9 +2 X 10E9 32 9

Long integer -9x 10E18 +9 X 10E18 64 18

Packed decimal -99...99 +99...99 80 18

Short real 8.43 X lOE-37 3.37 X 10E38 32 6-7

Long real 4.19X10E-307 1.67X 10E308 64 15-16

Temporary real 3.4 X lOE-4932 1.2x 10E4932 80 19

Figure 1-5. The range of numeric data types supported by the 8087,80287, and 80387
math coprocessors.

The Support Chips
The microprocessor cannot control the entire computer without some
help—nor should it. By delegating certain control functions to other chips,
the CPU is free to attend to its own work. These support chips can be
responsible for such processes as controlling the flow of information
throughout the internal circuitry (as the interrupt controller and the DMA
controller are) and controlling the flow of information to or from a particu
lar device (such as a video display or disk drive) attached to the computer.
These so-called device controllers are often mounted on a separate board
that plugs into one of the PC's expansion slots.

Chapter 1: Anatomy of the PCs and PS/2s

Many support chips in the PCs and PS/2s are programmable, which
means they can be manipulated to perform specialized tasks. Although
direct programming of these chips is generally not a good idea, the follow
ing descriptions will point out which chips are safe to program directly and
which aren't. Because this book does not cover direct hardware control, you

should look in the IBM technical manuals as well as in the chip manufac

turers' technical literature for details about programming individual chips.

The Pr(^ramniable Interrupt Controller
In a PC or PS/2, one of the CPU's essential tasks is to respond to hardware

interrupts, A hardware interrupt is a signal generated by a component of the
computer, indicating that component's need for CPU attention. For example,
the system timer, the keyboard, and the disk drive controllers all generate
hardware interrupts at various times. The CPU responds to each interrupt by
carrying out an appropriate hardware-specific activity, such as increment
ing a time-of-day counter or processing a keystroke.

Each PC and PS/2 has a programmable interrupt controller (PIC) circuit

that monitors interrupts and presents them one at a time to the CPU. The

CPU responds to these interrupts by executing a special software routine
called an interrupt handler. Because each hardware interrupt has its own in
terrupt handler in the ROM BIOS or in DOS, the CPU can recognize and re
spond specifically to the hardware that generates each interrupt. In the PC,
PC/XT, and PS/2 models 25 and 30, the PIC can handle 8 different hardware

interrupts. In the PC/AT and PS/2 models 50,60, and 80, two PICs are chained
together to allow a total of 15 different hardware interrupts to be processed.

Although the programmable interrupt controller is indeed program

mable, hardware interrupt management is not a concern in most programs.
The ROM BIOS and DOS provide nearly all of the services you'll need for
managing hardware interrupts. If you do plan to work directly with the PIC,
we suggest you examine the ROM BIOS listings in the IBM technical refer

ence manuals for samples of actual PIC programming.

The DMA Controller

Some parts of the computer are able to transfer data to and from the com

puter's memory without passing through the CPU. This operation is called

direct memory access, or DMA, and it is handled by a chip known as the DMA
controller. The main purpose of the DMA controller is to allow disk drives

to read or write data without involving the microprocessor. Because disk I/O

is relatively slow compared to CPU speeds, DMA speeds up the computer's

overall performance quite a bit.

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The Clock Generator

The clock generator supplies the multiphase clock signals that coordinate the
microprocessor and the peripherals. The clock generator produces a high-
frequency oscillating signal. For example, in the original IBM PC, this fre
quency was 14.31818 megahertz (MHz, or million cycles per second); in the
newer machines, the frequency is higher. Other chips that require a regular
timing signal obtain it from the system clock generator by dividing the base
frequency by a constant to obtain the frequency they need to accomplish
their tasks. For example, the IBM PC's 8088 is driven at 4.77 MHz, one-third
of the base frequency. The PC's internal bus and the programmable interval
timer (discussed shortly) use a frequency of 1.193 MHz, running at a quarter
of the 8088 rate and one-twelfth of the base rate.

The Pr(^rammable Interval Timer
The programmable interval timer generates timing signals at regular inter
vals controlled by software. The chip can generate timing signals on three
different channels at once (four channels in the PS/2 models 50,60, and 80).

The timer's signals are used for various system tasks. One essential
timer function is to generate a clock-tick signal that keeps track of the cur
rent time of day. Another of the timer's output signals can be used to con
trol the frequency of tones produced with the computer's speaker. See
Chapter 7 for more information about programming the system timer.

Video Controllers

The many video subsystems available with the PCs and PS/2s present a
variety of programmable control interfaces to the video hardware. For ex
ample, all PC and PS/2 video subsystems have a cathode ray tube (CRT) con
troller circuit to coordinate the timing signals that control the video display.

Although the video control circuits can be programmed in application
software, all video subsystems have different programming interfaces.
Fortunately, all PCs and PS/2s are equipped with basic video control rou
tines in the ROM BIOS. We'll describe these routines in Chapter 9.

Input/Output Controllers
PCs and PS/2s have several input/output subsystems with specialized control
circuitry that provides an interface between the CPU and the actual I/O
hardware. For example, the keyboard has a dedicated controller chip that
transforms the electrical signals generated by keystrokes into 8-bit codes
that represent the individual keys. All disk drives have separate controller

10

Chapter 1: Anatomy of the PCs and PS/2s

circuitry that directly controls the drive; the CPU communicates with the
controller through a consistent interface. The serial and parallel communi
cations ports also have dedicated input/output controllers.

You rarely need to worry about programming these hardware con
trollers directly because the ROM BIOS and DOS provide services that take
care of these low-level functions. If you need to know the details of the in
terface between the CPU and a hardware I/O controller, see the IBM tech

nical reference manuals and examine the ROM BIOS listings in the PC and
PC/AT manuals.

Linking the Parts: The Bus
As we mentioned, the PC family of computers links all internal control cir
cuitry by means of a circuit design known as a bus. A bus is simply a shared
path on the main circuit board to which all the controlling parts of the com
puter are attached. When data is passed from one component to another, it
travels along this common path to reach its destination. Every micropro
cessor, every control chip, and every byte of memory in the computer is
connected directly or indirectly to the bus. When a new adapter is plugged
into one of the expansion slots, it is actually plugged directly into the bus,
making it an equal parmer in the operation of the entire unit.

Any information that enters or leaves a computer system is tem
porarily stored in at least one of several locations along the bus. Data is
usually placed in main memory, which in the PC family consists of thou
sands or millions of 8-bit memory cells (bytes). But some data may end up
in a port or register for a short time while it waits for the CPU to send it to its
proper location. Generally, ports and registers hold only 1 or 2 bytes of infor
mation at a time and are usually used as stopover sites for data being sent
from one place to another. (Ports and registers are described in Chapter 2.)

Whenever a memory cell or port is used as a storage site, its location
is known by an address that uniquely identifies it. When data is ready to be
transferred, its destination address is first transmitted along the address
bus; the data follows along behind on the data bus. So the bus carries more
than data: It carries power and control information, such as timing signals
(from the system clock) and interrupt signals, as well as the addresses of the
thousands or millions of memory cells and the many devices attached to the
bus. To accommodate these four different functions, the bus is divided into

four parts: the power lines, the control bus, the address bus, and the data bus.
We're going to discuss the subjects of address and data buses in greater
detail because they move information in a way that helps to explain some of
the unique properties of the PC family.

11

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The Address Bus

The address bus in the PC, PC/XT, and PS/2 models 25 and 30 uses 20 signal
lines to transmit the addresses of the memory cells and devices attached to
the bus. (Memory addressing is discussed more fully on page 13 and in
Chapter 3.) Because two possible values (either 1 or 0) can travel along each
of the 20 address lines, these computers can specify 2^® addresses—the
limit of the addressing capability of the 8088 and 8086 microprocessors.
This amounts to more than a million possible addresses.

The 80286 used in the PC/AT can address 2^^ bytes of memory, so the
AT has a 24-line address bus. The bus in the 80286-based PS/2 models 50 and

60 also supports 24-bit memory addressing; in the 80386-based PS/2 Model
80, the bus has 32-bit addressing capability.

The Data Bus

The data bus works with the address bus to carry data throughout the com
puter. The PC's 8088-based system uses a data bus that has 8 signal lines,
each of which carries a single binary digit (bit); data is transmitted across
this 8-line bus in 8-bit (1-byte) units. The 80286 microprocessor of the AT
uses a 16-bit data bus and therefore passes data in 16-bit (1-word) units.

The 8088, being a 16-bit microprocessor, can work with 16 bits of data
at a time, exactly like its relative the 80286. Although the 8088 can work with
16-bit numbers internally, the size of its data bus allows the 8088 to pass data
only 8 bits at a time. This has led some people to comment that the 8088 is
not a true 16-bit microprocessor. Rest assured that it is, even though it is less
powerful than the 80286. The 16-bit data bus of the 80286 does help it move
data around more efficiently than the 8088, but the real difference in speed
between the 8088 and the AT comes from the AT's faster clock rate and its

more powerful internal organization.

There is an important practical reason why so many computers, in
cluding the older members of the PC family, use the 8088 with its 8-bit data
bus, rather than the 8086 with its 16-bit bus. The reason is simple economics.
A variety of 8-bit circuitry elements are available in large quantities at low
prices. When the PC was being designed, 16-bit circuitry was more expen
sive and was less readily available. The use of the 8088, rather than the 8086,
was important not only to hold down the cost of the PC, but also to avoid a
shortage of parts. The price of 16-bit circuitry elements has decreased sig
nificantly since then, however, and it has become economically feasible to
use the more efficient 80286 with its 16-bit bus. Furthermore, the 80286 is

able to use a mixture of 8-bit parts and 16-bit parts, thereby maintaining
compatibility within the PC family.

12

Chapter 1: Anatomy of the PCs and PS/2s

Micro Channel Architecture

The PS/2 models 50, 60, and 80 introduced a new bus hardware design that
IBM calls Micro Channel architecture. Both the Micro Channel bus in the

PS/2s and the earlier PC and PC/AT bus accomplish the same task of com
municating addresses and data to plug-in adapters. The Micro Channel bus

hardware is designed to run at higher speeds than its predecessors as well as
to allow for more flexible adapter hardware designs. The Micro Channel

differs from the PC and PC/AT bus design both in its physical layout and in

its signal specifications, so an adapter that can be used with one bus is in

compatible with the other.

The differences between the original PC bus, the PC/AT bus, and the

Micro Channel bus are important in operating system software but not in

applications programs. Although all programs rely implicitly on the proper
functioning of the address and data buses, very few programs are actually
concerned with programming the bus directly. We'll come back to the

Micro Channel architecture only when we describe PS/2 ROM BIOS services

that work specifically with it.

Memory
So far, we've discussed the CPU, the support chips, and the bus, but we've
only touched on memory. We've saved our discussion of memory for the

end of this chapter because memory chips, unlike the other chips we've dis
cussed, don't control or direct the flow of information through a computer
system; they merely store information until it is needed.

The number and storage capacity of memory chips that exist inside
the computer determine the amount of memory we can use for programs
and data. Although this may vary from one computer to another, all PCs and

PS/2S come with at least 40 KB of read-only memory (ROM)—with space for
more—and between 64 KB and 2 MB of random-access memory (RAM).
Both ROM and RAM capacities can be augmented by installing additional
memory chips in empty sockets on the motherboard as well as by installing
a memory adapter in one of the system expansion slots. But this is only the
physical view of memory. A program sees memory not as a set of individual

chips, but as a set of thousands or millions of 8-bit (1-byte) storage cells,
each with a unique address.

Programmers must also think of memory in this way—not in terms
of how much physical memory there is, but in terms of how much address

able memory there is. The 8088 and 8086 can address up to 1 MB (1024 KB, or
exactly 1,048,576 bytes) of memory. In other words, that's the maximum

13

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

number of addresses, and therefore the maximum number of individual

bytes of information, the processors can refer to. Memory addressing is dis
cussed in more detail in Chapter 2.

CPU Address Space
Each byte is referred to by a 20-bit numeric address. In the 8086 memory
scheme, the addresses are 20 bits "wide" because they must travel along the
20-bit address bus. This gives the 8086 an address space with address values
that range from OOOOOH through FFFFFH (0 through 1,048,576 in decimal
notation). If you have trouble understanding hex notation, you might want
to take a quick look at Appendix B.

Similarly, the 80286's 24-bit addressing scheme lets it use extended ad
dress values in the range OOOOOOH through FFFFFFH, or 16 MB. The 80386
can use extended 32-bit addresses, so its maximum address value is

FFFFFFFFH; that is, the 80386 can directly address up to 4,294,967,296 bytes,

or four gigabytes (GB), of memory. This is enough memory for most practi
cal purposes, even for the most prolific programmer.

Although the 80286 and 80386 can address more than 1 MB of memory,
any program compatible with the 8086 and with DOS must limit itself to ad
dresses that lie in the 1 MB range available to the 8086. When the IBM PC

first appeared in 1981, 1 MB seemed like a lot of memory, but large
business-applications programs, memory-resident utility programs, and
system software required for communications and networking can easily
fill up the entire 8086 address space.

One way to work around the 1 MB limit is with the LIM (Lotus-Intel-
Microsoft) Expanded Memory Specification (EMS). The EMS is based on
special hardware and software that map additional RAM into the 8086 ad
dress space in 16 KB blocks. The EMS hardware can map a number of differ
ent 16 KB blocks into the same 16 KB range of 8086 addresses. Although the
blocks must be accessed separately, the EMS lets up to 2048 different 16 KB
blocks map to the same range of 8086 addresses. That's up to 32 MB of ex
panded memory.

□ NOTE: Don*t confuse EMS ''expanded' memory with the "ex
tended" memory located above the first megabyte of80286 or 80386
memory. Although many memory expansion adapters can be con
figured to serve as either expanded or extended memory (or both),
these two memory configurations are very different from both a
hardware and software point of view.

14

Chapter 1: Anatomy of the PCs and PS/2s

The System Memory Map
On the original IBM PC, the 1 MB address space of the 8088 was split into
several functional areas. (See Figure 1-6.) This memory map has been car
ried forward for compatibility in all subsequent PC and PS/2 models.

lOOOOOH

EGGOOH

CGGGGH

AGGGGH

GG5GGH

GG4GGH

GGGGGH

PC/AT and PS/2 extended memory

Reserved for ROM BIOS

Reserved for installable ROM

Video buffers

Transient portion of DOS

Transient Program Area

(user programs and data)

Resident portion of DOS

Data area for ROM BIOS and BASIC

Data area for ROM BIOS

►
Interrupt vectors

System
RAM

Figure 1-6. An outline of memory usage in PCs and PSI 2s.

Some of the layout of the PC and PS/2 memory map is a consequence
of the design of the 8086 microprocessor. For example, the 8086 always
maintains a list of interrupt vectors (addresses of interrupt handling rou
tines) in the first 1024 bytes of RAM. Similarly, all 8086-based microcom
puters have ROM memory at the high end of the 1 MB address space, because
the 8086, when first powered up, executes the program that starts at address
FFFFOH.

The rest of the memory map follows this general division between
RAM at the bottom of the address space and ROM at the top. A maximum of
640 KB of RAM can exist between addresses OOOOOH and 9FFFFH. (This is
the memory area described by the DOS CHKDSK program.) Subsequent
memory blocks are reserved for video RAM (AOOOOH through BFFFFH),
installable ROM modules (COOOOH through DFFFFH), and permanent ROM
(EOOOOH through FFFFFH). We'll explore each of these memory areas in
greater detail in the chapters that follow.

15

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Design Philosophy
Before leaping into the following chapters, we should discuss the design
philosophy behind the PC family. This will help you understand what is

(and what isn't) important or useful to you.
Part of the design philosophy of the IBM personal computer family

centers around a set of ROM BIOS service routines (see Chapters 8 through

13) that provide essentially all the control functions and operations that IBM

considers necessary. The basic philosophy of the PC family is: Let the ROM

BIOS do it; don't mess with direct control. In our judgment, this is a sound

idea that has several beneficial results. Using the ROM BIOS routines en

courages good programming practices, and it avoids some of the kludgy
tricks that have been the curse of many other computers. It also increases

the chances of your programs working on every member of the PC family.
In addition, it gives IBM more flexibility in making improvements and ad

ditions to the line of PC computers. However, it would be naive for us to

simply say to you, "Don't mess with direct control of the hardware." For
good reasons or bad, you may want or may need to have your programs

work as directly with the computer hardware as possible, doing what is col

orfully called "programming down to the bare metal."

Still, as the PC family has evolved, programmers have had the oppor
tunity to work with increasingly powerful hardware and system software.

The newer members of the PC family provide faster hardware and better
system software, so direct programming of the hardware does not necessar

ily result in significantly faster programs. For example, with an IBM PC
running DOS, the fastest way to display text on the video display is to use
assembly-language routines that bypass DOS and directly program the video
hardware. Video screen output is many times slower if you route it through
DOS. Contrast this with a PC/AT or PS/2 running OS/2, where the best way to

put text on the screen is to use the operating system output functions. The
faster hardware and the efficient video output services in OS/2 make direct

programming unnecessary.
As you read the programming details we present in this book, keep in

mind that you can often obtain a result or accomplish a programming task
through several means, including direct hardware programming, calling the
ROM BIOS, or using a DOS service. You must always balance portability,
convenience, and performance as you weigh the alternatives. The more you
know about what the hardware, the ROM BIOS, and the operating system can

do, the better your programs can use them.

16

Chapter 2

The Ins and Outs

How the 8086 Communicates 22

The 8086 Data Formats 23

How the 8086 Addresses Memory 25

Segmented Addresses 25

80286 and 80386 Protected-Mode Addresses 26

Address Compatibility 27

The 8086 Registers 28

The Scratch-Pad Registers 29

The Segment Registers 29

The Offset Registers 31

The Flags Register 31

Addressing Memory Through Registers 34

Rules for Using Registers 35

How the 8086 Uses I/O Ports 37

How the 8086 Uses Interrupts 39

Software Interrupts 39

Hardware Interrupts 40

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Generally speaking, the more you know about how your computer works,
the more effective you'll be at writing programs for it. High-level program
ming languages, such as BASIC and C, are not designed to include every
possible function that you might need while programming—though admit
tedly, some are better than others. At some point, you will want to go
deeper into your system and use some of the routines the languages them
selves use, or perhaps go even deeper and program at the hardware level.

Although some languages provide limited means to talk directly to
memory (as with PEEK and POKE in BASIC) or even to some of the chips (as
with BASIC'S INP and OUT statements), most programmers eventually resort
to assembly language, the basic language from which all other languages
and operating systems are built. The 8086 assembly language, like all other
assembly languages, is composed of a set of symbolic instructions, as shown
in Figure 2-1. An assembler translates these instructions and the data associ
ated with them into a binary form, called machine language, that can reside
in memory and be processed by the 8086 to accomplish specific tasks.

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by all 8086-family microprocessors:

AAA ASCII Adjust After Addition CWD Convert Word to Doubleword

AAD ASCII Adjust After Division DAA Decimal Adjust After Addition

AAM ASCII Adjust After Multiplication DAS Decimal Adjust After Subtraction

AAS ASCII Adjust After Subtraction DEC DECrement

ADC ADd with Carry DIV Unsigned DlVide

ADD ADD ESC ESCape

AND AND HLT HaLT

CALL CALL IDIV Integer Divide

CBW Convert Byte to Word IMUL Integer MULtiply

CLC CLear Carry flag IN INput from 1/0 port

CLD CLear Direction flag INC INCrement

CLl CLear Interrupt flag INT INTerrupt

CMC CoMplement Carry flag INTO INTerrupt on Overflow

CMP CoMPare IRET Interrupt RETurn

CMPS CoMPare String JA Jump if Above

CMPSB CoMPare String (Bytes) JAE Jump if Above or Equal

CMPSW CoMPare String (Words) JB Jump if Below

Figure 2-1. The instruction set used with the 8086,80286, and 80386. (continued)

18

Chapter 2: The Ins and Outs

Figure 2-1. continued

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by all 8086'family microprocessors: (continued)

JBE Jump if Below or Equal LES Load pointer using ES

JC Jump if Carry LOCK LOCK bus

JCXZ Jump if CX Zero LODS LOaD String

JE Jump if Equal LODSB LOaD String (Bytes)

JG Jump if Greater than LODSW LOaD String (Words)

JOE Jump if Greater than or Equal LOOP LOOP

JL Jump if Less than LOOPE LOOP while Equal

JLE Jump if Less than or Equal LOOPNE LOOP while Not Equal

IMP Jump LOOPNZ LOOP while Not Zero

JNA Jump if Not Above LOOPZ LOOP while Zero

JNAE Jump if Not Above or Equal MOV MOVe data

JNB Jump if Not Below MOVS MOVe String

JNBE Jump if Not Below or Equal MOVSB MOVe String (Bytes)

JNC Jump if No Carry MOVSW MOVe String (Words)

JNE Jump if Not Equal MUL MULtiply

JNG Jump if Not Greater than NEG NEGate

JNGE Jump if Not Greater than or Equal NOP No operation

JNL Jump if Not Less than NOT NOT

JNLE Jump if Not Less than or Equal OR OR

JNG Jump if Not Overflow OUT OUTput to I/O port

JNP Jump if Not Parity POP POP

JNS Jump if Not Sign POPF POP Flags

JNZ Jump if Not Zero PUSH PUSH

JO Jump if Overflow PUSHF PUSH Flags

JP Jump if Parity RCL Rotate through Carry Left

JPE Jump if Parity Even RCR Rotate through Carry Right

IPO Jump if Parity Odd REP REPeat

JS Jump if Sign REPE REPeat while Equal

JZ Jump if Zero REPNE REPeat while Not Equal

LAHF Load AH with Flags REPNZ REPeat while Not Zero

LDS Load pointer using DS REPZ REPeat while Zero

LEA Load Effective Address RET RETurn

(continued)

19

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 2-1. continued

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by all 8086'family microprocessors: (continued)

ROL Rotate Left STD SeT Direction flag

ROR Rotate Right STI SeT Interrupt flag

SAKE Store AH into Flags STOS STOre String

SAL Shift Arithmetic Left STOSB STOre String (Bytes)

SAR Shift Arithmetic Right STOSW STOre String (Words)

SEE SuEtract with Borrow SUB SUBtract

SCAS SCAn String TEST TEST

SCASE SCAn String (Bytes) WAIT WAIT

SCASW SCAn String (Words) XCHG eXCHanGe

SHL SHiftLeft XLAT transLATe

SHR SHift Right XOR exclusive OR

STC SeT Carry flag

Instructions recognized by the 80286 and 80386 only:

ARPL Adjust RPL field of selector LTR Load Task Register

BOUND Check array index against BOUNDs OUTS OUTput String to I/O port

CUTS CLear Task-Switched flag POPA POP All general registers

ENTER Establish stack frame PUSHA PUSH All general registers

INS INput String from I/O port SGDT Store Global Descriptor Table
register

LAR Load Access Rights SIDT Store Interrupt Descriptor Table
register

LEAVE Discard stack frame SLDT Store Local Descriptor Table
register

LGDT Load Global Descriptor Table register SMSW Store Machine Status Word

LIDT Load Interrupt Descriptor Table register STR Store Task Register

LLDT Load Local Descriptor Table register VERR VERify a segment selector for
Reading

LMSW Load Machine Status Word VERW VERify a segment selector for
Writing

LSL Load Segment Limit

(continued)

20

Chapter 2: The Ins and Outs

Figure 2-1. continued

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by the 80386 only:

BSF Bit Scan Forward SETL SET byte if Less

BSR Bit Scan Reverse SETLE SET byte if Less or Equal

BT Bit Test SETNA SET byte if Not Above

BTC Bit Test and Complement SETNAE SET byte if Not Above or Equal

BTR Bit Test and Reset SETNB SET byte if Not Below

BTS Bit Test and Set SETNBE SET byte if Not Below or Equal

CDQ Convert Doubleword to Quadword SETNC SET byte if No Carry

CMPSD CoMPare String (Doublewords) SETNE SET byte if Not Equal

CWDE Convert Word to Doubleword in EAX SETNG SET byte if Not Greater

LFS Load pointer using FS SETNGE SET byte if Not Greater or Equal

LGS Load pointer using GS SETNL SET byte if Not Less

LSS Load pointer using SS SETNLE SET byte if Not Less or Equal

LODSD LOaD String (Doublewords) SETNO SET byte if Not Overflow

MOVSD MOVe String (Doublewords) SETNP SET byte if Not Parity

MOVSX MOVe with Sign-eXtend SETNS SET byte if Not Sign

MOVZX MOVe with Zero-eXtend SETNZ SET byte if Not Zero

SCASD SCAn String (Doublewords) SETO SET byte if Overflow

SETA SET byte if Above SETP SET byte if Parity

SETAE SET byte if Above or Equal SETPE SET byte if Parity Even

SETB SET byte if Below SETPO SET byte if Parity Odd

SETBE SET byte if Below or Equal SETS SET byte if Sign

SETC SET byte if Carry SETZ SET byte if Zero

SETE SET byte if Equal SHLD SHift Left (Doubleword)

SETG SET byte if Greater SHRD SHift Right (Doubleword)

SETGE SET byte if Greater or Equal STOSD STOre String (Doublewords)

□ NOTE: Although this chapter discusses the details of 8086 pro
gramming y remember that we're implicitly talking about the 8088y
80286y and 80386 as well. Information pertaining exclusively to the
80286 or 80386 will be noted.

21

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The operations that the 8086 instructions can perform break down into
only a few categories. They can do simple, four-function integer arithmetic.
They can move data around. They can, using only slightly clumsy methods,
manipulate individual bits. They can test values and take logical action
based on the results. And last but not least, they can interact with the cir
cuitry around them. The size of each instruction varies, but generally the
most basic and often-used instructions are the shortest.

Assembly-language programming can be carried out on one of two
levels: to create interface routines that will tie high-level programs to the
lower-level DOS and ROM-BIOS routines; or to create full-fledged assembly-
language programs that are faster and smaller than equivalent high-level
programs, or that perform exotic tasks at the hardware level, perhaps
accomplishing a feat that is accomplished nowhere else. Either way, to
understand how to use assembly language, you must understand how 8086-
family microprocessors process information and how they work with the
rest of the computer. The rest of this chapter describes how the micro
processor and the computer's other parts communicate.

How the 8086 Communicates

The 8086, 80286, and 80386 interact with the circuitry around them in three
ways: through direct and indirect memory access, through input/output
(1/0) ports, and with signals called interrupts.

The microprocessor uses memory by reading or writing values at
memory locations that are identified with numeric addresses. The memory

locations can be accessed in two ways: through the direct memory access
(DMA) controller or through the microprocessor's internal registers. The
disk drives and the serial communications ports can directly access mem
ory through the DMA controller. All other devices transfer data to and from

memory by way of the microprocessor's registers.

Input/Output ports are the microprocessor's general means of
communicating with any computer circuitry other than memory. Like

memory locations, I/O ports are identified by number, and data can be read

from or written to any port. I/O port assignment is unique to the design of
any particular computer. Generally, all members of the IBM PC family use
the same port specifications, with just a few variations among the different
models. (See page 37.)

Interrupts are the means by which the circuitry outside the micro
processor reports that something (such as a keystroke) has happened and

requests that some action be taken. Although interrupts are essential to the

22

Chapter 2: The Ins and Outs

microprocessor's interaction with the hardware around it, the concept of an
interrupt is useful for other purposes as well. For example, a program can
use the INT instruction to generate a software interrupt that requests a
service from DOS or from the system ROM BIOS. Interrupts are quite
important when programming the PC family, so we'll devote a special
section to them at the end of this chapter.

The 8086 Data Formats

Numeric data. The 8086 and 80386 are able to work with only four simple
numeric data formats, all of which are integer values. The formats are

founded on two building blocks: the 8-bit byte and the 16-bit (2-byte) word.
Both of these basic units are related to the 16-bit processing capacity of the
8086. The byte is the more fundamental unit; and when the 8086 and 80286

address memory, bytes are the basic unit addressed. In a single byte, these
microprocessors can work with unsigned positive numbers ranging in value
from 0 through 255 (that is, 2^ possibilities). If the number is a signed value,
one of the 8 bits represents the sign, so only 7 bits represent the value. Thus
a signed byte can represent values ranging from -128 through +127. (See
Figure 2-2.)

The 8086 and 80286 can also operate on 16-bit signed and unsigned
values, or words. Words are stored in memory in two adjacent bytes, with
the low-order byte preceding the high-order byte. (See the discussion of

"back-words storage" on page 24.)

Size Signed?
Range

Dec Hex

8 No 0 through 255 OOH through FFH

8 Yes -128 through 0 through +127 80H through OOH through 7FH

16 No 0 through 65,535 OOOOH through FFFFH

16 Yes -32,768 through 0
through +32,767

8000H through OOOOH
through 7FFFH

32 No 0 through 4,294,967,295 OOOOOOOOH through
FFFFFFFFH

32 Yes -2,147,483,648 through
+2,147,483,647

OOOOOOOOH through
OOOOOOOOH through
7FFFFFFFH

Figure 2-2. The six data formats used in the 8086family. (Only the 80386 supports 32-bit
formats.)

23

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

A word interpreted as an unsigned, positive number can have 2'® dif

ferent values ranging from 0 through 65,535. As a signed number, the value

can range from -32,768 through +32,767.

The 80386 differs from its predecessors in that it can also work with

32-bit integer values, or doublewords. A doubleword represents a signed or
unsigned 4-byte integer with any of 2^2 (or 4,294,967,295) different values.

Character data. Character data is stored in the standard ASCII format,

with each character occupying 1 byte. The 8086 family knows nothing about

ASCII characters and treats them as arbitrary bytes, with one exception: The

instruction set accommodates decimal addition and subtraction performed
on binary coded decimal (BCD) characters. The actual arithmetic is done in

binary, but the combination of the AF flag (see page 33) and a few special

instructions makes it practical to work on decimal characters and get deci

mal results, which can easily bexonverted to ASCII.

Back-Words Storage

While the PC's memory is addressed in units of individual 8-bit bytes,
many operations involve 16-bit words. In memory, a 16-bit word is

stored in any two adjacent 8-bit bytes. The least-significant byte of the
word is stored in the lower memory location, and the most significant

byte is stored in the higher memory location. From some points of
view, storing a word this way is the opposite of what you miglil

expect. Due to the backward appearance of this storage scheme, it is

sometimes whimsically called "back-words" storage.

• Higher addresses ■

9C I E6 I Value of word is E69CH

— Higher addresses -

I 4A I 58 I 00 Value of doubleword is 12005B4AH

If you are working with bytes and words in memory, you should

take care not to be confused by back-words storage. The source of the
confusion has mostly to do with how you write data. For example, if
you are writing a word value in hex, you write it like this: ABCD. The
order of significance is the same as if you are writing a decimal
number: The most significant digit is written first. But a word is
stored in memory with the lowest address location first. So, in mem
ory, the number ABCD appears as CDAB, with the bytes switched.

Chapter 2: The Ins and Outs

See Appendix C for more information on ASCII and the PC family's
extended ASCII character set.

How the 8086 Addresses Memory
The 8086 is a 16-bit microprocessor and cannot therefore work directly with
numbers larger than 16 bits. Theoretically, this means that the 8086 should
be able to access only 64 KB of memory. But, as we noted in the previous
chapter, it can in fact access much more than that—1024 KB to be exact.
This is possible because of the 20-bit addressing scheme used with the 8086,
which expands the full range of memory locations that the 8086 can work
with from 2^^ (65,536) to 2^0 (1,048,576). But the 8086 is still limited by its 16-
bit processing capacity. To access the 20-bit addresses, it must use an
addressing method that fits into the 16-bit format.

S^mented Addresses
The 8086 divides the addressable memory space into segments, each of
which contains 64 KB of memory. Each segment begins at a paragraph
address—that is, a byte location that is evenly divisible by 16. To access
individual bytes or words, you use an offset that points to an exact byte
location within a particular segment. Because offsets are always measured
relative to the beginning of a segment, they are also called relative
addresses or relative offsets.

Together, a segment and an offset form a segmented address that can
designate any byte in the 8086's 1 MB address space. The 8086 converts a
given 32-bit segmented address into a 20-bit physical address by using the
segment value as a paragraph number and adding the offset value to it. In
effect, the 8086 shifts the segment value left by 4 bits and then adds the
offset value to create a 20-bit address.

Figure 2-3 shows how this is done for a segment value of 1234H and an
offset of 4321H. The segmented address is written as 1234:4321, with 4-digit
hexadecimal values and with a colon separating the segment and offset.

1234:4321

shift

left

12340

+ 4321-

16661

Figure 2-3. Decoding an 8086 segmented address. The segment value 1234H is shifted
left 4 bits (one hex digit) and added to the offset 432IH to give the 20-bit physical address
I666IH.

25

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

On the 8086, there's obviously a great deal of overlap in the range of
values that can be expressed as segmented addresses. Any given physical
address can be represented by up to 2^2 different segmented addresses. For
example, the physical address 16661H could be represented not only as
1234:4321, but also as 1666:0001,1665:0011, 1664:0021, and so on.

80286 and 80386 Protected-Mode Addresses

The 80286 also uses segmented addresses, but when the 80286 runs in
protected mode, the addresses are decoded differently than on an 8086 or in
80286 real mode. The 80286 decodes protected-mode segmented addresses
through a table of segment descriptors. The "segment" part of a segmented
address is not a paragraph value, but a "selector" that represents an index
into a segment descriptor table (Figure 2-4). Each descriptor in the table
contains a 24-bit base address that indicates the actual start of a segment in
memory. The resulting address is the sum of the 24-bit base address and the

16-bit offset specified in the segmented address. Thus, in protected mode
the 80286 can access up to 2^^ bytes of memory; that is, physical addresses
are 24 bits in size.

This table-driven addressing scheme gives the 80286 a great deal of
control over memory usage. In addition to a 24-bit base address, each
segment descriptor specifies a segment's attributes (executable code,
program data, read-only, and so on), as well as a privilege level that lets an
operating system restrict access to the segment. This ability to specify
segment attributes and access privileges is of great use to a multitasking
operating system like OS/2.

The 80386 supports both 8086 and 80286 protected-mode addressing.
The 80386 enhances the protected-mode addressing scheme by allowing 32-
bit segment base addresses and 32-bit offsets. Thus a single segmented

012340

0038:4321

28

30

38 <-

40

-► 012340

+ 4321

016661

Figure 2-4. Decoding an 80286 protected-mode segmented address. The segment selector
38H indicates an entry in a segment descriptor table. The segment descriptor contains a
24-bit segment base address which is added to the offset 432IH to give the 24-bit physical
address 016661H.

26

Chapter 2: The Ins and Outs

address, consisting of a 16-bit selector and a 32-bit offset, can specify any of
232 different physical addresses.

The 80386 also provides a "virtual 8086" addressing mode, in which
addressing is the same as the usual 8086 16-bit addressing, but with the
physical addresses corresponding to the 1 MB 8086 address space mapped
anywhere in the 4 gigabyte (GB) 80386 address space. This lets an operating
system execute several different 8086 programs, each in its own 1 MB, 8086-
compatible address space.

Address Compatibility
The different addressing schemes used by the 80286 and 80386 are generally
compatible (except, of course, for 32-bit addressing on the 80386). However,
if you are writing an 8086 program that you intend to convert for use in
protected mode, be careful to use segments in an orderly fashion. Although
it's possible to specify a physical 8086 address with many different segment-
offset combinations, you will find it easier to convert 8086 programs to
80286 protected-mode addressing if you keep your segment values as
constant as possible.

For example, imagine that your program needs to access an array of
160-byte strings of characters, starting at physical address B8000H. A poor
way to access each string would be to exploit the fact that the strings are
each 10 paragraphs long by using a different segment value to locate the
start of each string:

B800:0000H (physical address B8000H)
B80A:0000H (physical address B80A0H)
B814:0000H (physical address B8140H)
B81E:0000H (physical address B81E0H)

A better way to accomplish the same addressing would be to keep a
constant segment value and change the offset value:

B800:0000H (physical address B8000H)
B800:00A0H (physical address B80A0H)
B800:0140H (physical address B8140H)
B800:01E0H (physical address B81E0H)

Although the result is the same on an 8086 and in real mode on an
80286, you'll find that the second method is much better suited to 80286
protected mode, where each different segment selector designates a
different segment descriptor.

27

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The 8086 Registers
The 8086 was designed to execute instructions and perform arithmetic and
logical operations as well as receive instructions and pass data to and from
memory. To do this, it uses a variety of 16-bit registers.

There are fourteen registers in all, each with a special use. Four
scratch-pad registers are used by programs to temporarily hold the inter
mediate results and operands of arithmetic and logical operations. Four
segment registers hold segment values. Five pointer and index registers hold

the offsets that are used with the values in the segment registers to locate
data in memory. Finally, ont flags register contains nine 1-bit flags that are
used to record 8086 status information and control 8086 operations. (See
Figure 2-5.)

AX (accumulator)

BX (base)

CX (count)

DX (data)

CS (code segment)

DS (data segment)

SS (stack segment)

ES (extra segment)

IP (instruction pointer)

SP (stack pointer)

BP (base pointer)

SI (source index)

DI (destination index)

Flags

Scratch-pad registers

0 7

Segment registers

Offset registers

Flags register

OFDF TFSF ZF AF PF CF

AH

DH

BH

CH

AL

DL

BL

CL

Figure 2-5. The 8086 registers and flags.

28

Chapter 2: The Ins and Outs

The Scratch-Pad Roisters
When a computer is processing data, a great deal of the microprocessor's
time is spent transferring data to and from memory. This access time can
be greatly reduced by keeping frequently used operands and results inside
the 8086. Four 16-bit registers, usually called the scratch-pad or data regis
ters, are designed for this purpose.

The scratch-pad registers are known as AX, BX, CX, and DX. Each of
them can also be subdivided and separately used as two 8-bit registers. The
high-order 8-bit registers are known as AH, BH, CH, and DH, and the low-
order 8-bit registers are known as AL, BL, CL, and DL.

The scratch-pad registers are used mostly as convenient temporary
working areas, particularly for arithmetic operations. Addition and sub
traction can be done in memory without using the registers, but the registers
are faster.

Although these registers are available for any kind of scratch-pad
work, each also has some special uses:

• The AX (accumulator) register is the main register used to perform
arithmetic operations. (Although addition and subtraction can be
performed in any of the scratch-pad or offset registers, multiplica
tion and division must be done in AX or AL.)

• The BX (base) register can be used to point to the beginning of a
translation table in memory. It can also be used to hold the offset
part of a segmented address.

• The CX (count) register is used as a repetition counter for loop con
trol and repeated data moves. For example, the LOOP instruction in
assembly language uses CX to count the number of loop iterations.

• The DX register is used to store data for general purposes, although
it, too, has certain specialized functions. For example, DX contains
the remainder of division operations performed in AX.

The S^ment Registers
As we discussed earlier, the complete address of a memory location consists
of a 16-bit segment value and a 16-bit offset within the segment. Four regis
ters, called CS, DS, ES, and SS, are used to identify four specific segments of
memory. Five offset registers, which we'll discuss shortly, can be used to
store the relative offsets of the data within each of the four segments.

29

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Each segment register is used for a specific type of addressing:

• The CS register identifies the code segment, which contains the
program that is being executed.

• The DS and ES registers identify data segments where data used in
a program is stored.

• The SS register identifies the stack segment. (See page 32 for more
information about stacks.)

Programs rarely use four separate segments to address four different
64 KB areas of memory. Instead, the four segments specified in CS, DS, ES,
and SS usually refer to overlapping or identical areas in memory. In effect,
the different segment registers identify areas of memory used for different
purposes.

For example. Figure 2-6 shows how the values in the segment registers
correspond to the memory used in a hypothetical DOS program. The values
in the segment registers are chosen to correspond to the start of each logi
cally different area of memory, even though the 64 KB areas of memory
identified by each segment overlap each other. (See Chapter 20 for more
about segments and the memory layout of DOS programs.)

All 8086 instructions that use memory have an implied use of a par
ticular segment register for the operation being performed. For example,
the MOV instruction, because it acts on data, uses the DS register. The IMP
instruction, which affects the flow of a program, automatically uses the CS
register.

This means that you can address any 64 KB segment in memory by
placing its paragraph address in the appropriate segment register. For ex
ample, to access data in the video buffer used by IBM's Color Graphics
Adapter, you place the paragraph address of the start of the buffer in a seg
ment register and then use the MOV instruction to transfer data to or from

the buffer.

SS=2919H

DS=2419H

CS=2019H

Stack

Program data

Executable code

29190H ^

24i90H ^

20190H ^

-2KB

-20 KB

- 16KB

Segment registers Physical addresses

Figure 2-6. Segment usage in a typical DOS program. Each segment register contains the
starting paragraph of a different area of memory.

30

Chapter 2: The Ins and Outs

mov ax.OBSOOh ; move the segment value into DS

mov ds.ax

mov a1,[0000] ; copy the byte at 8800:0000

; into AL

In interpreted BASIC you can use this method with the DEF SEG
statement:

DEF SEG = &HB800 ' move the segment value Into DS

X = PEEK(OOOO) ' copy the byte at 8800:0000 into X

The Offset Roisters
Five offset registers are used with the segment registers to contain
segmented addresses. One register, called the instruction pointer (IP),
contains the offset of the current instruction in the code segment; two

registers, called the stack registers, are intimately tied to the stack; and the
remaining two registers, called the index registers, are used to address
strings of data.

The instruction pointer (IP), also called the program counter (PC),
contains the offset within the code segment where the current program is
executing. It is used with the CS register to track the location of the next
instruction to be executed.

Programs do not have direct access to the IP register, but a number of
instructions, such as IMP and CALL, change the IP value implicitly.

The stack registers, called the stack pointer (SP) and the base pointer
(BP), provide offsets into the stack segment. SP gives the location of the
current top of the stack. Programs rarely change the value in SP directly.
Instead, they rely on PUSH and POP instructions to update SP implicitly. BP
is the register generally used to access the stack segment directly. You'll see
BP used quite often in the assembly-language examples that appear in
Chapters 8 through 20.

The index registers, called the source index (SI) and the destination
index (DI), can be used for general-purpose addressing of data. Also, all
string move and comparison instructions use SI and DI to address data
strings.

The Flags Roister
The fourteenth and last register, called the flags register, is really a
collection of individual status and control bits called flags. The flags are
maintained in a register, so they can be either saved and restored as a
coordinated set or inspected as ordinary data. Normally, however, the flags
are set and tested as independent items—not as a set.

31

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

There are nine I-bit flags in the 8086's 16-bit flags register, leaving 7
bits unused. (The 80286 and 80386 use some of the unused flags to support
protected-mode operation.) The flags can be logically divided into two
groups: six status flags, which record processor status information (usually
indicating what happened with a comparison or arithmetic operation), and
three control flags, which direct some of the 8086 instructions. Be prepared
to see a variety of notations for the flags, including distinct names for
whether they are set (1) or clear (0). The terms used in Figures 2-7 and 2-8
are the most common.

The Stack

The stack is a built-in feature of the 8086. It provides programs with a
; place to store and keep track of work in progress. The most important
use of the stack is to keep a record of where subroutines were invoked
from and what parameters were passed to them. The stack can also bi
used for temporary working storage, although this is less fundamental
and less common.

The stack gets its name from an analogy to a spring-loaded stack
of plates in a cafeteria: New data is "pushed" onto the top of the stacl
and old data is "popped" off. A stack always operates in last-in-first-
out (LIFO) order. This means that when the stack is used to keep track
of where to return to a program, the most recent calling program is
returned to first. This way, a stack maintains the orderly workings of
programs, subroutines, and interrupt handlers, no matter how comple:
their operation.

A stack is used from the bottom (highest address) to the top
(lowest address) so that when data is pushed onto the top of the stack
it is stored at the memory addresses just below the current top of thi
stack. The stack grows downward so that as data is added, the locatioi
of the top of the stack moves to lower and lower addresses, decreasinj
the value of SP each time. You need to keep this in mind when you
access the stack, which you are likely to do in assembly-language
interface routines.

Any part of any program can create a hew stack space at any
time, but this is not usually done. Normally, when a program is run, a
single stack is created for it and used throughout the operation of the

Chapter 2: The Ins and Outs

Code Name Use

CF Carry flag Indicates an arithmetic carry

OF Overflow flag Indicates signed arithmetic overflow

ZF Zero flag Indicates zero result, or equal comparison

SF Sign flag Indicates negative result/comparison

PF Parity flag Indicates even number of 1 bits

AF Auxiliary carry flag Indicates adjustment needed in binary-coded
decimal (BCD) arithmetic operations

Figure 2-7. The six status flags in the 8086's flags register.

iiiiiBiiiSii
iisiiiililiai

iiiwi

iiiiliWiilili

There is no simple way to estimate Ae size of
program might need, and the 8086's desi^ does ii
autdihatic way of detecting when stack spac® is in j
63diaiKte4. This can makeiprogrammers nefvous? ah0
space that should be set aside for a stack. A co
how much stack space to maintain is about 2
default amount

liilli

:1008

:1006

:1004

•1002

:1600

5E00
1*.—

4D00

3C00 —

-

-

-

 Bottom of stack

/ -

 Top of stack
(SP-10b4)

4D0O'

3C0b 4

2B0P ^

a. Stack before a PUSH

:1008

:1006

:1004

:1002

:1000

■

b. Stack after a PUSH

5E00

4D00

3C00

Bottom of

• Top of stack
(SP=1004)

f. ■ ■ -"*5,

" - • ■'::;a
• ■ -

"i. ''"j

<' > ,

POP

c. Stack after a POP V>^ '

33

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Code Name Use

DF Direction flag Controls increment direction in string operations
(CMPS, LODS, MOVS, SCAS, STOS)

IF Interrupt flag Controls whether interrupts are enabled

TF Trap flag Controls single-step operation (used by DEBUG) by
generating an interrupt at the end of every instruction

Figure 2-8. The three control flags in the 8086's flags register.

Addressing Memory Through Registers
We've seen that memory is always addressed by a combination of a segment
value and a relative offset. The segment value always comes from one of
the four segment registers.

In contrast, the relative offset can be specified in many different
ways. (See Figure 2-9.) For each machine instruction that accesses memory,
the 8086 computes an effective address by combining one, two, or three of
the following:

• The value in BX or BP

• The value in SI or DI

• A relative-offset value, called a displacement, that is part of the
instruction itself

Name Effective Address Example Comments

Immediate Value **addressed*' is part
of the 8086 instruction

mov ax,1234h Stores 1234H in AX.

Direct Specified as part of the
8086 instruction

mov ax,[1234h] Copies the value at 1234H into
AX. The default segment
register is DS.

Register indirect Contained in BX, SI,
DI, or BP

mov ax,[bx] Copies the value at the offset
contained in BX into AX. The

default segment register for
[BX], [SI], and [DI] is DS; for
[BP] the default is SS.

Figure 2-9. 8086 Addressing Modes. In assembly language, some instructions
can be specified in several different ways.

(continued)

34

Chapter 2: The Ins and Outs

Figure 2-9. continued

Name Effective Address Example Comments

Based The sum of a displacement
(part of the instruction) and
the value in BX or BP

mov ax,[bx+2]
or mov ax,2[bx]

Copies the value 2 bytes past the
offset contained in BX into AX.

The default segment register for
[BX] is DS; for [BP] the default
is SS.

Indexed The sum of a displacement
and the value in SI or DI

mov ax,[si+2]
or mov ax,2[si]

Copies the value 2 bytes past the
offset contained in SI into AX.

The default segment register is
DS.

Based indexed The sum of a displacement,
the value in SI or DI, and the

value in BX or BP

mov ax,[bp+si+2]
or mov ax,2[bp+si]
or mov ax,2[bp][si]

The offset is the sum of the

values in BP and SI, plus 2.
When BX is used, the default
segment register is DS; when BP
is used, the default is SS.

String addressing Source string: register
indirect using SI
Destination string: register
indirect using DI

movsb Copies the string from memory
atDS:[SI] to ES:[DI].

Each of the various ways of forming an effective address has its uses.
You can use the Immediate and Direct methods when you know the offset
of a particular memory location in advance. You must use one of the
remaining methods when you can't tell what an address will be until your
program executes. In the chapters ahead, you'll see examples of most of the
different 8086 addressing modes.

The notation used in specifying 8086 addresses is straightforward.
Brackets, [], are used to indicate that the enclosed item specifies a relative
offset. This is a key element of memory addressing: Without brackets, the
actual value stored in the register is used in whatever operation is specified.

Rules for Using Registers
It is important to know that various rules apply to the use of registers, and it
is essential to be aware of these rules when writing assembly-language
interface routines. Because the rules and conventions of usage vary by
circumstance and by programming language, exact guidelines are not
always available, but the general rules that follow will apply in most cases.
(You will find additional guidance, and working models to copy, in the
examples in Chapters 8 through 20.) Keep in mind, though, that the
following rules are general, not absolute.

35

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Probably the most useful rule for using the registers is simply to use
them for what they are designed for. The idea that each of the 8086 registers
has certain special uses may seem somewhat quirky, particularly to a
programmer who is accustomed to working with a CPU that has a less
specialized set of registers (such as the 68000, for example). On the 8086,
using the registers for their natural functions leads to cleaner, more efficient
source code and ultimately to more reliable programs.

For example, the segment registers are designed to contain segment
values, so don't use them for anything else. (In 80286 protected mode you
can't use them for anything else anyway without generating an error
condition.) The BP register is intended for stack addressing; if you use it for
anything else, you'll have to do some fancy footwork when you need to
address values in the stack segment.

Particular rules apply to the four segment registers (CS, DS, ES, and
SS). The CS register should be changed only through intersegment jumps
and subroutine calls.

Most programmers use the DS register to point to a default data
segment that contains the data most frequently used in a program. This
means that the value in the DS register is usually initialized at the
beginning of a program and then left alone. Should it be necessary to use
DS to address a different segment, its original value is saved, the new
segment is accessed, and then the original value is restored. In contrast,
most people use the ES register as needed to access arbitrary segments in
memory.

The stack segment (SS) and stack pointer (SP) registers should usually
be updated implicitly, either by PUSH and POP instructions or by CALL and
RET instructions that save subroutine return addresses on the stack. When
DOS loads a program into memory to be executed, it initializes SS and SP to
usable values. In .COM programs, SS:SP points to the end of the program's
default segment; in .EXE progranis, SS:SP is determined explicitly by the
size and location of the program's stack segment. In either case, it's rare
that you need to change SS or SP explicitly.

If you need to discard a number of values from the stack or reserve
temporary storage space on top of the stack, you can increment or
decrement SP directly:

add sp,8 ; discard four words (8 bytes)

; from stack

sub sp,6 ; add three empty words (6 bytes)

; to top of stack

36

Chapter 2: The Ins and Outs

If you need to move the stack to a different location in memory, you
must generally update both SS and SP at the same time:

cli ; disable interrupts

mov ss.NewStackSeg : update SS from a memory variable

mov sp.NewStackPtr ; update SP from a memory variable

sti ; re-enable interrupts

Be careful when you change SS and SP explicitly. If you modify SS but
fail to update SP, SS will be specifying a new stack segment while SP will
be pointing somewhere inside another stack segment—and that's asking
for trouble the next time you use the stack.

It's hard to be explicit about the use of the other registers. In general,
most programmers try to minimize memory accesses by keeping the
intermediate results of lengthy computations in registers. This is because it
takes longer to perform a computation on a value stored in memory than on
a value stored in a register. Of course, the 8086 has only so many registers to
work with, so you may find yourself running out of registers before you run
out of variables.

How the 8086 Uses I/O Ports
The 8086-family microprocessors communicate with and control many
parts of the computer through the use of input and output (I/O) ports. The
1/0 ports are doorways through which information passes as it travels to or
from an 1/0 device, such as a keyboard or a printer. Most of the support

chips we described in Chapter 1 are accessed through I/O ports; in fact,
each chip may use several port addresses for different purposes.

Each port is identified by a 16-bit port number, which can range from
OOH through FFFFH (65,535). The CPU identifies a particular port by the
port's number.

As it does when accessing memory, the CPU uses the data and address
buses as conduits for communication with the ports. To access a port, the

CPU first sends a signal on the system bus to notify all 1/0 devices that the
address on the bus is that of a port. The CPU then sends the port address.
The device with the matching port address responds.

The port number addresses a memory location that is associated with
an 1/0 device but is not part of main memory. In other words, an I/O port
number is not the same as a memory address. For example, 1/0 port 3D8H

has nothing to do with memory address 003D8H. To access an 1/0 port, you
don't use data-transfer instructions like MOV and STOS. Instead, you use the
instructions IN and OUT, which are reserved for I/O port access.

37

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

□ NOTE: Many high-level programming languages provide func
tions that access HO ports. The BASIC functions INP and OUT, and
the C functions inp and outp, are typical examples.

The uses of specific I/O ports are determined by the hardware
designers. Programs that make use of I/O ports need to be aware of the port
numbers, as well as their use and meaning. Port number assignments differ
slightly among the PC family members, but, in general, IBM has reserved
the same ranges of I/O port numbers for the same input/output devices in all
PCs and PS/2s. (See Figure 2-10.) For details on how each 1/0 port is used,
see the descriptions of the various input/output devices in the IBM technical
reference manuals.

Description HO Port Numbers Comment

Programmable Interrupt Controller (master) 20H-3FH

System timer 40H-5FH

Keyboard controller 60H-6FH On PS/2 Model 30, ports 60H-
6FH are reserved for system-
board control and status

System control port B 61H PS/2 models 50,60, and 80 only
Real-time clock, NMl mask 70H-7FH On PC, PC/XT, and PS/2 Model

30, NMl mask is at port AOH
System control port A 92H PS/2 models 50,60, and 80 only
Programmable Interrupt Controller (slave) AOH-BFH On PS/2 Model 30, AOH-AFH
Real-time clock BOH-BFH, PS/2 Model 30 only

EOH-EFH

Clear math coprocessor busy FOH

Reset math coprocessor FIH

Math coprocessor F8H-FFH

Fixed-disk controller iF0H-lF8H

Game control adapter 200H-207H

Parallel printer 3 278H-27BH

Serial communications 2 2F8H-2FFH

Fixed-disk controller 320H-32FH PC/XT and PS/2 Model 30
PC network 360H-363H,

368H-36BH

Parallel printer 2 378H-37BH

Figure 2-10. PC and PS! 2 input/output port assignments. This table lists the
most frequently used HO ports. For a complete list, see the IBM Technical
Reference manuals.

(continued)

38

Chapter 2: The Ins and Outs

Figure 2-10. continued

Description HO Port Numbers Comment

Monochrome Display Adapter 3B0H-3BBH Also used by EGA and VGA in
monochrome video modes

Parallel printer 1 3BCH-3BFH

Enhanced Graphics Adapter (EGA),
Video Graphics Array (VGA)

3C0H-3CFH

Color Graphics Adapter (CGA),
Multi-Color Graphics Array (MCGA)

3D0H-3DFH Also used by EGA and VGA in
color video modes

Diskette controller 3F0H-3F7H

Serial communications 1 3F8H-3FFH

How the 8086 Uses Interrupts
An interrupt is an indication to the microprocessor that its immediate
attention is needed. The 8086-family microprocessors can respond to inter
rupts from either hardware or software. A hardware device can generate an
interrupt signal that is processed by the programmable interrupt controller
(PIC) and passed to the microprocessor; in software, the INT instruction
generates an interrupt. In both cases, the microprocessor stops processing
and executes a memory-resident subroutine called an interrupt handler.
After the interrupt handler has performed its task, the microprocessor
resumes processing at the point the interrupt occurred.

The 8086 supports 256 different interrupts, each identified by a
number between OGH and FFH (decimal 255). The segmented addresses of
the 256 interrupt handlers are stored in an interrupt vector table that starts
at 0000:OOOOH (that is, at the very beginning of available memory). Each
interrupt vector is 4 bytes in size, so you can locate the address of any
interrupt handler by multiplying the interrupt number by 4. You can also
replace an existing interrupt handler with a new one by storing the new
handler's segmented address in the appropriate interrupt vector.

Software Interrupts
Probably the most familiar type of interrupts are generated by the INT
instruction. Consider what happens when the CPU executes the following
instruction:

INT 12H

39

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The CPU pushes the current contents of the flags register, the CS (code

segment) register, and the IP (instruction pointer) register onto the stack.

Then it transfers control to the interrupt handler corresponding to interrupt

number 12H, using the segmented address stored at 0000:0048H. The CPU
then executes the interrupt 12H handler, which responds appropriately to

interrupt 12H. The interrupt handler terminates with an IRET instruction

that pops CS:IP and the flags back into the registers, thus transferring

control back to the interrupted program.

Hardware Interrupts
The microprocessor responds to a hardware interrupt in much the same way

it responds to a software interrupt: by transferring control to an interrupt
handler. The important difference lies in the way the interrupt is signalled.

Devices such as the system timer, the hard disk, the keyboard, and the

serial communications ports can generate interrupt signals on a set of

reserved interrupt request (IRQ) lines. These lines are monitored by the PIC
circuit, which assigns interrupt numbers to them. When a particular hard
ware interrupt occurs, the PIC places the corresponding interrupt number on
the system data bus where the microprocessor can find it.

The PIC also assigns priorities to the various interrupt requests. For
example, the highest-priority PIC interrupt in all PCs and PS/2s is the timer-
tick interrupt, which is signalled on interrupt request line 0 (IRQO) and is

assigned interrupt 08H by the PIC. When a system timer generates a timer-
tick interrupt, it does so by signalling on IRQO; the PIC responds by
signalling the CPU to execute interrupt 08H. If a lower-priority hardware

interrupt request occurs while the timer-tick interrupt is being processed,
the PIC delays the lower-priority interrupt until the timer interrupt handler
signals that it has finished its processing.

When you coldboot the computer, the system start-up routines assign

interrupt numbers and priorities to the hardware interrupts by initializing
the PIC. In 8088- and 8086-based machines (PCs, PC/XTs, PS/2 models 25 and

30), interrupt numbers 08H through OFH are assigned to interrupt request

levels 0 through 7 (IRQO through IRQ7). In PC/ATs and PS/2 models 50, 60,

and 80, an additional eight interrupt lines (IRQ8 through IRQ15) are assigned
interrupt numbers 70H through 77H.

One hardware interrupt bypasses the PIC altogether. This is the non

maskable interrupt (NMI), which is assigned interrupt number 02H in the

8086 family. The NMI is used by devices that require absolute, "now-or-

never" priority over all other CPU functions. In particular, when a
hardware memory error occurs, the computer's RAM subsystem generates

40

Chapter 2: The Ins and Outs

an NMI. This causes the CPU to pass control to an interrupt 02H handler; the
default handler in the PC family resides in ROM and issues the "PARITY
CHECK" message you see when a memory error occurs.

When you debug a program on any member of the PC family,
remember that hardware interrupts are occurring all the time. For example,
the system timer-tick interrupt (interrupt 08H) occurs roughly 18.2 times per
second. The keyboard and disk-drive controllers also generate interrupts.
Each time these hardware interrupts occur, the 8086 uses the current stack to
save CS:IP and the flags register. If your stack is too small, or if you are
manipulating SS and SP when a hardware interrupt occurs, the 8086 may
damage valuable data when it saves CS:IP and the flags.

If you look back at our example of updating SS and SP on page 36,
you'll see that we explicitly disable hardware interrupts by executing the
CLI instruction prior to updating SS. This prevents a hardware interrupt
from occurring between the two MOV instructions while SS:SP is pointing
nowhere. (Actually, this is a problem only in very early releases of the 8088;
the chip was later redesigned to prevent this problem by disabling interrupts
during the instruction that follows a data move into SS.)

We'll talk in more detail about how PCs and PS/2s use interrupts in
Chapters 3 and 8.

41

Chapter 3

The ROM Software

The Start-Up ROM 44

The ROM BIOS 46

Interrupt Vectors 47

Key Low-Memory Addresses 54

The ROM Version and Machine-ID Markers 62

The ROM BASIC 65

The ROM Extensions 65

Comments 66

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

It takes software to make a computer go. And getting a computer going and
keeping it going is much easier if some of that software is permanently built
into the computer. That's what the ROM programs are all about. ROM stands
for read-only memory—memory permanently recorded in the circuitry of
the computer's ROM chips, that can't be changed, erased, or lost.

PCs and PS/2s come with a substantial amount of ROM that contains

the programs and data needed to start and operate the computer and its
peripheral devices. The advantage of having a computer's fundamental pro
grams stored in ROM is that they are right there—built into the computer—
and there is no need to load them into memory from disk the way that DOS

must be loaded. Because they are permanent, the ROM programs are very

often the foundation upon which other programs (including DOS) are built.
There are four elements to the ROM in IBM's PC family: the start-up

routines, which do the work of getting the computer started; the ROM

BIOS—an acronym for Basic Input/Output System—which is a collection
of machine-language routines that provide support services for the continu
ing operation of the computer; the ROM BASIC, which provides the core of
the BASIC programming language; and the ROM extensions, which are pro
grams that are added to the main ROM when certain optional equipment is
added to the computer. We'll be examining each of these four major ele
ments throughout the rest of this chapter.

The ROM programs occupy addresses FOOOiOOOOH through FOOO:FFFFH
in the PC/XT/AT family and the PS/2 models 25 and 30, and EOOO:OOOOH
through FOOOiFFFFH in the other PS/2s. However, the routines themselves
are not located at any specific addresses in ROM as they are in other com
puters. The address of a particular ROM routine varies among the different
members of the PC/XT/AT and PS/2 families.

Although the exact addresses of the ROM routines can vary, IBM pro
vides a consistent interface to the ROM software by using interrupts. Later

in this book we'll show you exactly how to use interrupts to execute the
ROM routines.

The Start-Up ROM
The first job the ROM programs have is to supervise the start-up of the com
puter. Unlike other aspects of the ROM, the start-up routines have little to do
with programming the PC family—but it is still worthwhile to understand
what they do.

44

Chapter 3: The ROM Software

The start-up routines perform several tasks:

• They run a quick reliability test of the computer (and the ROM

programs) to ensure everything is in working order.

• They initialize the chips and the standard equipment attached to
the computer.

• They set up the interrupt-vector table.

• They check to see what optional equipment is attached.

• They load the operating system from disk.

The following paragraphs discuss these tasks in greater detail.
The reliability testy part of a process known as the Power On Self Test

(POST), is an important first step in making sure the computer is ready. All
POST routines are quite brief except for the memory tests, which can be an-
noyingly lengthy in computers that contain a large amount of memory.

The initialization process is slightly more complex. One routine sets the
default values for interrupt vectors. These default values either point to the
standard interrupt handlers located inside the ROM BIOS, or they point to
do-nothing routines in the ROM BIOS that may later be superseded by the
operating system or by your own interrupt handlers. Another initialization

routine determines what equipment is attached to the computer and then
places a record of it at standard locations in low memory. (We'll be discuss
ing this equipment list in more detail later in the chapter.) How this infor
mation is acquired varies from model to model—for example, in the PC it
is taken mostly from the settings of two banks of switches located on the
computer's system board; in the PC/AT and the PS/2s, the ROM BIOS reads

configuration information from a special nonvolatile memory area whose
contents are initialized by special setup programs supplied by IBM. The
POST routines learn about the computer's hardware by a logical inspection
and test. In effect, the initialization program shouts to each possible option,
"Are you there?", and listens for a response.

No matter how it is acquired, the status information is recorded and

stored in the same way for every model so that your programs can examine
it. The initialization routines also check for new equipment and extensions
to ROM. If they find any, they momentarily turn control over to the ROM ex
tensions so that they can initialize themselves. The initialization routines
then continue executing the remaining start-up routines (more on this later
in the chapter).

45

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The final part of the start-up procedure, after the POST tests, the ini
tialization process, and the incorporation of ROM extensions, is called the
bootstrap loader. It's a short routine that loads a program from disk. In es
sence, the ROM bootstrap loader attempts to read a disk boot program from a
disk. If the boot program is successfully read into memory, the ROM loader
passes control of the computer to it. The disk boot program is responsible
for loading another, larger disk program, which is usually a disk operating
system such as DOS, but can be a self-contained and self-loading program,
such as Microsoft Flight Simulator. If the ROM bootstrap loader cannot read
a disk's boot program, it either activates the built-in ROM BASIC or displays
an error message if the disk boot program contains an error. As soon as ei
ther of these two events occurs, the system start-up procedure is finished
and the other programs take over.

The ROM BIOS

The ROM BIOS is the part of ROM that is in active use whenever the com
puter is at work. The role of the ROM BIOS is to provide the fundamental ser
vices that are needed for the operation of the computer. For the most part,
the ROM BIOS controls the computer's peripheral devices, such as the dis
play screen, keyboard, and disk drives. When we use the term BIOS in its
narrowest sense, we are referring to the device control programs—the pro

grams that translate a simple command, such as read-something-from-the-
disk, into all the steps needed to actually perform the command, including
error detection and correction. In the broadest sense, the BIOS includes not

only routines needed to control the PC's devices, but also routines that con
tain information or perform tasks that are fundamental to other aspects of
the computer's operation, such as keeping track of the time of day.

Conceptually, the ROM BIOS programs lie between programs that are
executing in RAM (including DOS) and the hardware. In effect, this means
that the BIOS works in two directions in a two-sided process. One side
receives requests from programs to perform the standard ROM BIOS input/
output services. A program invokes these services with a combination of an
interrupt number (which indicates the subject of the service request, such as
printer services) and a service number (which indicates the specific service
to be performed). The other side of the ROM BIOS communicates with the
computer's hardware devices (display screen, disk drives, and so on), using
whatever detailed command codes each device requires. This side of the

46

Chapter 3: The ROM Software

ROM BIOS also handles any hardware interrupts that a device generates to
get attention. For example, whenever you press a key, the keyboard gener
ates an interrupt to let the ROM BIOS know.

Of all the ROM software, the BIOS services are probably the most in
teresting and useful to programmers—as a matter of fact, we have devoted
six chapters to the BIOS services in Chapters 8 through 13. Since we deal
with them so thoroughly later on, we'll skip any specific discussion of what
the BIOS services do and instead focus on how the BIOS as a whole keeps
track of the computer's input and output processes.

Interrupt Vectors
The IBM PC family, like all computers based on the Intel 8086 family of
microprocessors, is controlled largely through the use of interrupts, which
can be generated by hardware or software. The BIOS service routines are no

exception; each is assigned an interrupt number that you must call when
you want to use the service.

When an interrupt occurs, control of the computer is turned over to an
interrupt-handling subroutine that is often stored in the system's ROM (a
BIOS service routine is nothing more than an interrupt handler). The inter
rupt handler is called by loading its segment and offset addresses into regis
ters that control program flow: the CS (code segment) register and the IP
(instruction pointer) register—together known as the CS:IP register pair.
Segment addresses that locate interrupt handlers are called interrupt vectors.

During the system start-up process, the BIOS sets the interrupt vectors
to point to the interrupt handlers in ROM. The interrupt vector table starts at
the beginning of RAM, at address OOOOrOOOOH. (See Chapter 2 for more about
interrupts and interrupt vectors.) Each entry in the table is stored as a pair
of words, with the offset portion first and the segment portion second. The
interrupt vectors can be changed to point to a new interrupt handler simply
by locating the vector and changing its value.

As a general rule, PC-family interrupts can be divided into six cate
gories: microprocessor, hardware, software, DOS, BASIC, and general use.

Microprocessor Interrupts, often called logical interrupts, are de
signed into the microprocessor. Four of them (interrupts OOH, OIH, 03H, and
04H) are generated by the microprocessor itself, and another (interrupt 02H,
the nonmaskable interrupt) is activated by a signal generated by certain
hardware devices, such as the 8087 math coprocessor.

47

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Hardware interrupts are built into the PC hardware. In PCs, XTs, and
PS/2 models 25 and 30, interrupt numbers 08H through OFH are used for
hardware interrupts; in ATs and PS/2 models 50, 60, and 80, interrupt num
bers 08H through OFH and 70H through 77H are reserved for hardware inter
rupts. (See Chapter 2 for more about hardware interrupts.)

Software interrupts incorporated into the PC design are part of the
ROM BIOS programs. ROM BIOS routines invoked by these interrupts cannot

RV."

oot^trap loaue

1 from a disk ;md transfer control able DOJ

isk. the disk bootstrap program verifies that DOS is stored on t
isk b\ lookiim for two hidden files named IHMBIO.COM a

IBMDOS.CflM. If it finds them, it loads them into memorv alo

ith the DOS command interpreter. COMMAND.CO.M. During il
ading process, optional parts of DOS. such as installable de\ic

drivers, may also be loaded.

The IBMBIO.COM file contains extensions ti) the ROM Bit

These extensions can be changes or additions to the basic 1/
aperations and often include corrections to the existing ROM Bit

-

!-s-

S
iv. -

Sirs., : . ■

new routines for new equipment, or cusionii/cd chaimes to t
tandard ROM BIOS routines. Because thov arc part of disk soflwa

■

I
p
p

i

he IBMBIO.COM routines provide a convenient way to modify t
OM BIOS. All that is necessary, besides the new routine, is that t

nterrupt vectors for the previous ROM BI(.).S routines be ch;
oint to the location in memory where the new disk BIOS routines
laced. Whenever new devices are added to the computer, t

1 • 1 1 I .1 l"l

f

upport programs can be included in the IBMBIO.COM file o
li l t 1 • 1 • 1 .i.' .1 1 . .1 . 11 / \ s 4 I. :

i
p
e

a

nstallable device drivers, eliminating the need to replace ROM chi

ee Appendix A for more on device drivers
You can think of the ROM BIOS routines as the lo

ystem software available, performing the most luiulam
rimitive I/O operations. The IBMBIO.COM routine
xtensions of the ROM BIOS, are essentiallv on the same

lso providing basic functions. By comparison, the IBMDOS.C
outines are more sophisticated; think of them as occup\in
evel up, with applications programs on top.

The IBMDOS.COM file contains the DOS service routin

he DOS services, like the BIOS ser\ ices, can be called by pro

- ■

i

■ ■ "■ I"--

s:>-

Chapter 3: The ROM Software

be changed, but the vectors that point to them can be changed to point to
different routines. Reserved interrupt numbers are lOH through IFH
(decimal 16 through 31) and 40H through 5FH (decimal 64 through 95).

DOS interrupts are always available when DOS is in use. Many
programs and programming languages use the services provided by DOS
through the DOS interrupts to handle basic operations, especially disk I/O.
DOS interrupt numbers are 20H through 3FH (decimal 32 through 63).

' through a set of interrupts whose vectors are placed in the interrupt-
vectof table in low memory. One of the DOS interrupts, interrupt 21H

I- (decimal 33), is particularly important because when invoked, it gives
you access to a rather large group of DOS functions. The DOS
functions provide more sophisticated and efficient control over the I/O

operations than the BIOS routines do, especially with regard to disk
) - file operations. All standard disk processes—formatting diskettes;

reading and writing data; opening, closing, and deleting files;
performing directory searches-^are included in the DOS functions
and provide the foundation for many higher-level DOS programs,
such as FORMAT, COPY, and DIR. Your programs can use the DOS

•: services when they need more control of I/O operations than
• : / programming languages allow, and when you are reluctant to dig all

: ' - the way down to the BIOS level. The DOS services are a very
important part of this book, and we have devoted five chapters to
them. (See Chapters 14 through 18.)

The COMMAND.COM file is the third and most important
" part of DOS, at least from a utilitarian standpoint. This file contains

the routines that interpret the commands you type in through the
keyboard in the DOS command mode. By comparing your input to a
table of command names, the COMMAND.COM program can

; i . differentiate between internal commands that are part of the
COMMAND.COM file, such as RENAME or ERASE, and external
commands, such as the DOS utility programs (like DEBUG) or one of
your own programs. The command interpreter acts by executing the
required routines for internal commands or by searching for the

-i; requested programs on disk and loading them into memory. The
; ' whole subject of the COMMAND.COM file and how it works is

. intriguing and well worth investigating—as are the other DOS
programs. We recommend you read the DOS Technical Reference

I. ; Manual or Inside the IBM PC for additional information.

49

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

BASIC interrupts are assigned by BASIC itself and are always avail
able when BASIC is in use. The reserved interrupt numbers are 80H through
FOH (decimal 128 through 240).

General-use interrupts are available for temporary use in your pro
grams. The reserved interrupt numbers are 60H through 66H (decimal 96
through 102).

Most of the interrupt vectors used by the ROM BIOS, DOS, and BASIC
contain the addresses of interrupt handlers. A few interrupt vectors, how
ever, point to tables of useful information. For example, interrupt lEH con
tains the address of a table of diskette drive initialization parameters; the
interrupt IFH vector points to a table of bit patterns used by the ROM BIOS
to display text characters; and interrupts 41H and 46H point to tables of
fixed-disk parameters. These interrupt vectors are used for convenience,
not for interrupts. If you tried to execute interrupt lEH, for instance, you'd
probably crash the system because the interrupt lEH vector points to data,
not to executable code.

The interrupt vectors are stored at the lowest memory locations; the
very first location in memory contains the vector for interrupt number OOH,
and so on. Because each vector is two words in length, you can find a par
ticular interrupt's location in memory by multiplying its interrupt number
by 4. For example, the vector for interrupt 05H, the print-screen service in
terrupt, would be at byte offset 20 (5 x 4 = 20); that is, at address 0000;0014H.
You can examine the interrupt vectors by using DEBUG. For example, you
could examine the interrupt 05H vector with DEBUG in the following way:

DEBUG

D 0000:0014 L 4

DEBUG will show 4 bytes, in hex, like this:

54 FF 00 FO

Converted to a segment and offset address and allowing for "back-
words" storage, the interrupt vector for the entry point in ROM of the print-
screen service routine (interrupt 05H) is F000:FF54H. (Of course, this address
may be different in different members of the PC and PS/2 families.) The
same DEBUG instruction finds any other interrupt vector just as easily.

Figure 3-1 lists the main interrupts and their vector locations. These
are the interrupts that programmers will probably find most useful. Details

50

Chapter 3: The ROM Software

are available for most of these interrupts in Chapters 8 through 18. Inter
rupts that are not mentioned in this list are, for the most part, reserved for
future development by IBM.

Interrupt Offset in
Segment

Hex Dec 0000 Use

Interrupt Offset in
Segment

Hex Dec 0000 Use

OOH 0 0000

OIH 1 0004

02H 2 0008

03H 3 OOOC

04H 4 0010

05H 5 0014

08H 8 0020

09H 9 0024

OEH 14 0038

OFH 15 003C

lOH 16 0040

IIH 17 0044

12H 18 0048

Generated by CPU when
division by zero is
attempted

Used to single-step through
programs (as with
DEBUG)

Nonmaskable interrupt
(NMI)

Used to set break-points in
programs (as with
DEBUG)

Generated when arithmetic

result overflows

Invokes print-screen
service routine in ROM

BIOS

Generated by hardware
clock tick

Generated by keyboard
action

Signals diskette attention
(e.g. to signal completion)

Used in printer control

Invokes video display
services in ROM BIOS

Invokes equipment-list
service in ROM BIOS

Invokes memory-size
service in ROM BIOS

13H 19 004C

14H 20 0050

15H 21 0054

16H 22 0058

17H 23 005C

18H 24 0060

19H 25 0064

lAH 26 0068

IBH 27 006C

ICH 28 0070

IDH 29 0074

lEH 30 0078

Invokes disk services in

ROM BIOS

Invokes communications

services in ROM BIOS

Invokes system services in
ROM BIOS

Invokes standard keyboard
services in ROM BIOS

Invokes printer services in
ROM BIOS

Activates ROM

BASIC language

Invokes bootstrap
start-up routine in
ROM BIOS

Invokes time and date

services in ROM

BIOS

Interrupt by ROM
BIOS for Ctrl-Break

Interrupt generated at
each clock tick

Points to table of

video control

parameters

Points to diskette

drive parameter table

Figure 3-1. Important interrupts used in the IBM personal computer family. (continued)

51

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 3-1. continued

Interrupt Offset in Interrupt Offset in
Segment Segment

Hex Dec 0000 Use Hex Dec 0000 Use

IFH 31 007C Points to CGA video

graphics characters

25H 37 0094 Invokes absolute disk-

read service in DOS

20H 32 0080 Invokes program-
terminate service in

26H 38 0098 Invokes absolute disk-

write service in DOS

DOS 27H 39 009C Ends program, but

21H 33 0084 Invokes all function-

call services in DOS

keeps it in memory
under DOS

22H 34 0088 Address of DOS

program-terminate
2FH 47 OOBC DOS Multiplex

interrupt

routine 41H 65 0104 Points to fixed-disk

23H 35 008C Address of DOS drive parameter table

keyboard-break 43H 67 OlOC Points to video
handler graphics characters

24H 36 0090 Address of DOS (EGA, PS/2s)

critical-error handler 67H 103 019CH Invokes LIM

Expanded Memory
Manager

Changing Interrupt Vectors
The main programming interest in interrupt vectors is not to read them but
to change them to point to a new interrupt-handling routine. To do this, you
must write a routine that performs a different function than the standard
ROM BIOS or DOS interrupt handlers perform, store the routine in RAM, and
then assign the routine's address to an existing interrupt in the table.

A vector can be changed byte by byte on an assembly-language level,
or by using a programming-language instruction like the POKE statement in
BASIC. In some cases, there may be a danger of an interrupt occurring in
the middle of a change to the vector. If you are not concerned about this, go
ahead and use the POKE method. Otherwise, there are two ways to change

a vector while minimizing the likelihood of interrupts: by suspending
interrupts during the process, or by using a DOS interrupt specially
designed to change vectors.

The first method requires that you use assembly language to suspend
interrupts while you change the interrupt vector. You can use the clear
interrupts instruction (CLI), which suspends all interrupts until a
subsequent STI (set interrupts) instruction is executed. By temporarily
disabling interrupts with CLI you ensure that no interrupts can occur while
you update an interrupt vector.

52

Chapter 3: The ROM Software

□ NOTE: CLI does not disable the nonmaskable interrupt (NMI). If
your application is one of the rare ones that needs to supply its own
NMI handlery the program should temporarily disable the NMI while
changing the NMI interrupt vector, (See PC or PSI2 technical
reference manuals for details.)

The following example demonstrates how to update an interrupt
vector with interrupts temporarily disabled. This example uses two MOV
instructions to copy the segment and offset address of an interrupt handler
from DS.DX into interrupt vector 60H:

xor ax,ax ; zero segment register ES

mov es,ax

cli ; disable interrupts
mov word ptr es:[180h],dx ; update vector offset
mov word ptr es:[182h],ds ; update vector segment
sti ; enable interrupts

The second method of updating an interrupt vector is to let DOS do it
for you using DOS interrupt 21H, service 25H (decimal 37), which was
designed for this purpose. There are two very important advantages to
letting DOS set interrupts for you. One advantage is that DOS takes on the
task of putting the vector into place in the safest possible way. The other
advantage is more far-reaching. When you use DOS service 25H to change
an interrupt vector, you allow DOS to track changes to any interrupt vectors
it may itself be using. This is particularly important for programs that
might run in the DOS "compatibility box" in OS/2. Using a DOS service to
set an interrupt vector instead of setting it yourself is only one of many
ways that you can reduce the risk that a program will be incompatible with
new machines or new operating-system environments.

The following example demonstrates how to use interrupt 21H, service
25H to update the vector for interrupt 60H from values stored in a memory
variable:

mov dx.seg IntGOHandler ; copy new segment to DS
mov ds.dx

mov dx,offset InteOHandler ; store offset address in DX

mov al.60h ; Interrupt number
mov ah,25h ; DOS set-interrupt function number
int 21h ; DOS function-call interrupt

53

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

This example shows, in the simplest possible way, how to use the DOS
service. However, it glosses over an important and subtle difficulty: You
have to load one of the addresses that you're passing to DOS into the DS

(data segment) register—which effectively blocks normal access to data
through the DS register. Getting around that problem requires you to
preserve the contents of the DS register. Here is one way this can be done. In
this example, taken from the Norton Utilities programs, the interrupt 09H
vector is updated with the address of a special interrupt handler:

push ds save current data segment

mov dx. off set PGROUPrm store handler's offset in DX

push cs move handler's code segment...

pop ds ...Into DS

mov ah,25h request set-Interrupt function

mov al ,9 change interrupt number 9

i nt 21h DOS function-call interrupt

pop ds restore original data segment

Key Low-Memory Addresses
Much of the operation of the PCs and PS/2s is controlled by data stored in
low-memory locations, particularly in the two adjacent 256-byte areas
beginning at segments 40H and 50H (addresses 0040:0000H and O05O:OOOOH).
The ROM BIOS uses the 256 bytes from 0040:0000H through 0040:00FFH as a

data area for its keyboard, video, disk, printer, and communications
routines. The 256 bytes between 0050:0000H and 0050:00FFH are used
primarily by BASIC, although a few ROM BIOS status variables are located
there as well.

Data is loaded into these areas by the BIOS during the start-up process.

Although the control data is supposed to be the private reserve of the BIOS,
DOS, and BASIC, your programs are allowed to inspect or even change it.
Even if you do not intend to use the information in these control areas, it is
worth studying because it reveals a great deal about what makes the PC
family tick.

The ROM BIOS Data Area

Some memory locations in the BIOS data area are particularly interesting.
Most of them contain data vital to the operation of various ROM BIOS and
DOS service routines. In many instances, your programs can obtain infor
mation stored in these locations by invoking a ROM BIOS interrupt; in all

cases, they can access the information directly. You can easily check out the
values at these locations on your own computer, using either DEBUG or BASIC.

54

Chapter 3: The ROM Software

To use DEBUG, type a command of this form:

DEBUG

D XXXXiYYYY L 1

XXXX represents the segment part of address you want to examine.

(This would be either 0040H or 0050H, depending on the data area that

interests you.) YYYY represents the offset part of the address. The L 1 tells
DEBUG to display one byte. To see two or more bytes, type the number of

bytes (in hex) you want to see after the L instruction. For example, the BIOS
keeps track of the current video mode number in the byte at 0040:0049H. To

inspect this byte with DEBUG, you would type

DEBUG

D 0040:0049 L 1

To display the data with BASIC, use a program of the following form,
making the necessary substitutions for segment (&H0040 or &H0050),
number.of,bytes, and offset (the offset part of the address you want to
inspect):

10 DEF SEG = segment

20 FOR I = 0 TO number.of.bytes - 1

30 VALUE - PEEKCoffset + I)

40 IF VALUE < 16 THEN PRINT "0"; * needed for leading zero

50 PRINT HEX$ (VALUE);"

60 NEXT I

The following pages describe useful low-memory addresses.
0040:0010H (a 2-byte word). This word holds the equipment-list data

that is reported by the equipment-list service, interrupt IIH (decimal 17).
The format of this word, shown in Figure 3-2, was established for the PC and

XT; certain parts may appear in a different format in later models.
0040:0013H (a 2-byte word). This word contains the usable memory

size in KB. BIOS interrupt service 12H (decimal 18) is responsible for
reporting the value in this word.

0040:0017H (2 bytes of keyboard status bits). These bytes are actively
used to control the interpretation of keyboard actions by the ROM BIOS
routines. Changing these bytes actually changes the meaning of keystrokes.

You can freely change the first byte, at address 0040:0017H, but it is not a
good idea to change the second byte. See pages 137 and 138 for the bit

settings of these 2 bytes.

55

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit

FEDCBA9 8 76543210 Meaning

XX Number of printers installed

. . X (Reserved)

. . . X 1 if game adapter installed

. . ..XXX Number of RS-232 serial ports

X (Reserved)

XX +1 = number of diskette drives:

00 = 1 drive; 01 = 2 drives;
10 = 3 drives;
11=4 drives (see bit 0)

XX. . . . Initial video mode:

01 = 40-column color;

10 = 80-column color,

11= 80-column monochrome;

00 = none of the above

XX. . For PC with 64 KB motherboard:

Amount of system board RAM
(11 =64KB, 10 = 48 KB,
01 = 32 KB, 00 = 16 KB)

For PC/AT: Not used

For PS/2s: Bit 3: Not used;
Bit 2: 1 = pointing device installed

X . 1 if math coprocessor installed

X lif any diskette drives present (if so, see
bits 7 and 6)

Figure 3-2. The coding of the equipment-list word at address 0040:0010H.

0040:001AH (a 2-byte word). This word points to the current head of
the BIOS keyboard buffer at 0040:001EH, where keystrokes are stored until

they are used.

0040:001CH (a 2-byte word). This word points to the current tail of the
BIOS keyboard buffer.

0040:001EH (32 bytes, used as sixteen 2-byte entries). This keyboard
buffer holds up to 16 keystrokes until they are read via the BIOS services

through interrupt 16H (decimal 22). As this is a circular queue buffer, two
pointers indicate the head and tail. It is not wise to manipulate this data.

0040:003EH (1 byte). This byte indicates if a diskette drive needs to be
recalibrated before seeking to a track. Bits 0 through 3 correspond to drives

0 through 3. If a bit is clear, recalibration is needed. Generally, you will find

56

Chapter 3: The ROM Software

that a bit is clear if there was any problem with the most recent use of a
drive. For example, the recalibration bit will be clear if you try to request a
directory (DIR) on a drive with no diskette, and then type A in response to
the following display;

Not ready reading drive A

Abort. Retry, Fail?

0040:003FH (1 byte). This byte returns the diskette motor status. Bits 0
through 3 correspond to drives 0 through 3. If the bit is set, the diskette
motor is running.

0040:0040H (1 byte). This byte is used by the ROM BIOS to ensure that
the diskette drive motor is turned off. The value in this byte is decremented

with every tick of the system clock (that is, about 18.2 times per second).
When the value reaches 0, the BIOS turns off the drive motor.

0040:0041H (1 byte). This byte contains the status code reported by the
ROM BIOS after the most recent diskette operation. (See Figure 3-3.)

0040:0042H (7 bytes). These 7 bytes hold diskette controller status
information.

Beginning at 0040:0049H is a 30-byte area used for video control. This
is the first of two areas in segment 40H that the ROM BIOS uses to track
critical video information.

Valm Meaning

OOH No error

01H Invalid diskette command requested

02H Address mark on diskette not found

03H Write-protect error

04H Sector not found; diskette damaged or not formatted

06H Diskette change line active

08H DMA diskette error

09H Attempt to DMA across 64 KB boundary

OCH Media type not found

lOH Cyclical redundancy check (CRC) error in data

20H Diskette controller failed

40H Seek operation failed

80H Diskette timed out (drive not ready)

Figure 3-3. Diskette status codes in the ROM BIOS data area at 0040:0041H.

57

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Although programs can safely inspect any of this data, you should
modify the data only when you bypass the ROM BIOS video services and
program the video hardware directly. In such cases, you should update the
video control data to reflect the true status of the video hardware.

0040:0049H (1 byte). The value in this byte specifies the current video
mode. (See Figure 3-4.) This is the same video-mode number used in the
ROM BIOS video services. (See Chapter 9 for more on these services and
page 72 for general information concerning video modes.)

We've already shown how to use DEBUG to determine the current
video mode by inspecting the byte at 0040:0049H. BASIC programs can use
the following instructions to read this byte and determine the video mode:

DEF SEG =■ &H40 ' set BASIC data segment to 40H
VIDEO.MODE = PEEK(&H49) ' look at location 0040:0049H

0040:004AH (a 2-byte word). This word indicates the number of
characters that can be displayed in each row of text on the screen.

0040:004CH (a 2-byte word). This word indicates the number of bytes
required to represent one screenful of video data.

Number Description

OOH 40 X 25 16-color text (CGA composite color burst disabled)
01H 40 X 25 16-color text

02H 80 X 25 16-color text (CGA composite color burst disabled)
03H 80 X 25 16-color text

04H 320 X 200 4-color graphics
05H 320 X 200 4-color graphics (CGA composite color burst disabled)
06H 640 X 200 2-color graphics
07H 80 X 25 monochrome text

ODH 320 X 200 16-color graphics
OEH 640 X 200 16-color graphics
OFH 640 X 350 monochrome graphics
1 OH 640 X 350 16-color graphics
11H 640 X 480 2-color graphics
12H 640 X 480 16-color graphics
13H 320 X 200 256-color graphics

Figure 3-4. BIOS video mode numbers stored at address 0040:0049H.

58

Chapter 3: The ROM Software

0040:004EH (a 2-byte word). This word contains the starting byte off
set into video display memory of the current display page. In effect, this ad
dress indicates which page is in use by giving the offset to that page.

0040:0050H (eight 2-byte words). These words give the cursor locations
for eight separate display pages, beginning with page 0. The first byte of
each word gives the character column and the second byte gives the row.

0040:0060H (a 2-byte word). These 2 bytes indicate the size of the cur
sor, based on the range of cursor scan lines. The first byte gives the ending
scan line, the second byte the starting scan line.

0040:0062H (1 byte). This byte holds the current display page number.
0040:0063H (a 2-byte word). This word stores the port address of the

hardware CRT controller chip.
0040:0065H (1 byte). This byte contains the current setting of the CRT

mode register on the Monochrome Display Adapter and the Color Graphics
Adapter.

0040:0066H (1 byte). This byte contains the current setting of the Color
Graphics Adapter's CRT color register. This byte ends the first block of
ROM BIOS video control data.

0040:0067H (5 bytes). The original IBM PC BIOS used the 5 bytes start

ing at 0040:0067H for cassette tape control. In PS/2 models 50, 60, and 80,
which don't support a cassette interface, the 4 bytes at 0040:0067H can con
tain the address of a system reset routine that overrides the usual BIOS
startup code. (See the BIOS technical reference manual for details.)

0040:006CH (4 bytes stored as one 4-byte number). This area is used as
a master clock count, which is incremented once for each timer tick. It is

treated as if it began counting from 0 at midnight. When the count reaches
the equivalent of 24 hours, the ROM BIOS resets the count to 0 and sets the
byte at 0040:0070H to 1. DOS or BASIC calculates the current time from this
value and sets the time by putting the appropriate count in this field.

0040:0070H (1 byte). This byte indicates that a clock rollover has oc
curred. When the clock count passes midnight (and is reset to 0), the ROM
BIOS sets this byte to 1, which means that the date should be incremented.

□ NOTE: This byte is set to 1 at midnight and is not incremented.
There is no indication if two midnights pass before the clock is read.

0040:0071H (1 byte). The ROM BIOS sets bit 7 of this byte to indicate
that the Ctrl-Break key combination was pressed.

59

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

0040:0072H (a 2-byte word). This word is set to 1234H after the initial

power-up memory check. When a warm boot is instigated from the key
board (via Ctrl-Alt-Del), the memory check will be skipped if this location
is already set to 1234H.

0040:0074H (4 bytes). These 4 bytes are used by various members of the
PC family for diskette and fixed-disk drive control. See the IBM BIOS Inter

face Technical Reference Manual for details.

0040:0078H (4 bytes). These bytes control time-out values for the paral
lel printers. (In the PS/2, only the first 3 bytes are used for this purpose.)

0040:007CH (4 bytes). These bytes contain time-out values for up to
four RS-232 serial ports.

0040:0080H (a 2-byte word). This word points to the start of the key
board buffer area.

0040:0082H (a 2-byte word). This word points to the end of the key
board buffer area.

The next 7 bytes are used by the ROM BIOS in the EGA and PS/2s for
video control:

0040:0084H (I byte). The value of this byte is one less than the number
of character rows displayed on the screen. The BIOS can refer to this value
to determine how many character rows of data to erase when the screen is

cleared or how many rows to print when Shift-PrtSc is pressed.
0040:0085H (2 bytes). This word indicates the height, in scan lines, of

characters on the screen.

0040:0087H (4 bytes). These 4 bytes are used by the BIOS video support
routines to indicate the amount of video RAM available, the initial settings
of the EGA configuration switches, and other miscellaneous video status
information.

0040:008BH (11 bytes). The ROM BIOS uses this data area for control
and status information regarding the diskette and fixed-disk drives.

0040;0098H (9 bytes). This data area is used by the PC/AT and PS/2 BIOS
to control certain functions of the real-time clock.

0040:00A8H (4 bytes). In the EGA and PS/2 BIOS, these bytes contain the
segmented address of a table of video parameters and overrides for default
ROM BIOS video configuration values. The actual contents of the table vary,
depending on which video hardware you are using. The IBM ROM BIOS Inter
face Technical Reference Manual describes this table in detail.

60

Chapter 3: The ROM Software

0O5O:0OOOH (1 byte). This byte is used by the ROM BIOS to indicate the
status of a print-screen operation. Three possible hex values are stored in
this location:

OOH Indicates OK status

01H Indicates a print-screen operation is currently in progress

FFH Indicates an error occurred during a print-screen operation

0050:0004H (1 byte). This byte is used by DOS when a single-diskette
system mimics a two-diskette system. The value indicates whether the one
physical drive is acting as drive A or drive B. These values are used:

OOH Acting as drive A

OIH Acting as drive B

0050:0010H (a 2-byte word). This area is used by ROM BASIC to hold its
default data segment (DS) value.

BASIC lets you set your own data segment value with the DBF SEG =
value statement. (The offset into the segment is specified by the PEEK or
POKE function.) You can also reset the data segment to its default setting by
using the DBF SEG statement without a value. Although BASIC does not give
you a simple way to find the default value stored in this location, you can
get it by using this little routine:

DEF SEG = &H50

DATA.SEGMENT = PEEK(&H11) » 256 + PEEK(&H10)

□ NOTE: BASIC administers its own internal data based on the
default data segment value. Attempting to change this value is likely
to sabotage BASIC'S operation.

0050:0012H (4 bytes). In some versions of ROM BASIC, these 4 bytes
contain the segment and offset address of BASIC'S clock-tick interrupt
handler.

□ NOTE: In order to perform better, BASIC runs the system clock at
four times the standard rate, so BASIC must replace the ROM BIOS
clock interrupt routine with its own. The standard BIOS interrupt
routine is invoked by BASIC at the normal rate; that is, once for
every four fast ticks. There's more about this on page 146.

0050:0016H (4 bytes). This area contains the address of ROM BASIC'S
break-key handling routine.

61

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

0050:001AH (4 bytes). This area contains the address of ROM BASIC'S
diskette error-handling routine.

The Intra-Appiication Communications Area
In the PC/XT/AT family, the 16 bytes starting at 0040:00F0H are reserved as
an intra-application communication area (ICA). This data area provides an
area of RAM at a known address that an application can use for sharing data
among separate program modules. In the PS/2 BIOS, however, the ICA is no

longer documented.

Few applications actually use the ICA because the amount of RAM is
so small and because the data within the ICA can be unexpectedly modified
when more than one program uses it. If you do write a program that uses the
ICA, we recommend that you include a checksum and also a signature so
that you can ensure that the data in the ICA is yours and that it has not been
changed by another program.

□ WARNING: The ICA is definitely located in the 16 bytes from
0040:00F0H through 0040:00FFH. A typographic error in some
editions of the IBM PC Technical Reference Manual places it at
0050:0000H through OOSO.OOFFH. This is incorrect.

The BIOS Extended Data Area
The PS/2 ROM BIOS start-up routines allocate an additional area of RAM for
their own use. The BIOS routines use this extended data area for transient
data storage. For example, the BIOS routines that support the pointing-
device (mouse) controller hardware use part of the extended data area for
temporary storage.

You can determine the starting address of the extended data area by
using a system service available through ROM BIOS interrupt 15H. (See
Chapter 12.) The first byte in the extended data area contains the size of the
data area in KB.

The ROM Version and Machine-ID Markers
Because the BIOS programs are fixed in memory, they can't be easily
changed when additions or corrections are needed. This means that ROM
programs must be tested very carefully before they are frozen onto memory
chips. Although there is a good chance for serious errors to exist in a
system's ROM programs, IBM has a fine track record; so far, only small and
relatively unimportant errors have been found in the PC family's ROM
programs, and IBM has done well to correct errors by revising the BIOS.

62

Chapter 3: The ROM Software

The different versions of ROM software could present a small
challenge to programmers who discover that the differences affect the
operating characteristics of their programs. But an even greater challenge
for programmers is that the PC, XT, AT, and PS/2s each have a slightly
different set of ROM BIOS routines.

To ensure that programs can work with the appropriate ROM programs
and the right computer, IBM has supplied two identifying markers that are
permanently available at the end of memory in the system ROM. One
marker identifies the ROM release date, which can be used to identify the

BIOS version, and the other gives the machine model. These markers are
always present in IBM's own machines and you'll also find them supplied
by the manufacturers of a few PC compatibles. The following paragraphs
describe these markers in detail.

The ROM release date can be found in an 8-byte storage area from

F000:FFF5H to FOOO:FFFCH (2 bytes before the machine ID byte). It consists
of ASCII characters in the common American date format; for example,

06/01/83 stands for June 1, 1983. This release marker is a common feature of

the IBM personal computers, but is present in only a few IBM compatibles.
For example, the Compaq Portable I does not have it, but the Panasonic
Senior Partner does.

You can look at the release date with DEBUG by using the following

command:

DEBUG

D F000:FFF5 L 8

Or you can let your program look at the bytes using this technique:

10 DEF SEG = &HFOOO

20 FOR I = 0 TO 7

30 PRINT CHR$(PEEK(&HFFF5 + I));

40 NEXT

50 END

The model ID is a byte located at FOOO:FFFEH. This byte identifies
which model of PC or PS/2 you are using. (See Figure 3-5.) In addition,
a ROM BIOS service in the PC/AT and PS/2s returns more detailed

identification information, including the submodel byte listed in the figure.
(See Chapter 12.)

63

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Machine Date Model Submodel BIOS Revision Notes

PC 04/24/81 FFH ** 00

10/19/81 FFH ** 01 Some BIOS bugs
fixed

10/27/82 FFH ** 02 Upgrade of PC BIOS
to XT level

PC/XT 11/08/82 FEH ** 00

01/10/86 FBH 00 01 256/640 KB system
board

05/09/86 FBH 00 02

PC/AT 01/10/84 FCH ** 00 6 MHz 80286

06/10/85 FCH 00 01

11/15/85 FCH 01 00 8 MHz 80286

PS/2 Model 25 Q6I26IS1 FAH 01 00

PS/2 Model 30 09/02/86 FAH 00 00

12/12/86 FAH 00 01

PS/2 Model 50 02/13/87 FCH 04 00

PS/2 Model 60 02/13/87 FCH 05 00

PS/2 Model 80 03/30/87 F8H 00 00 16 MHz 80386

PS/2 Model 80 10/07/87 F8H 01 00 20 MHz 80386

PCjr 06/01/83 FDH ** 00

PC Convertible 09/13/85 F9H 00 00

PC/XT Model

286 04/21/86 FCH 02 00

** not applicable

Figure 3-5. Machine and ROM BIOS version identification.

It is possible that IBM-compatible computers can be identified in the
same way, but we do not know of any reliable published information. You
may need to rely on improvised methods to identify non-IBM compatibles.

You can examine the machine ID byte with DEBUG by using the
following command:

DEBUG

D FOOO:FFFE L 1

64

Chapters: The ROM Software

A BASIC program can inspect this byte using techniques such as this:

10 DEF SEG = &HFOOO

20 MODEL = PEEKC&HFFFE)

30 IF MODEL < &HF8 THEN PRINT "I'm not an IBM computer" : STOP

40 ON (MODEL - &HF7) GOTO 100.110,120.130.140.150.160.170

100 PRINT "I'm a PS/2 Model 80" : STOP

110 PRINT "I'm a PC convertible" : STOP

120 PRINT "I'm a PS/2 Model 30" : STOP

130 PRINT "I'm a PC/XT" : STOP

140 PRINT "I'm an 80286-based machine (PC/AT. PS/2 Model 50 or 60)" :

STOP

150 PRINT "I'm a PCjr" : STOP

160 PRINT "I'm a PC/XT" : STOP

170 PRINT "I'm a PC" : STOP

The ROM BASIC
Now we move on to the third element of ROM: the ROM BASIC. The ROM

BASIC acts in two ways. First, it provides the core of the BASIC language,
which includes most of the commands and the underlying foundation—
such as memory management—that BASIC uses. The disk versions of
interpreted BASIC, which are found in the program files BASIC.COM and
BASICA.COM, are essentially supplements to ROM BASIC, and they rely on
ROM BASIC to get much of their work done. The second role of ROM BASIC
is to provide what IBM calls "cassette" BASIC—the BASIC that is activated
when you start up your computer without a disk.

Whenever you use any of the interpreted, disk-based BASICS, the ROM
BASIC programs are also used—although there's nothing to make you
aware of it. On the other hand, compiled BASIC programs don't make use of
the ROM BASIC.

The ROM Extensions
The fourth element of the ROM has more to do with the PC's design than

with the actual contents of its memory. The PC was designed to allow for
installable extensions to the built-in software in ROM. The additional ROM

is usually located on a plug-in adapter such as the Enhanced Graphics
Adapter or a fixed-disk controller card. Computers in the PC/XT/AT family
also have empty sockets on their system boards to accommodate additional
ROM chips. Because the original ROM BIOS could not include support
programs for future hardware, ROM extensions are obviously a necessary
and helpful addition.

65

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Several memory areas are reserved for ROM extensions. Addresses
COOO:OOOOH through C000:7FFFH are reserved for video adapter ROM. The
area between C800:0000H and DOOO:FFFFH can be used by nonvideo
adapters. (For example, the IBM XT fixed-disk adapter occupies addresses
starting at C800:0000H.) Finally, ROM extensions on chips placed onto the
system board of a PC, XT, or AT occupy the address range EOOO:OOOOH
through EOOO:FFFFH. In the PS/2 models 50, 60, and 80, you cannot add ROM
chips to the system board. The system ROM in these computers occupies the
entire address range between EOOO:OOOOH and FOOO;FFFFH.

Comments
As the PC family has evolved, the amount and complexity of the ROM
software has increased to accommodate the greater sophistication of the
computer hardware. The source code listings in the PC, XT, and AT
technical reference manuals consist of tens of thousands of assembly-
language instructions. Despite the size of the ROM BIOS, a browse through
the source code can be fun and enlightening.

We have made every effort in this book to point out when and how to
use the ROM BIOS routines. We recommend that you read Chapters 8
through 13 before you begin your own exploration of the ROM BIOS.

66

Chapter 4

Video Basics

The Video Subsystems 68

Memory and the Video Subsystems 69

Creating the Screen Image 70

The Video Display Modes 72

Video Mode Control 73

Display Resolution 76

The Use of Color 77

Color-Suppressed Modes 80

Color in Text and Graphics Modes 81

Inside the Display Memory 86

Display Pages in Text Modes 87

Display Pages in Graphics Modes 89

Displaying Characters in Text and Graphics Modes 89

Controlling the Video Display 93

Direct Hardware Control 95

Compatibility Considerations 97

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

To many people, the video display is the computer. Programs are often
judged by their display quality and visual design alone. In this chapter,
you'll see what kinds of video display output the IBM PC family can pro
duce. More importantly, we'll describe how to manipulate the video dis
plays to get the effects you want.

The Video Subsystems
Every PC and PS/2 has a video subsystem responsible for producing the
image that appears on the screen. At the heart of the video subsystem is the
special-purpose circuitry that must be programmed to generate the electri
cal signals that control the video display. Most members of the PC/XT/AT
family require you to install a display adapter, a special video circuit board
that plugs into one of the computer's expansion slots. On the other hand, all
PS/2s are equipped with built-in video circuitry and, therefore, require no
display adapter.

The video circuitry consists of a group of interrelated components that
control signal timing, colors, and the generation of text characters. All IBM
video subsystems have a video buffer, a block of dedicated memory that
holds the text or graphics information displayed on the screen. The video
subsystem performs the unique task of translating the raw data in the video
buffer into the signals that drive the video display.

The various video subsystems used in PCs and PS/2s all evolved from
the two video adapters originally released by IBM for the PC: the Mono
chrome Display Adapter (MDA) and the Color Graphics Adapter (CGA).
IBM later released its Enhanced Graphics Adapter (EGA), a more powerful
successor to the MDA and CGA.

When the PS/2s appeared, IBM introduced two more video sub
systems: the Multi-Color Graphics Array (MCGA), built into the PS/2
models 25 and 30, and the Video Graphics Array (VGA), built into the PS/2
models 50, 60, and 80. At the same time the PS/2s appeared, IBM introduced
a VGA adapter that can be used in the PC/XT/AT family as well as in the
PS/2 Model 30.

We'll be discussing all five of these IBM subsystems—MDA, CGA,
EGA, MCGA, and VGA—in this chapter. Although clear differences in hard
ware design exist between the various video subsystems, their strong family
resemblance should encourage you to consider what they have in common
before worrying about the differences between them.

Most of the five video subsystems can be programmed into two funda
mentally different modes, called text mode and graphics mode by IBM. (The

68

Chapter 4: Video Basics

lone exception is the MDA, which operates only in text mode.) In text mode
you can display only text characters, though many of these characters are
suitable for producing simple line drawings. (See Appendix C for more on
characters.) Graphics mode is mainly used for complex drawings but you
can also use it to draw text characters in a variety of shapes and sizes.

The CGA can operate in both text and graphics modes to produce
drawings and characters in several formats and colors. By contrast, the MDA
can operate only in text mode, using a stored set of ASCII alphanumeric and
graphics characters and displaying them in only one color. The MDA works
only with the IBM Monochrome Monitor (or its equivalent) while the CGA
must be connected to either a direct-drive or a composite color monitor.
(See page 74 for more on monitors.) Many business and professional users
prefer a monochrome display to a color display because a monochrome
screen is easier on the eyes and less expensive than an equivalent color dis
play. But in choosing monochrome, they sacrifice color, a valuable asset for
any computer display.

The MDA's most obvious drawback is its inability to display images in
graphics mode. For this reason, PC/XT/AT users who prefer a monochrome
display, yet need to view graphics, must turn to an EGA or to a non-IBM
adapter like the Hercules Graphics Card, which emulates the MDA's text
mode but supports a monochrome graphics mode as well.

Roughly two-thirds of all PCs are equipped with the standard MDA
and therefore have no graphics or color capability. While there are real ad
vantages to using color and graphics, most PCs get along nicely without ei
ther. Although the clear trend is toward higher-performance video sub
systems that can display graphics as well as text, keep in mind as you plan
computer applications that many PCs display text only.

The best way to understand the video capabilities of the PCs and PS/2s
is to cover the features that their various video subsystems have in common.
As we go along, we'll point out the differences and improvements that dis
tinguish the newer and more complicated subsystems (EGA, MCGA, and
VGA) from their predecessors (MDA and CGA).

Memory and the Video Subsystems
The video buffer memory is connected directly to the display circuitry so
that the data in the video buffer can be repeatedly read out of the buffer and
displayed. However, the video buffer is also logically (to the CPU) a part of
the computer's main memory address space. A full 128 KB of the memory

69

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

address space is set aside for use as video buffers, at addresses AOOO:OOOOH
through BOOO;FFFFH, but the two original display adapters use only two
small parts of this memory area. The Monochrome Display Adapter (MDA)
provides 4 KB of display memory located at segment BOOOH. The original
CGA provides 16 KB of display memory located at segment B800H.

With the other IBM video subsystems, the address at which video
memory is located isn't fixed—it depends on how the subsystem is con
figured. For example, when an EGA is used with a monochrome display, its
text-mode video buffer is placed at BOOOH, just as with an MDA. When an
EGA is attached to a color display, its video buffer can be addressed at
B800H. And when you use an EGA in non-CGA graphics modes, the starting
buffer address is AOOOH. Like the EGA, the MCGA and the VGA also support
this chameleon-like method of buffer addressing.

Creating the Screen Image
You can describe the screen display created by IBM video subsystems as a
memory-mapped display, because each address in the display memory corre
sponds to a specific location on the screen. (See Figure 4-1.) The display cir
cuitry repeatedly reads information from memory and places it on the
screen. The information can be changed as quickly as the computer can

Pixels or

characters

on screen

I I I I I I I I I I I I ITTTI

Successive locations In RAM

Figure 4-1. The memory-mapped display.

70

Chapter 4: Video Basics

write new information from your programs into memory. The display cir
cuitry translates the stream of bits it receives from memory into bursts of

light at particular locations on the screen.
These dots of light are called pixels and are produced by an electron

beam striking the phosphorescent surface of the CRT. The electron beam is
produced by an electron gun that scans the screen line by line. As the gun
moves across and down the screen in a fixed path called a raster scan, the
video subsystem generates video control signals that turn the beam on and
off, matching the pattern of the bits in memory.

The video circuitry refreshes the screen between 50 and 70 times a

second (depending on the video mode), making the changing images appear
clear and steady. At the end of each screen-refresh cycle, the electron beam
must move from the bottom right corner to the top left corner of the screen
to begin a new cycle. This movement is called the vertical retrace. During
the retrace, the beam is blanked and no pixels are written to the screen.

The vertical retrace period (about 1.25 milliseconds) is important to
programmers for one main reason, which requires some explanation. The
special dual-ported design of the video memory gives the CPU and the
display-refresh circuitry equal access to the display memory. This allows

the CPU and the display circuitry to access video memory at the same time.
This causes a problem on the Color Graphics Adapter (CGA). If the

CPU happens to read or write to the video buffer at the same time the dis
play circuitry is copying data out of the buffer to display onscreen, a
"snow" effect may briefly appear on the screen. However, if you instruct
the CPU to access memory only during vertical retrace, when the display

circuitry is not accessing the video buffer, then snow can be eliminated. A
program running on a CGA can test the value of bit 3 in the adapter's I/O
port at 3DAH. This bit is set on at the beginning of vertical retrace and then
set off at the end. During this 1.25-millisecond pause, you can have your
programs write as much data as possible to the video display memory. At
the end of the retrace, the display circuitry can write this data to the screen
without snow.

This technique is useful for any application that directly accesses data
in the video buffer in text mode on a CGA. Fortunately, the hardware design

of all other IBM video subsystems avoids this access conflict and makes this

specialized programming technique unnecessary.

71

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The Video Display Modes
Originally, there were eight video modes defined for the IBM personal com
puters: seven on the CGA and one on the MDA. The more sophisticated EGA,
MCGA, and VGA introduced several new modes plus variations on the origi
nal eight. As a result, among the five IBM video subsystems are 12 text and
graphics modes and, depending how you count them, seven or eight varia
tions—and that's not counting the extra modes available with non-IBM
video hardware and with defunct IBM systems like the PCjr. There's plenty
of variety when you're working with IBM video subsystems.

Despite the perplexing proliferation of video modes, what is striking
about the different modes is not their differences but their similarities

(Figure 4-2): All video modes are related in resolution and in video buffer

organization to the original MDA and CGA modes.
The MDA's 80-column, 25-row monochrome text mode is supported on

the EGA and VGA. Similarly, the CGA's two text modes (40 x 25 and 80 x 25
16-color modes) are also supported on the EGA, MCGA, and VGA. Don't let
the redundant mode numbers in Figure 4-2 confuse you: The difference be
tween mode 0 and mode 1, for example, is that the composite color signal on

BIOS Mode Number

Hex Dec Type Resolution Colors Video Subsystem

00H,01H 0,1 Text 40x25 16 CGA, EGA, MCGA, VGA

02H,03H 2,3 Text 80x25 16 CGA, EGA, MCGA, VGA

04H,05y 4,5 Graphics 320 X 200 4 CGA, EGA, MCGA, VGA

06H 6 Graphics 640 X 200 2 CGA, EGA, MCGA, VGA

07H 7 Text 80x25 Mono MDA, EGA, VGA

08H,09H,0AH 8, 9,10 (PCjr only)

OBH,OCH 11,12 (Used internally by EGA BIOS)

ODH 13 Graphics 320 X 200 16 EGA,VGA

OEH 14 Graphics 640 X 200 16 EGA,VGA

OFH 15 Graphics 640 X 350 Mono EGA, VGA

lOH 16 Graphics 640 X 350 16 EGA,VGA

IIH 17 Graphics 640x480 2 MCGA,VGA

12H 18 Graphics 640x480 16 VGA

13H 19 Graphics 320 X 200 256 MCGA,VGA

Figure 4-2. Video modes available on IBM video subsystems.

72

Chapter 4: Video Basics

the CGA is modified for composite monochrome monitors in mode 0. (See
page 74 for more on monitors.) With all other monitors and in all other
video subsystems, modes 0 and 1 are the same, as are modes 2 and 3 and
modes 4 and 5.

The evolutionary pattern is the same for graphics modes. The CGA
supports two graphics modes, a 320 x 200 pixel, 4-color mode and a 640 x
200,2-color mode. These same two modes are supported on the EGA, MCGA,
and VGA. The EGA introduced three new graphics modes with more colors
and better resolution than the original CGA graphics modes: the 320 x 200,
I6-color; 640 X 200, 16-color; and 640 x 350, 16-color modes. The EGA also

introduced a 640 x 350 monochrome graphics mode that could be used only
with an MDA-compatible monochrome display.

When the PS/2s appeared, their video subsystems supported the same
modes as did the MDA, CGA, and EGA—but again, a few new graphics
modes were introduced. The MCGA in the PS/2 models 25 and 30 followed

the CGA tradition: It supported all CGA modes, plus new 640 x 480, 2-color
and 320 X 200, 256-color graphics modes. The VGA in the other PS/2 models
strongly resembles the EGA. It provides all the EGA's text and graphics
modes, the two new MCGA graphics modes, and one more graphics mode
not supported by the other subsystems—a 640 x 480,16-color mode.

How do you know which mode to use in a program? Clearly, if broad
compatibility is a concern, the MDA and CGA modes are the least common
denominator. If you need more colors or better graphics resolution than the
CGA modes provide, you can turn to one of the EGA, MCGA, or VGA
graphics modes. Of course, if your program requires an EGA or a VGA to
run, users who have only a CGA will be out of luck.

Many commercial software vendors solve this problem by distributing
installable video output routines along with their products. Before you can
use a package like Microsoft Windows or Lotus 1-2-3, for example, you
must run a special installation program that binds output routines for your
particular video hardware to the software application. This approach is
more work for both the people who write software and the people who use
it, but it is a good way to make applications deliver the best possible video
performance without stumbling over the diversity of video hardware and
video modes.

Video Mode Control

Before we get into the details about resolution and color in video modes,
let's consider how you select which video mode to use. The most efficient
way to set up a video mode is to use assembly language to call the ROM

73

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

BIOS. ROM BIOS interrupt lOH (decimal 16), service OOH, provides a way to
select a video mode using the mode numbers listed in Figure 4-2. (See
Chapter 9 for more details on this.)

Many programming languages also offer high-level commands that
select video modes for you. For example, BASIC gives you control over the

Monitors

jmu can use only the 4()H;olunm text display .fbriiiat/xf he toany kift^ :
of monitors that can be used with the PC family of computers can be

Direct-ilrive monodhrome monitors. These monitoirs are' l

m^y business, users are comfortable with the combination of an MDA ,

'?ihd a gfeeh'-monoehrotfte. display. - : "
Composite monochrome monitors. These ihpnitors are stilT'

' among the niost widely used and least expensive monitors available.;
They connect to the coinposite video output on. the Color Ghaphicjs'
Adapter (CGA) and provide a fairly clear one-color image (usually"

• vVAixyuiw ^11 atiaV'ii&u yuij. t-v U1.G. ^

.drive monochrome monitor must be used with an MDA or EGA. ■ ,
>C(^ppsitiE! color m(mitors.-and TV sets. C^P<>sito-;Cdlor'' f,.;,j .. i;.:,' , .i '

monitors use a single combined signal such as the composite video .•
output of the CGA. The composite color monitor produces color and
graphics but has limitations: An 80-column display is often
unreadable; only certain color combinations work well; and graphics

resolution is low in quality, so graphics musf .be kept simple by using:.) ."
low-resolutiop graphics modes. S' . \ .V .' v , "

Although the standard television set (color orblaqk-and-white)' \ \ j- •
is teehnie^ly a composite monitor, it usually produces ap'even^lower- •' -'. .. * .: ".
quality image than the dedicated composite monitor: Text-"dispiays'

74

Chapter 4: Video Basics

video modes through the SCREEN statement but refers to them in its own
way, using different mode numbers than the ROM BIOS routines. You can

also control some of the video modes through the DOS MODE command.

(See Figure 4-3.)

must be in 40-column mode to ensure that the display is readable. TVs

are connected to the composite video output of the CGA, but the
composite signal must be converted by an RF adapter before going
into the TV.

RGB color monitors. The RGB monitors are considered the best

of both worlds. They combine the high-quality text display of the
monochrome monitors with high-resolution graphics and color. RGB
stands for red-green-blue, and RGB monitors are so named because
they use separate red, green, and blue color signals, unlike the
composite monitors, which use only one composite signal. The image
and color quality of an RGB monitor is much better than that available
through any screen that connects to the composite video output.

Variable-frequency monitors. One of the problems created by
the proliferation of different video subsystems is that some subsystems
produce color and timing signals with different frequencies or
different encodings than other subsystems. For example, you cannot
use a PS/2-compatible monitor with a CGA because the color infor
mation in the monitor drive signals is encoded differently by a CGA
than it is by a PS/2 video subsystem (MCGA or VGA).

Monitor manufacturers addressed this problem by designing
variable-frequency RGB monitors that can be used with a wide range
of signal frequencies and with more than one type of color signal
encoding. For example, NEC's MultiSync monitors can adjust to the
different signal frequencies generated by the CGA, the EGA, and the
PS/2 video subsystems. These monitors also have a switch that lets
you adapt them either to the digital color signal encoding used by the
CGA and EGA or to the analog color signals used by the PS/2
subsystems.

Many people use variable-frequency monitors because they
anticipate the need to upgrade their video subsystems at some time in
the future, and they don't want to be stuck with an incompatible
monitor.

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

BIOS Mode Number BASIC Statement to DOS Statement to
Hex Dec Change Mode Change Mode

OOH 0 SCREEN 0,0: WIDTH 40 MODE BW40

OIH 1 SCREEN 0,1:WIDTH40 MODE CO40

02H 2 SCREEN 0,0:WIDTH 80 MODE BW80

03H 3 SCREEN 0,1: WIDTH 80 MODE CO80

04H 4 SCREEN 1,0 nidi

05H 5 SCREEN 1,1 n/a

06H 6 SCREEN 2 n/a

07H 7 n/a MODE MONO

Figure 4-3. The BASIC and DOS commands used to change video modes.

Display Resolution
Video images consist of a large number of closely spaced pixels. The dis
play resolution is defined by the number of pixel rows, or scan lines, from
top to bottom and the number of pixels from left to right in each scan line.
The horizontal and vertical resolution is limited by the capabilities of the
video monitor as well as the display circuitry inside the computer. The
video modes available on the different subsystems were carefully designed
so that the horizontal and vertical resolution in each mode is within the

limits imposed by the hardware.
The MDA's single text mode has 720 x 350 pixel resolution; that is, the

screen has 350 scan lines, each of which contains 720 pixels. Because 25
rows of 80 characters of text are displayed in this mode, each character is 9
pixels wide (720 ̂ 80) and 14 pixels high (350 -i- 25). The CGA's text modes
are a bit lower resolution, because the CGA's pixel resolution is only 640 x
200. Thus the 25 rows of 80-character text on a CGA consist of characters that

are only 8 pixels wide (640 ̂ 80) and 8 pixels high (200 25). That's why text
looks sharper on an MDA screen than on a CGA.

The trend in the newer IBM video subsystems is to provide better ver
tical resolution. For example, the EGA's 80 x 25 text mode has 640 x 350
pixel resolution, so text characters are 8 x 14 pixels. On the MCGA, the
default 80 X 25 text mode has 640 x 400 resolution (8X16 characters), and on
the VGA the same text mode has 720 x 400 resolution, so characters are each

9 pixels wide and 16 pixels high. From a program's point of view, the 80 x
25 text mode is the same on the CGA, the MCGA, and the VGA — it's display

76

Chapter 4: Video Basics

mode 3 in all cases—but a user sees much higher resolution when using a
VGA or MCGA than when using one of the older subsystems.

You see the same trend towards better resolution when you examine
the graphics modes available with the newer video subsystems. The VGA's
640 X 480, 16-color mode has more than twice as many pixels on the screen
as the original CGA's 640 x 200 graphics mode. It's ironic that this CGA
mode was known as a "high-resolution" mode when the CGA was new.

The Use of Color

A variety of colors is available in every video mode except of course on a
monochrome display. You may have noticed that among the various modes
there are substantial differences in the number of colors available. In this

section, we will describe the color options for the video modes.
Colors for the video display screens are produced by combinations of

four elements: three color components—red, green, and blue—plus an in
tensity, or brightness, component. Text and graphics modes use the same
colors and intensity options, but they combine them in different ways to
produce their colored displays. The text modes, whose basic unit is a char
acter composed of several pixels, use an entire byte to set the color, the in
tensity, and the blinking characteristics of the character and its background.
In graphics modes, each pixel is represented by a group of 1 through 8 bits
whose value determines the color and brightness of the displayed pixel.

In 16-color text and graphics modes, the four basic color and bright
ness components can be combined in 16 ways. Colors are specified by a
group of 4 bits. Each bit designates whether a particular color component is
on or off. The result is 16 color combinations that correspond to the 16 4-bit
binary numbers. (See Figure 4-4.)

In some video modes, the data in the video buffer consists of 4-bit at

tribute values that correspond exactly to the 16 possible color combinations
on the screen. In other video modes, the attribute values do not directly
specify colors. For example, on the EGA, each attribute value designates one
of 16 palette registers, each of which contains a color value. (See Figure
4-5.) It is the palette color values that determine the color combinations dis

played on the screen.

The use of palettes makes it possible to specify one of a broad range of
colors using relatively few bits of data in the video buffer. Each of the

77

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Intensity Red Green Blue Binary Hex Description

0 0 0 0 GOGOB GGH Black

0 0 0 1 GGGIB GIH Blue

0 0 1 0 . GGIGB G2H Green

0 0 1 I GGllB G3H Cyan (blue-green)

0 1 0 0 GIGGB G4H Red

0 I 0 1 GIGIB G5H Magenta

0 1 1 0 GllGB G6H Brown (or dark yellow)

0 1 1 1 GlllB G7H Light gray (or ordinary white)

1 0 0 0 IGGGB G8H Dark gray (black on many
screens)

1 0 0 1 IGGIB G9H Light blue

1 0 1 0 IGIGB GAH Light green

1 0 1 I IGllB GBH Light cyan

1 1 0 0 IIGGB GCH Light red

1 1 0 1 IIGIB GDH Light magenta

1 1 1 0 111GB GEH Yellow (or light yellow)

1 1 1 1 HUB GFH Bright white

Figure 4-4. Default colors available in 16-color text and graphics modes.

0110 1010 10100111 0101 0101 1101

Attribute value in

video buffer

Color value

1
—I

—

—"—^

Palette registers
Color on

screen

Figure 4-5. How EGA colors are specified using palette registers. Each attribute value in
the video buffer designates a palette register whose contents specify a color.

78

Chapter 4: Video Basics

EGA's 16 palette registers, for example, can contain one of 64 different 6-bit
color values. In this way, any 2 of 64 different colors can be used in a
2-color EGA video mode, any 4 out of 64 can be used in a 4-color mode, and
any 16 of 64 can be used in a 16-color mode.

All IBM video subsystems except the MDA can use palettes to display
colors. The CGA has three built-in, 4-color palettes for use in 320 x 200,
4-color mode. The EGA, as we have seen, has a 16-color palette in which
each color can be selected from a set of 64 colors. The MCGA and the VGA,
which can display an even wider range of colors, use a separate palette-like
component, the video digital to analog converter (video DAC), to send color
signals to the screen.

The video DAC contains 256 color registers, each of which contains
6-bit color values for red, green, and blue. Since there are 64 possible values
for each of the RGB components, each video DAC color register can contain
one of 64 X 64 X 64, or 262,144 different color values. That wide range of
colors can help you display very subtle color shades and contours.

With the MCGA, the video DAC color registers serve much the same
purpose as the palette registers do with the EGA. Attribute values in the
video buffer designate video DAC color registers whose contents specify the
colors that appear on the screen. Unfortunately, only one MCGA video mode
can take full advantage of the video DAC's capabilities: 320 x 200, 256-color
mode. Only this video mode uses 8-bit attribute values that can specify all
256 of the video DAC's color registers. All remaining video modes use at
tribute values that have no more than 4 bits, so only the first 16 video DAC
color registers are used.

The VGA gets around this limitation (and complicates matters
somewhat) by using a set of 16 palette registers like the EGA's, as well as a
set of 256 video DAC color registers like the MCGA's. An attribute value in
the video buffer selects one of the 16 palette registers, whose contents select
one of the 256 video DAC color registers—whose contents "in turn" deter
mine the color displayed on the screen. (See Figure 4-6.)

Specifying colors on an EGA, MCGA, or VGA is clearly more compli
cated than it is on the CGA. To simplify this process, however, the ROM BIOS
loads the palette registers (on the EGA and VGA) and the video DAC color
registers (on the MCGA and VGA) with color values that exactly match those
available on the CGA. If you use CGA-compatible text and graphics modes
on the newer subsystems and ignore the palette and video DAC registers,
you'll see the same colors you would on a CGA.

79

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

0110 10100111 0101 0101 1101

Attribute value in

video buffer

Color register

RGB color

—,—,

Palette registers

■ -

Color on

screen

Video DAC color registers

Figure 4-6. How VGA colors are specified using palette registers and the video DAC.

For this reason it's usually best to ignore the palette and video DAC
registers when you start developing an application. Once your application
works properly with the CGA-compatible colors, you can add program code
that changes the palette and/or the video DAC colors. The ROM BIOS pro
vides a complete set of services that let you access the palette and video DAC
registers. Chapter 9 covers these services in detail.

In considering color, read each of the remaining sections, which
discuss important color-related items.

Color-Suppressed Modes
In an effort to make the graphics modes compatible with a wide range of
monitors, both color and monochrome, IBM included a few modes on the

Color Graphics Adapter that do not produce color: color-suppressed modes.
There are three color-suppressed modes: modes 0, 2, and 5. In these modes,
colors are converted into shades of gray, or whatever color the screen
phosphor produces. There are four gray shades in mode 5, and a variety of

80

Chapter 4: Video Basics

shades in modes 0 and 2. CGA's color is suppressed in the composite output
but not in its RGB output. This inconsistency is the result of an unavoidable
technical limitation.

□ NOTE: For each color-suppressed mode, there is a correspond
ing color mode, so modes 0 and 1 correspond to 40-column text,
modes 2 and 3 to 80-column text, and modes 4 and 5 to medium-
resolution graphics. The fact that modes 4 and 5 reverse the pattern
of modes 0 and 1 and modes 2 and 3, where the color-suppressed
mode comes first, has led to a complication in BASIC. The burst
parameter of the BASIC SCREEN statement controls color. The
meaning of this parameter is reversed for modes 4 and 5 so that the
statement SCREEN,I activates color in the text modes (0,1,2, and 3)
but suppresses color in the graphics modes (4 and 5). This inconsis
tency may have been a programming error at first, but it is now
part of the official definition of the SCREEN statement.

Color in Text and Graphics Modes
Text and graphics modes use the same color-decoding circuitry, but differ
in the way they store the color attribute data in the video buffer. In text
modes, no matter what video subsystem you use, the foreground and back
ground colors of each character are specified by two 4-bit fields in a single
attribute byte. (See Figure 4-7.) Together, the foreground and background
attributes describe all of a character's pixels: All foreground pixels are dis
played with the character's foreground attribute, and all background pixels
assume the background attribute.

BU
7 65 43 2 1 0 Use

1 . .

1 .

1

. 1

Blinking of foreground character or intensity
component of background color
Red component of background color
Green component of background color
Blue component of background color
Intensity component of foreground color
Red component of foreground color
Green component of foreground color
Blue component of foreground color

Figure 4-7. The coding of the color attribute byte.

81

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

In graphics modes, each pixel's attribute is determined by the con
tents of a bit field in the video buffer. The size and format of a pixel's bit
field depend on the video mode: The smallest bit fields are only 1 bit wide
(as in 640 X 200, 2-color mode), and the largest bit fields are 8 bits wide (as
in 320 X 200, 256-color mode).

The reason for having both text and graphics modes becomes clear if
you think about how much data it takes to describe the pixels on the screen.
In graphics modes, you need between 1 and 8 bits of data in the video buffer
for every pixel you display. In 640 x 350,16-color mode, for instance, with 4
bits per pixel, you need 640 x 350 x 4 -i- 8 (112,000) bytes to represent one
screenful of video data. But if you display 25 rows of 80 characters in a text
mode with the same resolution, you need only 80 x 25 x 2, or 4000, bytes.

The tradeoff is clear: Text modes consume less memory and require
less data manipulation than do graphics modes—but you can manipulate
each pixel independently in graphics modes, as opposed to manipulating
entire characters in text modes.

Setting color in text modes
Let's take a closer look at how you control colors in text modes. (We'll get
back to graphics modes later in this chapter.) In text modes, each character
position on the display screen is controlled by a pair of adjacent bytes in the
video buffer. The first byte contains the ASCII code for the character that
will be displayed. (See Appendix C for a chart of characters.) The second
byte is the character's attribute byte. It controls how the character will ap
pear, that is, its colors, brighmess (intensity), and blinking.

We've already mentioned two attributes that affect a character's ap
pearance: color and intensity (brightness). You can assign several other
attributes to text characters, depending on which video subsystem you're
using. With all IBM video subsystems, text characters can blink. On mono
chrome-capable subsystems (the MDA, EGA, and VGA), characters can also
be underlined. Also, on some non-IBM subsystems like the Hercules
Graphics Card Plus, characters can have attributes such as overstrike and
boldface.

In all cases, you assign these alternate attributes by using the same
4-bit attributes that specify color. A case in point is the blinking attribute.
Character blinking is controlled by setting a bit in a special register in the
video subsystem. (On the CGA, for example, this enable-blink bit is bit 5 of
the 8-bit register mapped at input/output port 3D8H.) When this bit is set to
1, the high-order bit of each character's attribute byte is not interpreted as

82

Chapter 4: Video Basics

part of the character's background color specification. Instead, this bit indi
cates whether the character should blink.

If you have a CGA, watch what happens when you run the following
BASIC program:

10 DEF SEG = &HB800 ' point to start of video buffer

20 POKE 0,ASC("A") ' store the ASCII code for A in the buffer

30 POKE 1,&H97 ' foreground attribute = 7 (white)

' background attribute = 9 (intense blue)

You'll see a blinking white letter A on a blue background. If you add
the following statement to the program, you'll clear the enable-blink bit and
cause the CGA to interpret the background attribute as intense blue:

40 OUT &H3D8,&H09 ' clear the "enable-blink" bit

The default attribute used by DOS and BASIC is 07H, normal white (7)
on black (0), without blinking, but you can use any combination of 4-bit
foreground and background attributes for each character displayed in a text
mode. If you exchange a character's foreground and background attributes,
the character is displayed in "reverse video." If the foreground and
background attributes are the same, the character is "invisible."

Setting attributes in the monochrome mode
The monochrome mode (mode 7) used by the Monochrome Display Adapter
has a limited selection of attributes that take the place of color. Like the
CGA, the MDA uses 4-bit foreground and background attributes, but their
values are interpreted differently by the MDA attribute decoding circuitry.

Only certain combinations of foreground and background attributes
are recognized by the MDA. (See Figure 4-8.) Other useful combinations,
like "invisible" (white-on-white) or a reverse-video/underlined combina
tion, aren't supported by the hardware.

Like the CGA, the MDA has an enable-blink bit that determines

whether the high-order bit of each character's attribute byte controls blink
ing or the intensity of the background attribute. On the MDA, the enable-
blink bit is bit 5 of the register at port 3B8H. As on the CGA, the enable-blink
bit is set by the ROM BIOS when it establishes monochrome text mode 7, so
you must explicitly clear this bit if you want to disable blinking and display
characters with intensified background.

With the EGA, MCGA, and VGA, text-mode attributes work the same as

with the MDA and CGA. Although the enable-blink bit is not in the same

83

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Attribute Description

OOH Nondisplayed

OIH Underlined

07H Normal (white on black)

09H High-intensity underlined

OFH High-intensity

70H White background, black foreground (''reverse video")

87H* Blinking white on black (if blinking enabled)

Dim background, normal foreground (if blinking disabled)

8FH* Blinking high-intensity (if blinking enabled)
Dim background, high-intensity foreground (if blinking disabled)

FOB Blinking "reverse video" (if blinking enabled)
High-intensity background, black foreground (if blinking disabled)

* Not displayed by all monochrome monitors

Figure 4-8. Monochrome text-mode attributes. The appearance of some attributes
depends on the setting of the enable-blink bit at HO port 3B8H.

hardware register in the newer subsystems, the ROM BIOS offers a service
through interrupt lOH that toggles the bit on an EGA, MCGA, or VGA. (See
Chapter 9, page 178 for more information about this service.)

Setting color in graphics modes
So far, we've seen how to set color (and the monochrome equivalent of
color) in text modes. Setting color in graphics modes is quite different. In
graphics modes, each pixel is associated with a color. The color is set the
same way attributes are set in text mode, but there are important differ
ences. First, since each pixel is a discrete dot of color, there is no fore
ground and background—each pixel is simply one color or another.
Second, pixel attributes are not always 4 bits in size—we've already men
tioned that pixel attributes can range from 1 to 8 bits, depending on the
video mode being used. These differences give graphics-mode programs a
subtly different "feel" than they have in text modes, both to programmers
and to users.

The most important difference between text-mode and graphics-mode
attributes, however, is this: In graphics modes you can control the color of
each pixel. This lets you use colors much more effectively than you can in
text modes. This isn't so obvious with the CGA and its limited color

capabilities, but with an MCGA or VGA it's quite apparent.

84

Chapter 4: Video Basics

Let's start with the CGA. The CGA's two graphics modes are relatively
limited in terms of color: In 320 x 200, 4-color mode, pixel attributes are

only 2 bits wide, and you can display only four different colors at a time. In

640 X 200, 2-color mode, you have only 1 bit per pixel, so you can display
only two different colors. Also, the range of colors you can display in CGA

graphics modes is severely limited.
In 320 X 200, 4-color mode, pixels can have value 0, 1,2, or 3, corre

sponding to the 2-bit binary values OOB, OIB, lOB, and IIB. You can assign
any one of the CGA's 16 color combinations to zero-value pixels, but colors
for nonzero pixels are derived from one of three built-in palettes. (See
Figure 4-9.) In 640 x 200, 2-color mode, nonzero pixels can be assigned any
one of the 16 color combinations, but zero-value pixels are always black. In

both modes, you can assign palette colors using ROM BIOS interrupt lOH
services described in Chapter 9.

The EGA, MCGA, and VGA are considerably more flexible in terms of

color management, because you can assign any color combination to any
palette or video DAC color register. Equally important is the fact that you
have larger pixel values and therefore more colors to work with on the

Pixel Bits Pixel Value Pixel Color

Mode 4y palette 0:

01 1 Green

10 2 Red

1 1 3 Yellow or brown

Mode 4, palette 1:

01 1 Cyan

10 2 Magenta

1 1 3 White

Mode 5:

01 1 Cyan

10 2 Red

1 1 3 White

Figure 4-9. Palettes in CGA 320 x 200,4-color graphics mode.

85

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

screen. The most frequently used graphics modes on the EGA and VGA are
the 16-color modes with pixels that require 4 bits to define the colors. In
most applications, 16 colors are adequate, because you can select those 16
colors from the entire range of color combinations the hardware can display
(64 colors on the EGA and 262,144 colors on the MCGA and VGA). Again, the
ROM BIOS provides services that let you assign arbitrary color combinations
to the palette and video DAG color registers on the EGA, MCGA, and VGA.
See Chapter 9 for details.

Inside the Display Memory
Now we come to the inner workings of the video buffer map. In this sec

tion, we'll see how the information in the video memory is related to the
display screen.

Although the video buffer memory map varies according to the video
mode you use, a clear family resemblance exists among the video modes. In
text modes, the video buffer map in all IBM video subsystems is the same.
In graphics modes, there are two general layouts, a linear map based on the

map used with the original CGA graphics modes and a parallel map that was
first used in EGA graphics modes.

Video Mode

Starting Paragraph
Address (hex)

Memory Used
(bytes) Subsystem

OOH, OIH B800H 2000 CGA, EGA, MCGA, VGA

02H, 03H B800H 4000 CGA, EGA, MCGA, VGA

04H, 05H B800H 16,000 CGA, EGA, MCGA, VGA

06H B800H 16,000 CGA, EGA, MCGA, VGA

07H BOOOH 4000 MDA, EGA, VGA

ODH AOOOH 32,000 EGA, VGA

OEH AOOOH 64,000 EGA, VGA

OFH AOOOH 56,000 EGA, VGA

lOH AOOOH 112,000 EGA, VGA

IIH AOOOH 38,400 MCGA, VGA

12H AOOOH 153,600 VGA

13H AOOOH 64,000 MCGA, VGA

Figure 4-10. Video buffer addresses in IBM video modes.

86

Chapter 4: Video Basics

Before we examine the actual map of the video buffer, let's look at the

addresses where the video buffer is located. (See Figure 4-10.) The break
down is straightforward: Color text modes start at paragraph address B800H,
and monochrome text mode starts at BOOOH. CGA-compatible graphics
modes start at B800H. All other graphics modes start at AOOOH. The amount
of RAM required to hold a screenful of data varies according to the number
of characters or pixels displayed, and, in the case of graphics modes, with
the number of bits that represent a pixel.

Display Pages in Text Modes
The amount of RAM physically installed in the various video subsystems is
frequently more than enough to contain more than one screen's worth of
video data. In video modes where this is true, all IBM video subsystems sup

port multiple display pages. When you use display pages, the video buffer is
mapped into two or more areas, and the video hardware is set up to selec
tively display any one of these areas in the map.

Because only one page is displayed at any given time, you can write
information into nondisplayed pages as well as directly to the displayed
page. Using this technique you can build a screen on an invisible page
while another page is being displayed and then switch to the new page when
the appropriate time comes. Switching screen images this way makes
screen updates seem instantaneous.

The display pages are numbered 0 through 7, with page 0 starting at
the beginning of the video buffer. Of course, the amount of available RAM
may be insufficient to support eight full display pages; the actual number of
pages you can use (see Figure 4-11) depends on how much video RAM is
available and on how much memory is required for one screenful of data.
Each page begins on an even kilobyte memory boundary. The display page
offset addresses are shown in Figure 4-12.

To select a display page, use ROM BIOS interrupt lOH, service 05H. To
determine which page is actively displayed, use interrupt lOH, service OFH.
(See Chapter 9 for information about these ROM BIOS services.)

In any of these modes, if the pages are not actively used (actually
displayed on the screen), then the unused part of the display memory can
conceivably be used for data besides text or pixels, although this usage is
neither normal nor advisable. Making any other use of this potentially free
memory is asking for trouble in the future.

87

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Video Mode Subsystem
Number of
Pages Notes

00H,01H CGA, EGA, MCGA, VGA 8

02H, 03H CGA 4

EGA, MCGA, VGA 8

04H, 05H CGA, MCGA 1

EGA, VGA 2 Not fully supported
by ROM BIOS

06H CGA, EGA, MCGA, VGA 1

07H MDA 1

EGA, VGA 8

ODH EGA, VGA 8

OEH EGA, VGA 4

OFH EGA, VGA 2

lOH EGA, VGA 2

IIH MCGA, VGA 1

12H VGA 1

13H MCGA, VGA 1

Figure 4-11. Display pages available in IBM video subsystems.

Page 40 X 25,16-color 80 X 25,16-color 80 X 25 Mono

0 B800:0000H B800:0000H BOOO:OOOOH

1 B800:0800H B800:1000H B000:1000H*

2 B800:1000H B800:2000H B000:2000H*

3 B800:1800H B800:3000H B000:3000H*

4 B800:2000H B800:4000H* B000:4000H*

5 B800:2800H B800:5000H* B000:5000H*

6 B800:3000H B800:6000H* B000:6000H*

7 B800:3800H B800:7000H* B000:7000H*

* EGA and VGA only

Figure 4-12. Start addresses for text-mode display pages in IBM video subsystems.

Chapter 4: Video Basics

Display Pages in Graphics Modes
For the EGA, the MCGA, and the VGA, the page concept is as readily avail
able in graphics modes as in text modes. Obviously there is no reason not to
have graphics pages if the memory is there to support them.

The main benefit of using multiple pages for either graphics or text is
to be able to switch instantly from one display screen to another without
taking the time to build the display information from scratch. In theory,
multiple pages could be used in graphics mode to produce smooth and fine
grained animation effects, but there aren't enough display pages to take the
animation very far.

Displaying Characters in Text and Graphics Modes
As you have learned, in text modes no character images are stored in video
memory. Instead, each character is represented in the video buffer by a pair
of bytes containing the character's ASCII value and display attributes. The
pixels that make up the character are drawn on the screen by a character
generator that is part of the display circuitry. The Color Graphics Adapter
has a character generator that produces characters in an 8 x 8 pixel block
format, while the Monochrome Display Adapter's character generator uses
a 9 X 14 pixel block format. The larger format is one of the factors that
makes the MDA's display output easier to read.

The standard ASCII characters (OIH through 7FH [decimal I through
127]) represent only half of the ASCII characters available in the text modes.
An additional 128 graphics characters (80H through FFH [decimal 128
through 255]) are available through the same character generator. More than
half of them can be used to make simple line drawings. A complete list of
both the standard ASCII characters and the graphics characters provided by
IBM is given in Appendix C.

The graphics modes can also display characters, but they are produced
quite differently. Graphics-mode characters are drawn, pixel by pixel, by a
ROM BIOS software character generator, instead of by a hardware character
generator. (ROM BIOS interrupt lOH provides this service; see Chapter 9.)
The software character generator refers to a table of bit patterns to deter
mine which pixels to draw for each character. The ROM of every PC and
PS/2 contains a default table of character bit patterns, but you can also place
a custom bit pattern table in RAM and instruct the BIOS to use it to display
your own character set.

In CGA-compatible graphics modes (640 x 200, 2-color and 320 x 200,
4-color), the bit patterns for the second 128 ASCII characters are always

89

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

found at the address stored in the interrupt IFH vector at 0000:007CH. If you
store a table of bit patterns in a buffer and then store the buffer's segment
and offset at 0000:007CH, the ROM BIOS will use the bit patterns in the buffer
for ASCII characters 80H through FFH (decimal 128 through 255). In other

graphics modes on the EGA, MCGA, and VGA, the ROM BIOS provides a ser
vice through interrupt lOH that lets you pass the address of a RAM-based

table of character bit patterns for all 256 characters.

Mapping characters in text modes
In text modes, the memory map begins with the top left corner of the

screen, using 2 bytes per screen position. The memory bytes for succeeding
characters immediately follow in the order you would read them—from
left to right and from top to bottom.

Modes 0 and 1 are text modes with a screen format of 40 columns by
25 rows. Each row occupies 40 x 2 = 80 bytes. A screen occupies only 2 KB
in modes 0 and 1, which means the CGA's 16 KB memory can accommodate
eight display pages. If the rows are numbered 0 through 24 and the columns
numbered 0 through 39, then the offset to any screen character in the first
display page is given by the following BASIC formula:

CHARACTER.OFFSET ̂ {ROH.NUMBER * 80) + (COLUMN.NUMBER * 2)

Since the attribute byte for any character is in the memory location
next to the ASCII character value, you can locate it by simply adding 1 to the
character offset.

Modes 2, 3, and 7 are also text modes, but with 80 columns in each row

instead of 40. The byte layout is the same, but each row requires twice as
many bytes, or 80 x 2 = 160 bytes. Consequently, the 80 x 25 screen format
uses 4 KB, and the 16 KB memory can accommodate four display pages. The
offset to any screen location in the first display page is given by the
following BASIC formula:

CHARACTER.OFFSET (RON. NUMBER * 160) + (COLUMN.NUMBER * 2)

The beginning of each text display page traditionally starts at an even
kilobyte boundary. Because each screen page in the text modes actually
uses only 2000 or 4000 bytes, some unused bytes follow each page: either 48
or 96 bytes, depending on the size of the page. So, to locate any screen
position on any page in text mode, use the general formula shown on the
next page.

90

Chapter 4: Video Basics

LOCATION = (SEGMENT. PARAGRAPH * 16)

+ (PAGE.NUMBER * PAGE.SIZE) + (RON.NUMBER * ROU.UIDTH * 2)

+ (COLUMN.NUMBER ♦ 2) + UHICH

LOCATION is the 20-bit address of the screen information.

SEGMENT. PARAGRAPH is the location of the video display memory

(for example, BOOOH or B800H).
PAGE. NUMBER is in the range 0 through 3 or 0 through 7.
PAGE. SIZE is 2000 or 4000.

RON. NUMBER is from 0 through 24.

ROU.UIDTH is 40 or 80.

COLUMN. NUMBER is from 0 through 39 or 0 through 79.
UHICH is 0 for the display character or 1 for the display attribute.

Mapping pixels in graphics modes
When you use a graphics mode, pixels are stored as a series of bit fields,
with a one-to-one correlation between the bit fields in memory and the

pixels on the screen. The actual mapping of bit fields in the video buffer
depends on the video mode.

In CGA-compatible graphics modes, the display is organized into 200
lines, numbered 0 through 199. Each line of pixels is represented in the
video buffer in 80 bytes of data. In 640 x 200, 2-color mode, each bit
represents one pixel on the screen, while in 320 x 200, 4-color mode, each
pixel is represented by a pair of bits in the buffer. (See Figure 4-13.) Thus
there are eight pixels to each byte in 640 x 200, 2-color mode, and 80 x 8, or
640, pixels per row. Similarly, there are four pixels to each byte in 320 x 200,
4-color mode, and 80 x 4, or 320, pixels per row.

The storage for the pixel rows is interleaved;

• Pixels in even-numbered rows are stored in the first half of the

video buffer, starting at B800:0000H.

• Pixels in odd-numbered rows are stored starting at B800;2000H.

For example, in 640 x 200,2-color mode, the first pixel in the first row
(in the upper-left corner of the screen) is represented by the leftmost bit (bit
7) in the byte at B800:0000H. The second pixel in the row is represented by
bit 6 of the same byte. Because of the interleaved buffer map, however, the
pixel immediately below the first pixel is represented in bit 7 of the byte at
B800:2000H.

91

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

640 X 200, 2-color mode

bit

7 6 5 4 3 2 1 0

320 X 200, 4-color mode

bit

7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1

mm

Figure 4-13. Pixel mapping in CGA-compatible graphics modes.

In all other graphics modes, the buffer map is linear, as it is in text
modes. Pixels are stored from left to right in each byte, and one row of pix
els immediately follows another in the video buffer. On the MCGA and VGA,
for example, the 1-bit pixels in 640 x 480, 2-color mode and the 8-bit pixels
in 320 X 200, 256-color mode are stored starting at AOOOrOOOOH and proceed
ing linearly through the buffer.

The catch is that pixel bit fields are not always mapped linearly in all
video modes. On the EGA and VGA, the video buffer in 16-color graphics
modes is arranged as a set of four parallel memory maps. In effect, the
video memory is configured to have four 64 KB memory maps spanning the
same range of addresses starting at AOOOrOOOOH. The EGA and VGA have
special circuitry that accesses all four memory maps in parallel. Thus in 16-
color EGA and VGA graphics modes, each 4-bit pixel is stored with 1 bit in
each memory map. (See Figure 4-14.) Another way to visualize this is that a
4-bit pixel value is formed by concatenating corresponding bits from the
same address in each memory map.

There is a good reason why the EGA and VGA were designed to use
parallel memory maps in graphics modes. Consider the situation in 640 x
350, 16-color mode: With 4 bits per pixel, you need 640 x 350 x 4 (896,000)
bits to store one screenful of pixels. That comes out to 112,000 bytes, which
is bigger than the 64 KB maximum size of one 8086 segment. If you organize
the pixel data in parallel, however, you only need 112,000 4 (28,000) bytes
in each memory map.

With this variety of memory maps and pixel sizes, it's fortunate that
the ROM BIOS provides services that let you read and write individual pixels

92

Chapter 4: Video Basics

Parallel

memory

maps

1 0 1 1 0 1 0 1 Map 3

////////
1 0 0 0 0 0 0 0

////////
Map 2

1 0 1 1 0 1 1 1

////////
1 0 1 1 0 0 0 1

Map 1

TT
'^Plxel values ̂

XX
1111 0000 1011 1011 0000 1010 0010 1011

mm ' mm

Figure 4-14. Pixel mapping in 16-color EGA and VGA graphics modes.

regardless of the video mode. (Chapter 9 describes these services.) Unfortu
nately, these ROM BIOS pixel-manipulation services are pretty slow. If
you're working in graphics modes, you'll probably find that the graphics
drawing functions provided in your programming language (such as the
PSET, LINE, and CIRCLE functions in BASIC) are the best tools for creating
graphics-mode screens.

Controlling the Video Display
In general, control of the display screen, like most other computer opera
tions, can be done in four ways;

• By using the programming-language services (for example,
BASIC'S SCREEN Statement)

• By using the DOS services (see Chapters 16 and 17)

• By using the ROM BIOS video services (see Chapter 9)

• By direct manipulation of the hardware via memory or 1/0 ports

The video services available through programming languages, DOS,
and the ROM BIOS automatically place screen output data in the video

93

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

buffer, with each type of service offering varying levels of control. The
ROM BIOS services are particularly powerful, providing nearly all the func

tions needed to generate display-screen output, control the cursor, and

manipulate screen information. (All video services are fully described in
Chapter 9.) For maximum control over the video display, you also have the

About the Cursor

A blinking cursor is a teature of the text modes that is used to indicate

the active location on the display screen. The cursor is actually a
group of scan lines that fill the entire width of the character box. The

size of the character-box varies with the video hardware and video

mode: The Monochrome Display Adapter uses a 9-pixels-wide-by-14-
scan-lines-high format; the Color Graphics Adapter uses an 8-pixels-
by-8-scan-lines format; the EGA's default text-mode character box is

8 pixels wide by 14 scan lines high; and the VGA's is 9 by 16. The
higher-resolution video subsystems use character boxes with more
scan lines, so their text-mode characters appear sharper and more
detailed, as you'll see in Appendix C.

The default cursor format uses two scan lines near the bottom of

the character box but may be changed to display any number of scan
lines within the character box. Since the blinking cursor used in text
modes is a hardware-created feature, software has only limited
control over it.

You can change the size of the cursor as well as its location on
the screen using the services provided by the ROM BIOS. Interrupt
lOH, service 01H lets you set the size of the cursor, whereas service

02H lets you move the cursor to any character position on the screen.
The ROM BIOS also provides a service (interrupt lOH, service 03H)

that reports the current size and location of the cursor.
So far, we've been talking about the text-mode cursor. In

graphics modes there is no hardware-generated cursor, but the ROM
BIOS routines keep track of a logical cursor location that tells you the
active screen location. As in text modes, you can use ROM BIOS
services 02H and 03H to keep track of the graphics-mode cursor
location.

To create a cursor in graphics modes, many programs, including
BASIC, simulate the block cursor by using a distinctive background
color at the cursor location or by using the ASCII block characters.

Chapter 4: Video Basics

option of bypassing the software services and placing data directly in the
video buffer—when you feel you have good reason to.

Before opting for direct video output, you should know that it does
interfere with windowing systems and more advanced multitasking
operating environments. All the same, many important programs for the PC
family generate direct video output—so many, in fact, that this has become
a standard and accepted way of creating output. So, even though in the long
run it's probably not wise to place output directly in the video buffer;
everyone seems to be doing it.

Basically, you can't mix programs that write directly into the display
memory and windowing systems because two programs would be fighting
over the control of the same memory and messing up each other's data. But
because so many programs now generate direct video output, multitasking
operating systems like OS/2 go to great lengths to accommodate programs
that write directly to the display memory. A system like OS/2 can make this
accommodation simply by keeping a separate copy of the program's display
memory; when the program is running, the copy is moved into the display
buffer, and when the program is stopped, a fresh copy of the display buffer
is made. This technique allows OS/2 to run programs that work directly
with the display memory, but at a cost; First, computing and memory
overhead go up; second, the program can't run in the background
simultaneously with other programs; and third, the display information
can't be "windowed"; that is, it can't be moved or adjusted in size.

Programmers are faced with a conflict here: Direct output to the
screen has the benefit of speed and power, but using ROM BIOS or higher-
level services for screen output has the benefit of more flexibility for
adapting to windowing systems, new video hardware, and so on. The best
solution is to use both techniques, trading off portability whenever
maximum performance is an absolute priority.

Direct Hardware Control

Much of the information we've provided in this chapter, particularly infor
mation on internal mapping of display memory, is meant to help you write
video information directly into the display memory. But remember that
direct programming has inherent risks, and you'll find it both safer and
easier to use the highest available means to control the video display.
Lower-level means, particularly direct manipulation, can be very
disruptive.

More important, it's not always easy to write "well-behaved"
programs that access video hardware directly. There are several reasons for

95

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

this. One is simply that there is a lot of different video hardware to worry
about. Apart from the five IBM video subsystems we've discussed here,
many non-IBM video adapters and built-in video subsystems exist in
non-IBM computers. If you write a program that programs a particular IBM
video subsystem directly, the program probably won't be portable to a
different IBM subsystem or to non-IBM hardware.

We've already mentioned another reason to avoid direct video
hardware programming: Multitasking or windowing operating systems
must work overtime to accommodate programs that directly access video
hardware. Of course, the designers of newer PC and PS/2 operating
environments are well aware of the need for good video performance, so
modern operating systems generally offer faster and more flexible video
output services than do older systems, such as DOS. Direct hardware
programming offers little advantage if the operating system's video I/O
services are fast enough.

Also, direct video hardware control can get you into trouble with the
ROM BIOS if you aren't careful. The ROM BIOS keeps track of the video
hardware status in a set of variables in the data area in segment 40H. (See
Chapter 3 for a list of ROM BIOS video status variables.) If you program the
video hardware directly, you must be careful to update the ROM BIOS status
variables accordingly.

For example, the simple routine we presented earlier for resetting the
CGA enable-blink bit bypasses a ROM BIOS status variable. To update the
enable-blink bit without causing the ROM BIOS to lose track of the video
hardware state, you would update the ROM BIOS status variable at
0040:0065H:

10 DEF SEG = &HB800 ' (same as before)

20 POKE O.ASCC'A")

30 POKE 1.&H97

40 DEF SEG = &H0040 * address the BIOS data area

50 POKE &H0065.(PEEK(&H0065) AND NOT &H20) ' update BIOS status variable
60 OUT &H3D8,PEEK(&H0065) ' update hardware register

If you program carefully, controlling the video hardware directly can
be very rewarding. You can maximize the speed of your video output as
well as take full advantage of hardware capabilities such as smooth, pixel-
by-pixel panning or hardware-generated interrupts. But when you write
such a program, keep the pitfalls in mind.

96

Chapter 4: Video Basics

Compatibility Considerations
If you want your program to run on a wide variety of PCs and PS/2s, you
must design compatibility into the program. As the various IBM video sub-
systemis have evolved, programmers have developed several approaches to
compatibility. These include

• Installable programs

• Self-installing programs

• Hardware-independent programming environments

We've already mentioned how many software vendors provide video
compatibility by distributing software that has its video output routines in
separate, installable modules: Before the software can be used, the video
routines must be linked to the rest of the application. This lets you write
programs that take full advantage of each video subsystem's capabilities
without sacrificing compatibility.

However, the installation process can be cumbersome, both for a pro
grammer who must write the installation program and for an end-user who
must install video routines properly. You can eliminate the installation
process if you make your application self-installing. The key to doing this
is to incorporate a routine in your program that identifies which video sub
system the program is running on. The program can then tailor its own
video output to the capabilities and limitations of the video hardware.

You can use several different programming techniques to identify the
video subsystem. In PS/2s, ROM BIOS offers a service that reports the video
hardware configuration (see Chapter 9), but in the PC/XT/AT family you
must rely on improvised hardware identification techniques documented in
the hardware technical manuals.

Once a program has determined the video hardware configuration, it
can produce appropriate output. For example, a program running on a
Monochrome Display Adapter can use only one video mode with mono
chrome attributes. If the same program were running on a color subsystem,
it could run with color attributes in text modes. If the program needed to
produce graphics output, it could select a graphics mode with the highest
possible resolution based on its identification of the video subsystem.

In the simplest case, your program can use whatever video mode is in
use when the program starts up. ROM BIOS interrupt lOH, service OFH
reports the current video mode number. If you're not using an assembly-
language interface to the ROM BIOS, however, you may find it easier simply
to use the program on the following page to inspect the ROM BIOS status
variable at 0040:004911 that contains the video mode number.

97

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

10 DEF SEG = &H0040

20 VIDEO.MODE - PEEK(&H0049)

You can avoid video hardware dependence in your programs if you
use an operating environment like Digital Research's GEM or Microsoft
Windows. These environments shield your program from the idiosyncrasies
of video hardware by providing a set of consistent, hardware-independent
subroutines to perform video I/O. The problem, of course, is that the end-
user must also have a copy of the operating environment to be able to run
your program.

Whatever approach you take to video compatibility, be sure to
consider several compatibility criteria. These criteria are not completely
consistent with each other, reflecting the internal inconsistency in the
design of the IBM personal computer and the variety of display formats that
can be used. Still, there are overall guidelines for compatibility, which
we'll outline here.

First, text-only display output increases compatibility. Many PCs are
still equipped with Monochrome Display Adapters, which cannot show
graphic output. If you are weighing a text-versus-graphics decision in the
design of a program, there are two factors to consider. On one hand, as
many programs have dramatically demonstrated, you can create very
effective drawings using only standard IBM text characters. On the other
hand, it is more and more common for computers to include graphics
capability. So, in the future, text-only output will probably lose its
importance, and you'll be able to use graphics in your programs without
worrying about compatibility.

Second, the less your programs depend on color, the wider the range
of computers with which they will be compatible. This does not mean that
you need to avoid color for compatibility; it simply means that for
maximum compatibility, programs should use color as an enhancement
rather than as an essential ingredient. If programs can get along without
color, they will be compatible with computers that use monochrome
displays, including PCs with Monochrome Display Adapters, as well as
Compaq Portable computers with built-in monochrome displays.

In general, you must weigh the advantage of broad compatibility
against the convenience and simplicity of writing programs for a narrower
range of displays. Our own experience and judgment tell us that far too
often programmers err by opting for a narrower range of displays, thereby
greatly reducing the variety of computers their programs can be used on.
Be forewarned.

98

Chapter 5

Disk Basics

Disk Data Mapping 100

Data Storage 101

Bootable Disks 103

DOS Disk Formats 104

Diskette Formats 104

Fixed-Disk Formats 105

The Disk's Logical Structure 106

How DOS Organizes the Disk 107

The Logical Structure in Detail 109
The Boot Sector 109

The Root Directory 111

The Files Area 117

The File Allocation Table 118

Comments 121

Copy Protection 122

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Most computer systems have some way to store information permanently,
whether it is on punched paper tape, bar-coded print media, magnetic disks
or tape, or laser disks. By far the most widely used media in the PC and PS/2
family are diskettes (floppy disks) and fixed disks (hard disks). Diskettes and
fixed disks come in various sizes and capacities but they all work in
basically the same way: Information is magnetically encoded on their sur
faces in patterns determined by the disk drive and by the software that con
trols the drive.

When the PC family was introduced in 1981, it used one main type'of
storage device: the S'A-inch diskette, which was double density, single sided,
and soft sectored, and stored only 160 kilobytes (KB). Since then, higher-
capacity S'A-inch and 3'A-inch diskettes have become standard equipment on
PCs and PS/2s, as have fixed disks with capacities from 10 megabytes (MB)
on the PC/XT to 314 MB on the PS/2 Model 80.

Although the type of storage device is important, it is the way stored
information is laid out and managed that concerns programmers most. In
this chapter, we'll focus on how information is organized and stored on
both diskettes and fixed disks. Much of the information provided in this
chapter applies to RAM disks—that is, the simulation of disk storage in
memory—as much as it does to conventional diskettes, fixed disks, and
disk cartridges.

Disk Data Mapping
To understand how data is organized on a disk, consider the physical struc
ture of the disk itself and the drive mechanism that reads from and writes to
it. We'll start with diskettes, but both diskettes and fixed disks have the
same basic geometry.

Inside a diskette's square plastic case is a circular platter made of
tough plastic coated with a magnetic medium. A diskette drive stores
on the diskette by writing and reading magnetically encoded patterns that
represent digital data. Because both sides of the diskette are coated, both
sides can be used to store data.

A diskette drive contains a motor that rotates the diskette at a constant
speed. The drive has two read/write heads, one for each side of the diskette.
The heads are mounted on an arm that moves them in unison to any position
toward or away from the center of the disk. (The original IBM PC came with
a diskette drive that had only one read/write head and could access only one
side of a diskette. Most PC users perceived this as wasteful, so single-sided
diskette drives gradually went the way of the dinosaur.)

too

Chapters: Disk Basics

Like the tape heads in a common tape recorder, a diskette drive's
read/write heads can magnetize the diskette medium to store data on the dis
kette; they can also retrieve data from the diskette by decoding the mag
netically encoded patterns in the diskette medium.

The geometry of a fixed disk is similar to that of a diskette. Fixed
disks rotate much faster than diskettes, so the platters are made of mag
netically coated metal or glass, not flexible plastic. Also, fixed disks
usually consist of a stack of several platters that rotate together, so fixed-
disk drives have multiple read/write heads—one for each disk surface.

Data Storage
The way data is mapped on diskettes and fixed disks is a natural result of
the geometry of the hardware. When a particular read/write head is held
motionless, a ring of magnetic medium moves past it as the disk rotates. For
each position of the read/write head, relative to the center of the disk, there
is a corresponding ring of disk medium on which data can be stored. These
rings are called tracks. (See Figure 5-1.)

Because each disk track can store 4 KB or more of data, each track of
Hata is divided into a number of smaller units called sectors. All sectors

hold the same amount of data—typically, 512 bytes for diskettes and most
fixed disks. The sectors and tracks are numbered sequentially, so you can
locate any particular byte of data on a disk surface by specifying its track
number and its sector number.

Because two-sided diskettes and fixed disks have more than one disk

surface, however, you need to think three-dimensionally to locate a byte of
Hata So the position of the read/write heads for these disks is described by a
cylinder number. Like tracks, cylinders are numbered sequentially. If you
think of a cylinder as a stack of tracks at a given position of the read/write
heads, you can see that the location of a particular track is determined by
specifying a cylinder number plus a read/write head.

With this in mind, it's easy to make sense of the various diskette for
mats used in PC and PS/2 disk drives. (See Figure 5-2.) With the original
single-sided IBM PC diskette drives you could use diskettes formatted with
40 tracks, each of which contained eight sectors of data, so the capacity of
the diskette was 40 x 8 x 512, or 160 KB. Now, with more accurate diskette
drives and with high-density diskette media that can store more data per
track, you can use diskettes with higher-capacity formats. Fixed-disk drives
are mechanically more accurate than diskette drives, and their magnetic
media are of comparatively higher density, so the number of tracks and the
number of sectors per track are higher than for diskettes.

101

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Direction of

rotation
Sector

Tracks

Figure 5-1. One side of a diskette formatted with 40 concentric tracks and eight sectors
per track.

Manufacturers' terminology and advertising regarding these varia
tions of disk format and disk-storage capacity is somewhat fuzzy. "Quad-
density" refers to a diskette or drive that can use an 80-track diskette
format. "High-density" and "high-capacity" generally refer to the PC/AT
1.2 MB or PS/2 1.44 MB diskette formats. "Double-density" diskettes can be
formatted with eight or nine sectors per track, but they can't be used reli
ably with higher-capacity formats.

102

Chapters: Disk Basics

Disk Capacity Cylinders
Sectors

per Track Heads

5V4-inch diskette 160 KB 40 8 1

180 KB 40 9 1

320 KB 40 8 2

360 KB 40 9 2

1.2 MB 80 15 2

3V2-inch diskette 720 KB 80 9 2

1.44 MB 80 18 2

Figure 5-2. PC and PSI2 diskette formats.

Bootable Disks

Regardless of their data formats, all diskettes and disks are potentially boot
able; that is, they can contain the information necessary to get an operating
system running at the time you start your computer. There is nothing spe
cial about the format of a bootable disk; it's just one that contains informa
tion that lets the ROM BIOS boot the operating system. Here's how it works.

On all PC and PS/2 diskettes and fixed disks, the first sector on the

disk—cylinder 0, head 0, sector 1—is reserved for a short bootstrap pro
gram. (The program has to be short because the size of a sector is only 512
bytes.) The function of this bootstrap program is to read the bulk of the
operating system into memory from elsewhere on the disk and then to trans
fer control to the operating system.

When you start or restart your computer, the last tasks performed by
the start-up ROM BIOS routines are reading the contents of the disk boot sec
tor into memory and checking those contents for a bootstrap program. The
BIOS does this checking by examining the last 2 bytes of the boot sector for
a signature (55H and AAH) that indicates that the data in the boot sector rep
resents a bootstrap program. If the signature value isn't correct, the BIOS
assumes there's no bootstrap program in the boot sector and, therefore, that
the disk isn't bootable.

The bootstrap program's job is to copy the start-up program for an
operating system from the disk into memory. There's no restriction on the
size and location of the operating system's start-up program, so this step-
wise transfer of control—from ROM BIOS to boot sector to operating sys
tem—can be used to start DOS, XENIX, OS/2, or even a stand-alone
application.

103

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

DOS Disk Formats
The diskette formats listed in Figure 5-2 aren't the only ones you can use for
diskettes, but because diskettes are intended to be portable, the number of
diskette formats that DOS recognizes is limited to those in the list. In the
earliest releases of DOS, only the 160 KB and 320 KB formats could be used.
Later DOS versions recognize higher-capacity diskette formats and fixed
disks in addition to the original diskette formats (Figure 5-3).

Disk Capacity DOS Version Media Descriptor

5V4-inch diskette 160 KB 1.0 FEH

320 KB 1.1 FFH

180 KB 2.0 FCH

360 KB 2.0 FDH

1.2 MB 3.0 F9H

3'^-inch diskette 720 KB 3.2 F9H

1.44 MB 3.3 FOH

Fixed disk 2.0 F8H

Figure 5-3. Standard DOS disk formats. The media descriptor value is used by DOS to
identify different diskformats.

Diskette Formats

Beginning with version 2.0, DOS had the potential to recognize virtually
any physical disk format. This became possible because DOS versions 2.0
and later provide the necessary tools to write an installable device driver—
a machine-language routine that can configure a disk drive to read or write
different formats or allow you to hook up a non-IBM disk drive to your sys
tem. (See Appendix A for more on installable device drivers.)

Fortunately, installable diskette device drivers have not led to a
proliferation of nonstandard, incompatible diskette formats. Instead, soft
ware vendors and programmers have relied on the standard DOS formats
listed in Figure 5-3. On 5y4-inch diskettes, the 360 KB nine-sector format is
used most frequently, while on 3'/!-inch diskettes, the 720 KB format is most
common. These are not the highest capacity formats, but they can be used
on machines that aren't equipped with higher-capacity diskette drives as
well as on those that are.

If you're interested in creating your own diskette formats, or in under
standing DOS diskette formats in more detail, be sure to read about ROM
BIOS disk services in Chapter 10.

104

Chapter 5: Disk Basics

Fixed-Disk Formats

High-capacity fixed-disk systems present some special problems and oppor
tunities. Fixed-disk formats vary much more than diskette formats do
(Figure 5-4). Still, data is organized on fixed disks by cylinder, head, and
sector numbers, just as it is on diskettes.

Disk Capacity Cylinders
Sectors

per Track Heads

Typical PC/XT
fixed disk 10 MB 306 17 4

PC/AT fixed disk

type 20 30 MB 733 17 5

PS/2 Model 30

fixed disk, type 26 20 MB 612 17 4

PS/2 Model 60

fixed disk, type 31 44 MB 732 17 7

Figure 5-4. Some typical fixed-disk formats. All use 512 bytes per sector.

Because the storage capacity of a fixed disk is relatively large, some
PC users prefer to use only part of the disk space for DOS and to use other
portions of the disk for other operating systems. To facilitate this, the avail
able space on a fixed disk can be split into as many as four logical parti
tions, each of which is accessed separately. Each partition's data can be
kept completely separate from the data in the other partitions. Each parti
tion can contain its own boot sector and operating system.

The first sector on a fixed disk contains a 64-byte partition table

(Figure 5-5) and a disk bootstrap program. The partition table indicates
where each partition is located on the disk. The table also designates one
bootable partition. The first sector in the bootable partition is a partition
boot sector that the ROM BIOS can use to load an operating system.

The disk bootstrap program examines the partition table to determine
which one of the partitions is bootable. It then reads the partition's boot sec
tor from the disk into memory. The partition boot sector contains a
bootstrap program that reads the operating system from the disk into
memory and transfers control to it.

Because bootable partitions are indicated in a table, you can select
among fixed-disk partitions simply by updating the table and restarting the
computer. All operating systems capable of supporting fixed disks provide
a utility program that lets you update the partition table. (The DOS utility
FDISK is such a program.)

105

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Offsetfrom
Start of Entry Size (bytes) Meaning

OOH 1 Boot indicator (80H = bootable, 0 = not bootable)

OIH 1 Starting head number

02H 2 Starting cylinder number (10 bits) and sector
number (6 bits)

04H 1 System indicator:
1 = primary DOS, 12-bit FAT
2 = XENIX

4 = primary DOS, 16-bit FAT
5 = extended DOS

8 = other non-DOS

05H 1 Ending head number

06H 2 Ending cylinder and sector numbers

08H 4 Starting sector (relative to beginning of disk)

OCH 4 Number of sectors in partition

Figure 5-5. The format of an entry in a fixed-disk partition table. The table consists of
four such 16-byte entries, starting at offset IBEH in the disk boot sector.

□ NOTE: Be very careful if you access a fixed disk's boot sector.
The information contained there is intended only for use by the ROM
BIOS bootstrap loader. Should the data in a disk's boot sector be
erased or corrupted, the entire contents of the disk may become
inaccessible.

The Disk's Logical Structure
Regardless of the type of disk you use, all DOS disks are logically formatted
in the same way: The disk's sides, tracks, and sectors are identified
numerically with the same notation, and certain sectors are always reserved
for special programs and indexes that DOS uses to manage disk operations.
Before we describe how DOS organizes space on a disk, we need to briefly
cover the conventional notation used by DOS and the ROM BIOS to locate
information.

Diskette cylinder numbers start from 0 at the outside edge of the disk
surface and increase toward the center of the disk. Read/write heads are also
numbered from 0, but sector numbers start with I. Any location on the disk
can thus be described by a unique combination of cylinder, head, and sector
numbers. This in fact is how the ROM BIOS services access disk data.

106

Chapters: Disk Basics

DOS, however, does not recognize cylinders, heads, and sectors. In
stead, DOS sees a disk as a linear sequence of logical sectors. The sequence
of logical sectors begins with the first sector on a disk: Sector 1, cylinder 0,
head 0 (the boot sector) is DOS logical sector 0.

Logical sectors are numbered from track to track in the same cylinder,
and then are numbered from cylinder to cylinder. Thus the last sector in
cylinder 0, head 0, is followed by the first sector in cylinder 0, head 1; the
last sector in a cylinder is followed by the first sector in the next cylinder.
See page 300 for information on converting DOS notation to ROM BIOS nota
tion and vice versa.

The use of logical sector numbers lets DOS avoid having to deal with
cylinder, head, and sector numbers that vary among different types of disk-
drive hardware. However, this same feature means that DOS is limited in

the amount of disk space it can access on a particular disk drive. Because
DOS maintains logical sector numbers as 16-bit integers, it can recognize, at
most, 65,536 logical sectors on a disk. Because the default size of a disk sec
tor is 512 bytes, the largest disk DOS can manage is 65,536 x 512, or 32 MB.
This certainly is no problem on diskettes, but it's an unwelcome limitation
for the many PC/AT and PS/2 users who have fixed disks larger than 32 MB.

To get around this restriction, DOS version 3.3 introduced the notion of
the extended DOS partition. With DOS 3.3, you can use the DOS utility pro
gram FDISK to allocate a fixed-disk partition as an extended DOS partition.
You can format the extended partition as one or more separate logical
drives. Thus, for example, you could use both a primary and an extended
DOS partition on a fixed disk, with the primary partition as drive C and the
extended partition as drives D and E.

How DOS Organizes the Disk
When DOS formats a diskette, it erases and verifies every sector. In a fixed-
disk partition, DOS verifies the integrity of each sector without erasing pre
existing data. (That is why a program like the Norton Utilities' Format
Recover can retrieve data from a fixed disk after you have accidentally
reformatted it.) On both diskettes and fixed disks, the format program
reserves a certain amount of disk space to store control information and in
dexes that DOS uses to organize the data you store on the disk.

Every DOS diskette or fixed-disk DOS partition is mapped into four
separate areas. These areas, in the order they are stored, are the reserved
area, the file allocation table (FAT), the root directory, and the files area. (See
Figure 5-6.) The size of each area varies among formats, but the structure
and the order of the areas don't vary.

107

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Logical sector 0 Reserved area

File allocation table (FAT)

Root directory

Files area

(files and subdirectories)

Figure 5-6. DOS disk map.

The reserved area can be one or more sectors long; the first sector is
always the disk boot sector (logical sector 0). A table within the boot sector
specifies the size of the reserved area, the size (and number of copies) of the
file allocation table, as well as the number of entries in the root directory.
All diskettes have a reserved area of at least one sector, even if they aren't
bootable.

The file allocation table, or FAT, immediately follows the reserved
area. The FAT maps the usage of all the disk space in the files area of the
disk, including space used for files, space that hasn't been used, and space
that is unusable due to defects in the disk medium. Because the FAT maps
the entire usable data storage area of a disk, two identical copies of it are
stored in case one is damaged. The size of a FAT depends on the size of the
disk (or of the partition of a fixed disk): Larger disks usually require larger
FATs. Figure 5-7 shows FAT sizes for several different disk sizes.

Disk Capacity Reserved Area FAT Root Directory

S'A-inch diskette 360 KB 1 sector 4 sectors 1 sectors

1.2 MB 1 14 14

3'A-inch diskette 720 KB 1 6 7

1.44 MB 1 18 14

Figure 5-7. Reserved area, FAT, and root-directory overhead for some common DOS dis
kette formats.

108

Chapters: Disk Basics

The root directory is the next item on a DOS disk. It is used as a table
of contents, identifying each file on the disk with a directory entry that con
tains several pieces of information, including the file's name, size, and

location on the disk. The size of the root directory varies with the disk for
mat. (See Figure 5-7.)

The files area, which occupies the bulk of the available disk space, is
used to store files; in DOS versions 2.0 and later, the files area may contain
subdirectories as well as files. For both files and subdirectories, space in the
files area is allocated as needed in chunks of contiguous sectors called clus
ters, As with the sizes of the FAT and the root directory, a DOS disk's cluster
size varies with the format. (See Figure 5-8.) The number of sectors in a
cluster is always a power of 2; generally, the cluster size is one sector for

single-sided diskettes, two sectors for double-sided diskettes, and four or

more for fixed disks.

Disk Capacity Cluster Size

5V4-inch diskette 360 KB 2 sectors

1.2 MB 1

3'^-inch diskette 720 KB 2

1.44 MB 1

Typical PC/XT fixed disk 10 MB 8

PC/AT fixed disk, type 20 30 MB 4

PS/2 Model 30, fixed disk, type 26 20 MB 4

PS/2 Model 60, type 31 44 MB 4

Figure 5-8. Cluster size for some common DOS disk formats.

The Logical Structure in Detail
Now it's time to delve a little more deeply into each of the four sections of a

disk: the boot sector, the root directory, the files area, and the FAT.

The Boot Sector

The boot sector on a DOS diskette or in a DOS partition on a fixed disk con

sists primarily of a short machine-language program that starts the process
of loading DOS into memory. As we mentioned, to perform this task the

ROM BIOS checks to see whether the disk is bootable and then proceeds
accordingly.

109

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

□ NOTE: A bootable disk contains the start-up programs for an
operating system or for a stand-alone application that runs without
operating-system support. In the case of DOSy a bootable disk con
tains two hidden files that represent the DOS start-up routines and
essential low-level DOS functions. See Chapter 3, page 45 for details
about these files.

You can inspect the boot program by using the DOS DEBUG utility,
which combines the ability to read data from any sector on a disk with the
ability to disassemble—or unassemble—machine language into assembly-
language code. If you want to learn more about the boot program and you
aren't intimidated by DEBUG's terse command format, place a bootable dis
kette in drive A and enter the following commands to display the diskette's
boot program:

DEBUG

L 0 0 0 1 ; load first logical sector
U 0 L 3 ; unassemble and list first and second bytes

At this point, DEBUG will display the first instruction in the boot
program, a IMP to the address that contains the rest of the program. Use
DEBUG's U command with the address specified in the IMP to inspect the
rest of the boot program. For example, if the first instruction is IMP 0036,
enter

U 0036 ; unassemble and list next portion of boot program

For all disk formats (except diskettes formatted with eight sectors per
track) you will find some key parameters in the boot sector, beginning with
the 11th byte. (See Figure 5-9.) These parameters are part of the BIOS
parameter block used by DOS to control any disk-type device. If you're
using DEBUG to inspect the boot sector of a diskette in drive A, you can see
a hexadecimal dump of the BIOS parameter block by entering the following
command:

D 08 L IB

110

Chapter 5: Disk Basics

Offset Length Description

03H 8 bytes System ID

OBH 1 word Number of bytes per sector

ODH 1 byte Number of sectors per cluster

GEH 1 word Number of sectors in reserved area

lOH 1 byte Number of copies of FAT

IIH 1 word Number of root directory entries

13H 1 word Total number of sectors

15H 1 byte DOS media descriptor

16H 1 word Number of sectors per FAT

18H 1 word Number of sectors per track

lAH 1 word Number of heads (sides)

ICH 1 word Number of hidden sectors

Figure 5-9. The BIOS parameter block in the boot sector.

The Root Directory
The root directory on a diskette or in a fixed-disk partition is created by the

DOS FORMAT program. The root directory's size is determined by FORMAT,
so the number of root directory entries is limited. (See Figure 5-10.)

Disk Capacity Size

Number of
Entries

S'A-inch diskette 180 KB 4 sectors 64

360 KB 7 112

1.2 MB 14 224

3 V2-inch diskette 720 KB 7 112

1.44 MB 14 224

Typical PC/XT fixed disk 10 MB 32 512

PC/AT fixed disk, type 20 30 MB 32 512

PS/2 Model 30, fixed disk, type 26 20 MB 32 512

PS/2 Model 60, fixed disk, type 31 44 MB 32 512

Figure 5-10. Root directory sizes for some common DOS disk formats.

Ill

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

In DOS versions 1.0 and later, which did not support subdirectories, the
size of the root directory limited the number of files that could be stored on

a diskette. This restriction disappeared in DOS versions 2.0 and later, where

file names could be placed in subdirectories as well as in the root directory.
The root directory contains a series of 32-byte directory entries. Each

directory entry contains the name of a file, a subdirectory, or a disk volume
label. The directory entry for a file contains such basic information as the

file's size, its location on the disk, and the time and date it was most re

cently modified. This information is contained in the eight fields listed in
Figure 5-11.

Offset Description Size (bytes) Format

OOH Filename 8 ASCII characters

08H Filename extension 3 ASCII characters

OBH Attribute 1 Bit coded

OCH Reserved 10 Unused; zeros

16H Time 2 Word, coded

18H Date 2 Word, coded

lAH Starting cluster number 2 Word

ICH File size 4 Integer

Figure 5-11. The eight parts of a directory entry.

Offset OOH: The filename

The first 8 bytes in a directory entry contain the filename, stored in ASCII
format. If the filename is less than eight characters, it is filled out to the

right with blanks (CHR$(32)). Letters should be uppercase, because lower
case letters will not be properly recognized. Normally, blanks should not be
embedded in the filename, as in AA BB. Most DOS command programs, such

as DEL and COPY, will not recognize filenames with embedded blanks.

BASIC works successfully with these filenames, however, and DOS services
usually can too. (See Chapters 16 and 17.) This capability suggests some
useful tricks, such as creating files that cannot easily be erased.

Two codes, used to indicate special situations, may appear in the first
byte of the filename field. When a file is deleted, DOS sets the first byte of
the filename field in its directory entry to E5H to indicate that the directory

entry can be reused for another filename. In DOS versions 2.0 and later, the
first byte of a directory entry can also be set to OOH to indicate the end of
the list of directory entries.

112

Chapters: Disk Basics

When a file is erased, only two things oh the disk are affected: The
first byte of the directory entry is set to E5H, and the file's space-allocation
chain in the FAT is wiped out (we'll cover this in the section on the FAT). All
other directory information about the file is retained, including the rest of
its name, its size, and even its starting cluster number. The lost information
can be recovered, with suitably sophisticated methods, provided that the
directory entry has not been reused for another file. Be forewarned, though,
that whenever a new directory entry is needed, DOS uses the first available
entry, quickly recycling an erased file's entries and making recovery more
problematic.

Offset 08H: The filename extension

Directly following the filename is the standard filename extension, stored
in ASCII format. It is 3 bytes long and, like the filename, is padded with
blanks if it is less than the full three-character length. While a filename
must have at least one ordinary character in it, the extension can be all
blanks. Generally, the rules that apply to the filename also apply to the file
name extension.

□ NOTE: When the directory contains a volume ID label entry, the
filename and extension fields are treated as one combined field of
11 bytes. In this case, embedded blanks are permitted.

Offset OBH: The file attribute
The third field of the directory entry is 1 byte long. The bits of the attribute
byte are individually coded as bits 0 through 7, as shown in Figure 5-12, and
each bit is used to categorize the directory entry.

Bit
76543210 Meaning

1 Read-only
1 . Hidden

1 . . System
. . . . 1 . . . Volume label

. . . 1 Subdirectory

. . 1 Archive

. 1 Unused

1 Unused

Figure 5-12. The 8 file-attribute bits.

113

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit 0, the low-order bit, is set to mark a file as read-only. In this state,

the file is protected from being changed or deleted by any DOS operation.
We should point out that many DOS services ignore this attribute, so even

though bit 0 can provide worthwhile protection for data, it is not foolproof.
Bit 1 marks a file as hidden and bit 2 marks a file as a system file.

Files marked as hidden, system, or both, cannot be seen by ordinary DOS
operations, such as the DIR command. Programs can gain access to such

files only by using DOS services to search explicitly for hidden or system
files. There is no particular significance to the system attribute; it exists to
perpetuate a feature of CP/M and has absolutely nothing to do with DOS.

Bit 3 marks a directory entry as a volume label. A volume label entry

is properly recognized only in the root directory, and uses only a few of the
eight fields available in the directory entry: The label itself is stored in the

'here are two types of directories: root directories and
QOhte^tj^ and use of each type are essentially the s

2; |ie>narhes^ of files on the disk)
: We-Toot directory has a fixed size and i

oifttfle disk A subdirectory Iliads
lerd-on the disk Any version: of

'^Id^bf direeiory ̂ trles In
djf entries in a root director^,?!#!#;

Root directory

^ . '

Word -processing data
tory subdirectory

Accounting data
subdirectory

Current year Prior year ,
subdirectory subdirectory.

114

Chapters: Disk Basics

filename and extension fields, which are treated as one unified field for this

purpose; the size and starting cluster fields are not used, but the date and
time fields are.

Bit 4, the subdirectory attribute, identifies a directory entry as a
subdirectory. Because subdirectories are stored like ordinary data files,
they need a supporting directory entry. All the directory fields are used for
these entries, except the file-size field, which is zero. The actual size of a
subdirectory can be found simply by following its space allocation chain in
the FAT.

Bit 5, the archive attribute, was created to assist in making backup
copies of the many files that can be stored on a fixed disk. This bit is 0 on

all files that haven't changed since they were last backed up; DOS sets this
bit to 1 whenever a file is created or modified.

A suDdirectc

I -.V

'^ueture

IV'<<
jofthesufe

Mctory, It places two spe
. and

^ in the, cil-;

etories, li6we\^r: of

115

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Offset OCH: Reserved

This 10-byte area is set aside for possible future uses. All 10 bytes are nor
mally set to 0.

Offset 16H; The time

This field contains a 2-byte value that marks the time that the file was cre
ated or last changed. It is used in conjunction with the date field, and the
two together can be treated as a single 4-byte unsigned integer. This 4-byte
integer can be compared with those in other directory entries for greater-
than, less-than, or equal values. The time, by itself, is treated as an unsigned
word integer. It is based on a 24-hour clock and is built out of the hour,
minutes, and seconds with this formula:

Time^iHourxZOAQ)+(Mi nutesx3Z)+{Seconds+Z)

The 2-byte word used to store the time is one bit too short to store all
the seconds, so seconds are stored in units of 2 seconds from 0 through 29; a

value of 5, for example, would represent 10 seconds. The time 11:32:10
would be stored as the value 5C05H (decimal 23557).

Offset 18H: The date

This field contains a 2-byte value that marks the date the file was created or
last changed. It is used in conjunction with the time field, and the two
together can be treated as a single 4-byte unsigned integer that can be
compared with those in other directory entries for greater-than, less-than, or
equal values. The date, by itself, is treated as an unsigned word integer that
is built out of the year, month, and day with this formula:

Date=(()'ear-1980)x512)+(«ont/ix32)+Day

This formula compresses the year by subtracting 1980 from it. Thus,
the year 1988 is calculated as a value of 8. Using this formula, a date such as
December 12, 1988 is stored by the formula as 118CH (decimal 4492):

(1988-1980)x512+12x32+12=4492

Although this scheme allows for years up through 2107, the highest
year supported by DOS is 2099.

Offset lAH: The starting cluster number
The seventh field of a directory entry is a 2-byte value that gives the start
ing cluster number for the file's data space. This cluster number acts as the

116

Chapters; Disk Basics

entry point into the file's space allocation chain in the FAT. For files with
no space allocated and for volume-label entries, the starting cluster number
is 0.

Offset ICH: The file size

The last field of a directory entry gives the size of the file in bytes. It is
coded as a 4-byte unsigned integer, which allows file sizes to grow very
large—4,294,967,295 bytes, to be exact—large enough for all practical
purposes.

DOS uses the file size in a file's directory entry to determine the exact

size of the file. Because a file's disk space is allocated in clusters of 512
bytes or more, the actual disk space occupied by a file is usually greater
than the value in the directory entry. On disk, the space between the end of
the file and the end of the last cluster in the file is wasted.

The Files Area

All data files and subdirectories are stored in the files area, which occupies
the last and largest part of each disk.

DOS allocates space to files, one cluster at a time, on an as-needed

basis. (Remember, a cluster is one or more consecutive sectors; the number

of sectors per cluster is a fixed characteristic of each disk format.) As a file
is being created, or as an existing file is extended, the file's allocated space
grows. When more space is needed, DOS allocates another cluster to the
file. In DOS versions 1 and 2, the first available cluster is always allocated

to the file. Later versions of DOS select clusters by more complicated rules

that we won't go into here.

Under ideal conditions, a file is stored in one contiguous block of

space. However, a file might be broken into several noncontiguous blocks,
especially if information is added to an existing file or a new file is stored
in the space left by an erased file. So it's not unusual for one file's data to be
scattered throughout the disk.

This file fragmentation slows access to the file's data to some degree.
Also, it is much harder to "unerase" a file you have unintentionally erased

if it is fragmented, simply because you have to do a lot more searching for
the individual clusters that make up the file's data space. But fragmentation
has no other effect, and programs generally do not need to be concerned
about where on a disk their data is stored. To determine if a file is

fragmented, use CHKDSK or a program such as the Norton Utilities.
If you are concerned about diskette file fragmentation, the DOS COPY

command lets you transfer fragmented files to a newly formatted disk. DOS

117

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

allocates contiguous space for the copied files. This simple technique also
works for fixed-disk files, but it is much less convenient unless you have an
extra, newly formatted fixed disk to use. If you think that fixed-disk file

fragmentation is slowing down a particular application, you can purchase
any of several fixed-disk utility programs to rearrange fragmented fixed-
disk files and make them contiguous. Most of the time, however, file

fragmentation has little impact on the speed of your programs.
Whether you ever look at your fragmented files or not, you should

know how DOS uses the file allocation table (FAT) to allocate disk space and
how the FAT forms a space allocation chain to connect all of the clusters that
make up a file.

The File Allocation Table

The file allocation table (FAT) is DOS's map of how space is utilized in the
files area of a disk. We've already discussed how space for the FAT itself is
reserved on a diskette or in a fixed-disk partition. Now we'll describe how
the FAT is formatted and used.

For most disk formats, DOS maintains two copies of the FAT, just in
case one of them is damaged or becomes unreadable. Curiously, the
CHKDSK program, which tests for most errors that can occur in the FAT and

in directories, does not even notice if the two FATs are different.

The organization of the FAT is simple: There is one entry in the FAT
for each cluster in the files area. A FAT entry can contain any of the values

listed in Figure 5-13. If the value in a FAT entry doesn't mark an unused,
reserved, or defective cluster, then the cluster that corresponds to the FAT
entry is part of a file, and the value in the FAT entry itself indicates the next
cluster in the file.

This means that the space that belongs to a given file is mapped by a
chain of FAT entries, each of which points to the next entry in the chain.
(See Figure 5-14.) The first cluster number in the chain is the starting
cluster number in the file's directory entry. When a file is created or
extended, DOS allocates clusters to the file by searching the FAT for unused

12-bit Value 16-bit Value Meaning

0 0 Unused cluster

FF0-FF6H FFF0-FFF6H Reserved cluster

FF7H FFF7H Bad cluster

FF8-FFFH FFF8-FFFFH Last cluster in a file

(other values) Next cluster in a file

Figure 5-13. FAT values.

118

Chapters: Disk Basics

Directory
entry

FAT

File- Extension

name

Starting
cluster

ALPHA TXT 0003

0000 0006 0000 0000 0000 0008 FFFFH 0000

Figure 5-14. Disk-space allocation using the FAT,

clusters (that is, clusters whose FAT entries are 0) and adding them to the
chain. Conversely, when a file is truncated or deleted, DOS frees the clusters
that had been allocated to the file by clearing the corresponding FAT entries.

The FAT can be formatted with either 12-bit or 16-bit entries. The 12-

bit format is used for diskettes and fixed-disk partitions with no more than

4078 clusters. (A fixed-disk's partition table indicates whether a DOS parti
tion's FAT uses 12-bit or 16-bit entries.) The entries in a 12-bit FAT are harder

to access because they don't fit neatly into the 16-bit word size of the 8086
family of microprocessors, but a 12-bit FAT takes up less room on a diskette,
where disk space is scarcer.

The first two entries in the FAT are reserved for use by DOS. The first
byte of the FAT contains the same media descriptor value that appears in the
BIOS parameter block in the disk boot sector. The remaining bytes of the
first two entries are filled with the value OFFH. Because the first two cluster

numbers (0 and 1) are reserved, cluster number 2 corresponds to the first
cluster of available disk space in the files area.

Reading the values in the FAT is simple enough for a 16-bit FAT:
Multiply a given cluster number by 2 to find the byte offset of the corre
sponding FAT entry. In the 16-bit FAT in Figure 5-15a, for example, the byte
offset of the FAT entry for cluster 2 is 04H, and the value in that entry is 0003;
the byte offset of the FAT entry for cluster 3 is 06H, and the value in that
entry is 0004; and so on.

For a 12-bit FAT, the computation is a bit trickier, because each pair of
FAT entries occupies 3 bytes (0 and 1 occupy the first 3 bytes, 2 and 3 occupy
the next 3 bytes, and so forth). Given any cluster number, you can find the
FAT entry by multiplying the cluster number by 3, dividing by 2, and then
using the whole number of the result as a displacement into the FAT. By
grabbing a word at that address, you have the three hex digits of the FAT en
try, plus one extraneous hex digit, which can be removed by any one of sev
eral quick machine-language instructions. If the cluster number is even, you

119

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

discard the high-order digit; if it is odd, you discard the low-order digit. Try
this on the 12-bit FAT in Figure 5-15b. You'll find that the entries are the
same as in the 16-bit FAT in Figure 5-15a.

(a) 16-bit FAT

Reserved Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster

2 3 4 5 6 7 8 9

I ' I I—H I—H I— I—I r^-\ I—11—I
F8 FF FF FF 03 GO 04 00 05 00 06 00 OA 00 08 00 FF FF 23 01

(b) 12-bit FAT

Reserved Clusters Clusters Clusters Clusters

2 and 3 4 and 5 6 and 7 8 and 9

I—'—11——11——11——11— —
FO FF FF 03 40 00 05 60 00 OA 80 00 FF 3F 12

Figure 5-15. The first few entries in a 16-bit FAT (a) and in a 12-bit FAT (b).

As we have said, the first two FAT entries, in both 12-bit and 16-bit for

mats, are not used to indicate the status of clusters; instead, they are set
aside so that the very first byte of the FAT can be used as a media descriptor
byte that indicates the format of the disk. (See Figure 5-16.) However, you
should not assume that these IDs uniquely identify formats: they don't nec
essarily. If you considered every disk format in use, you'd find quite a few
duplications. Beware.

Sectors Media

Disk Capacity Heads per Track Descriptor

5'/4-inch diskette 160 KB 1 8 FEH

320 KB 2 8 FFH

180 KB 1 9 FCH

360 KB 2 9 FDH

1.2 MB 2 15 F9H

3'^-inch diskette 720 KB 2 9 F9H

1.44 MB 2 18 FOH

Fixed disk F8H

Figure 5-16. DOS media descriptor values.

120

Chapter 5: Disk Basics

Your programs can learn the format of a disk by reading and inspect
ing the FAT media descriptor byte. The easy way to do this is to use DOS
function IBH (decimal 27). For more information about this function, see
page 335.

Special notes on the FAT
Normally, programs do not look at or change a disk's FAT; they leave the
FAT completely under the supervision of DOS. The only exceptions are pro
grams that perform space-allocation functions not supported by DOS—for
example, programs that recover erased files, such as the UnErase program
in the Norton Utilities program set.

Be aware that a FAT can be logically damaged; for example, an alloca
tion chain can be circular, referring back to a previous link in the chain; or
two chains can converge on one cluster; or a cluster can be orphaned, mean
ing that it is marked as in use even though it is not part of any valid alloca
tion chain. Also, an end-of-file marker (FFFH or FFFFH) may be missing.

The DOS programs CHKDSK and RECOVER are designed to detect and
repair most of these problems as well as can reasonably be done.

For special notes on the interaction of the space allocation chain in the
FAT and DOS's record of a file's size, see page 116.

Comments

Although this chapter has included detailed information for direct use of
the logical structure of the disk itself, including the boot sector, FAT, and
directories, it is not a good idea to use these elements directly unless you
have a compelling reason. In fact, except where such use is completely
unavoidable, as in a copy-protection program, it's unwise to incorporate any
knowledge of the disk format in your programs. On the whole, your best ap
proach is to consider the standard hierarchy of operations and use the
highest level of services that can satisfy your needs:

• First choice: Language services (the facilities provided by your
programming language; for example, BASIC'S OPEN and CLOSE
statements)

• Second choice: DOS services (described in Chapters 16 and 17)

• Third choice: ROM BIOS disk services (described in Chapter 10)

Last choice: Direct control (for example, direct programming of
the disk-drive controller through commands issued via I/O ports)

121

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Most disk operations for the PC family can be handled quite easily
with the services that your programming language provides. There are,
however, two obvious circumstances that can call for more exotic methods.

One, which we've already mentioned, occurs when your programming in
volves control of a disk on the same level exercised by DOS. This level of
control would be called for if you were writing a program similar to DOS's
CHKDSK or the Norton Utilities. The other circumstance involves copy pro
tection. In one way or another, all diskette copy-protection schemes involve
some type of unconventional diskette I/O. This type of control usually leads
to the use of the ROM BIOS services, but may also lead to the extreme
measure of directly programming the disk-drive controller itself.

Copy Protection
A variety of copy-protection schemes are commercially available. Some are
simple, others are more complex. If you're interested in devising your own
scheme, however, here are some things to consider.

For diskettes, there are dozens of ways to approach copy protection.
Perhaps the most common methods involve reformatting the sectors in cer
tain tracks on the diskette by using the ROM BIOS format routines. Because

DOS cannot read sectors that don't conform to its specific formats, the DOS
COPY program can't copy a disk that has an occasional odd sector size in

terspersed with normal sectors. This DOS limitation inspired a number of
companies to produce copy programs that can read and copy sectors of any
size, so it is not a particularly effective means of copy protection.

On a more advanced level, there are two special aspects of diskette
copy protection that are worth noting. First, some of the most exotic and

unbreakable protection schemes have been based on the discovery of un
documented abilities hidden in the diskette-drive controller. Second, some

protection schemes are intentionally or unintentionally dependent upon the
particular characteristics of different diskette drives. This means that a

copy-protected program may function on one model of computer but fail to
function on another model, even though the copy protection has not been
tampered with. If you use a copy-protection scheme, keep this in mind.

Many of the copy-protection techniques used on diskettes are not ap
propriate for fixed disks, mainly because most fixed-disk users need to be

able to make backup copies of programs on their fixed disks. This means
you should avoid copy-protection schemes that prevent fixed-disk backups

122

Chapter 5: Disk Basics

by making it impossible for DOS or the ROM BIOS to read part of the disk.
Most of the fixed-disk copy-protection schemes in use today rely on data-
encryption techniques, which discourage software piracy without prevent
ing legitimate copying.

In an encrypted program, the program's executable code and data are
stored on the disk in an encrypted, hard-to-unravel format. When you exe
cute the program, a special start-up program decrypts the encrypted code
and data so that it can be used. The start-up program might also rely on data
saved in hidden files or subdirectories to decrypt the main program.

There is no particular additional guidance that we can give you here,
except to remind you that variety and ingenuity are the keys to successful
copy protection.

123

Chapter 6

Keyboard Basics

Keyboard Operation 127

Keystrokes and Scan Codes 128

Communicating with the ROM BIOS 130

Translating the Scan Codes 131

Entering ASCII Codes Directly 134

Keyboard Data Format 134

The ASCII Keys 134

The Special Keys 135

ROM BIOS Keyboard Control 137

The Insert State 138

The Caps Lock State 138

The Num Lock State 138

The Keyboard-Hold State 139

The Toggle-Key States 139

Comments 140

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

This chapter is about the IBM PC and PS/2 keyboards. The first part of this
chapter explains how the keyboard interacts with the computer on a hard
ware and software level. In the second part, we'll describe how the ROM
BIOS treats keyboard information and makes it available to programs.

□ NOTE: If you plan to play around with keyboard control, we
urge you to read the comments on page 140 first and then apply the
information in this chapter to your programs only if you have a
reason to do so (for example, if you are creating a keyboard-
enhancer program to modify the operation of the keyboard; see the
sidebar on page 133 for more information on such programs). Ifyou
have any such application in mind, take a look at the ROM BIOS key
board services in Chapter 11.

The keyboard has undergone several modifications since the IBM PC
was released. The original IBM PC keyboard had 83 keys. The PC/AT was in
troduced with an 84-key keyboard that changed the locations of several keys
on the 83-key keyboard and added one new key, the Sys Req key.

IBM later upgraded the AT with a 101/102-key keyboard that provided
extra function keys and a new keyboard layout. The 101/102-key keyboard
became standard equipment in the PS/2 series. The 101/102-key layout in
cludes two extra function keys (Fll and F12), a number of duplicate shift
and control keys, and modifications to several keys and keyboard combina
tions found in the 83- and 84-key layouts (Pause, Alt-Sys Req, and Print
Screen).

A trend in IBM's keyboard design has been to increase the similarity
between the PC and PS/2 keyboards and the keyboards on their mainframe
display terminals. For example, the 101/102-key keyboard's 12 function keys
(F1 through F12) are reminiscent of the Program Function (PF) keys on IBM
mainframe display terminals. Similarly, the Sys Req key is like the Sys Req
key in IBM mainframe terminals: A mainframe terminal-emulator program
running on a PC or PS/2 could use the Sys Req key for the same purpose a
mainframe terminal would—to switch among terminal sessions or to initi
ate a keyboard reset function.

Another trend in IBM's keyboard design has been to accommodate
non-English alphabets in the keyboard layout. The English-language ver
sion of the 101/102-key keyboard released in the United States and United
Kingdom has 101 keys, but for other languages the same keyboard has an
extra key next to the left Shift key, a different arrangement of keys around
the Enter key, and a different map of ASCII characters to key locations.
From a programmer's point of view, however, these two keyboards are so

126

Chapter 6: Keyboard Basics

similar that IBM describes them together in its technical documentation—
and we'll do the same in this chapter.

Keyboard Operation
The keyboard unit contains a dedicated microprocessor that performs a
variety of jobs, all of which help cut down on system overhead. The main
duty of the keyboard microprocessor is to watch the keys and report to the
main computer whenever a key is pressed or released. If any key is pressed
continuously, the keyboard microprocessor sends out a repeat action at
specific intervals. The keyboard microprocessor controller also has limited
diagnostic and error-checking capabilities and has a buffer that can store
key actions in the rare instance that the main computer is temporarily un
able to accept them.

The PC/AT and PS/2s have sophisticated keyboard control circuitry
that can perform several functions the original IBM PC and PC/XT keyboard
cannot. These features include programmable typematic control, program
mable scan-code sets, and improved hardware for error detection.

On the 83-key keyboard, the typematic delay and repeat rate are built
into the hardware: A key must be pressed for 0.5 seconds before auto-repeat
begins, and the repeat rate is about 10 characters per second. With the PC/AT
and PS/2 keyboards, you can modify the typematic delay and rate by pro
gramming the keyboard controller. The most convenient way to do this is
through the ROM BIOS keyboard services described in Chapter 11.

The keyboard controller in the PC/AT and PS/2s can also assign any of
three different sets of scan-code values to the keys on the 84- and 101/102-

key layouts. By default, however, the ROM BIOS establishes a scan-code set
that is compatible with that used on the 83-key keyboard. You will probably
find use for the alternative scan-code sets only if your program bypasses the
ROM BIOS and processes scan codes directly. (See the PC/AT and PS/2
technical reference manuals for details.)

The improved error-detection ability of the AT and PS/2 keyboard
controllers is largely invisible to your programs; the keyboard hardware and
the ROM BIOS service routines are very reliable. The most common errors

you may encounter are a full ROM BIOS keyboard buffer or a key combina
tion that the PS/2 ROM BIOS cannot process. In both situations, the ROM

BIOS generates a warning beep to inform you that something unusual has
occurred. (For example, try holding down both pairs of Ctrl and Alt keys
on a PS/2 keyboard.)

127

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Keystrokes and Scan Codes
Each time you press or release one of the keys on the keyboard, the key
board circuits transmit a sequence of one or more 8-bit numbers through the
connector cable to the computer. This sequence, called a scan code, uniquely
identifies the key you pressed. The keyboard produces different scan codes,
depending on whether the key was pressed or released. Whenever you press
a key, the scan-code byte contains a number ranging from OIH through 58H.
When you release the key, the keyboard generates a scan code 80H higher
than the keystroke scan code by setting bit 7 of the scan-code byte to I. For
example, when you press the letter Z, the keyboard generates a scan code of
2CH; when you release it, the keyboard generates a scan code of ACH (2CH +
80H). The keyboard diagrams in Figures 6-1, 6-2, and 6-3 show the standard
keyboard keys and their associated scan codes.

■iBWaBMHiaiilMi
l|§glllliOlieili|lieilllgglllllllHilB
l^jHP HI ini m IB IIIIII11II

IIBCHBIIIBH

Figure 6-1. Scan codes for the 83-key keyboard (PC, PCIXT). Scan-code values are in
hex.

110 HlilMlllliaRIi
Jill 111

lllMllMiini11 111 111 00 111 in
11

Figure 6-2. Scan codes for the 84-key keyboard (PCIAF). Scan-code values are in hex.

Chapter 6: Keyboard Basics

a ry mm n m MyLMm

O-Shift 36

k0 36Hl37Hl4A

a N il

Figure 6-3. Scan codes for the 1011102-key keyboard (PC!AT and PS/2). Scan-code
values are in hex.

If you compare the scan codes for the 83-, 84-, and 101/102-key key
boards, you'll see that a key generates the same scan code regardless of its
location on the keyboard. For example, the Esc key has a scan code of OIH,
whether it's next to the 1 key, next to the Num Lock key, or by itself in the
upper-left corner. (The 101/102-key keyboard can actually generate different
scan codes, but the start-up ROM BIOS suppresses this by configuring the

keyboard to be compatible with the 83-key keyboard.)
The 101/102-key layout contains duplicate shift and control keys that

don't exist on the other keyboards. The 101/102-key keyboard distinguishes
between duplicate keys by transmitting multiple-byte scan codes. For ex
ample, the two Alt shift keys have different scan codes: The left Alt key has
a scan code of 38H, and the right Alt key has a 2-byte scan code, EOH 38H.

□ NOTE; The multiple-byte scan codes for shift and control keys
can vary depending on whether one of the shift keys (Ctrl, Alt,
Shift), Num Lock, or Caps Lock is pressed at the same time. See
IBM's PS/2 technical reference manuals for details.

The 101/102-key keyboard also assigns special scan codes to certain
keystroke combinations. The Alt-Sys Req combination is intended to be the
same as the Sys Req key on the 84-key layout, so the 101/102-key keyboard
transmits the same scan code, 54H. Because the Print Screen key has the
same function as the Shift-PrtSc combination in the other keyboard layouts,
the 101/102-key keyboard transmits a Shift key scan code (EOH 2AH) fol
lowed by the PrtSc scan code (EOH 37H). The Pause key's scan code, EIH
IDH 45H, resembles the scan-code sequence for the Ctrl-Num Lock com
bination, but when you press Ctrl-Pause (that is, Ctrl-Break), the keyboard

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

transmits EOH 46H EOH C6H, which is derived from the scan code for the
Scroll Lock (Break) key on the 83- and 84-key keyboards. Figure 6-4 lists
these keystroke combinations and their associated codes.

1011102-key Keyboard 84-key Keyboard Scan Code
Keystroke Combination Equivalent Transmitted

Alt-Sys Req Sys Req 54H

Print Screen Shift-Print Screen EOH 2AH

EOH 37H

Ctrl-Break Ctrl-Break E0H46H EOH C6H

Figure 6-4. Scan codes for special keystroke combinations on the 1011102-key keyboard.

□ NOTE: The "compact" keyboard available for the PSI2 Model 25
is really a 1011102-key keyboard in disguise. The numeric keypad is
mapped to a group of 14 keys on the main keyboard, and the Num
Lock key is the shift state of the Scroll Lock key. However, keyboard
scan codes and ROM BIOS processing are the same for the compact
version as for the full-size 1011102-key keyboard.

Any program that processes keyboard scan codes must be aware of
which machine it's running on and which keyboard is in use. Fortunately,
few programs need to respond directly to keyboard scan codes—the ROM
BIOS keyboard service routines translate scan codes into meaningful infor
mation that a program can use. The following sections describe this transla
tion process more fully.

Communicating with the ROM BIOS
The keyboard-controller circuitry on the computer's system board monitors
the keyboard for input. The keyboard controller generates interrupt 09H
each time it receives a byte of data from the keyboard. The ROM BIOS con
tains an interrupt 09H handler that reads the byte from the keyboard con
troller and processes it. (I/O port 60H contains the keyboard data byte.) The
interrupt 09H handler translates scan codes into 2-byte values that are gener
ally more useful to a program than the original scan codes.

The low-order byte of each 2-byte keyboard value contains the ASCII
value corresponding to each key pressed. The high-order byte usually con
tains the corresponding keyboard scan code.

Special keys, such as the function keys and the numeric-keypad keys,
have a 0 in the low-order byte, with the keyboard scan code in the high-
order byte. (More about this later, on page 134.)

130

Chapter 6: Keyboard Basics

The ROM BIOS routines place the translated byte-pairs in a queue,
which is kept in low memory in location 0040:001EH. The byte-pairs are
stored there until they are requested by a program, such as DOS or inter
preted BASIC, that expects to read keyboard input.

Translating the Scan Codes
The scan-code translation job is moderately complicated because the IBM
keyboard recognizes two types of keys that change the meaning of a key
stroke; shift keys and toggle keys.

The shift keys
Three keys—Ctrl, Shift, and Alt—are known as shift keys: They change
the shift state, and thereby the meaning, of whatever key they are used with.
For example, when you press Shift-C, you get a capital C; when you press
Ctrl-C, you generate the "break" character. The ROM BIOS recognizes that
all subsequent key actions will be influenced by that shift state as long as a
shift key is pressed.

The toggle keys
In addition to the shift keys, two toggle keys also affect the keyboard's shift
state: the Caps Lock key and the Num Lock key. When activated. Caps
Lock reverses the shift state of the alphabet keys; it doesn't affect the other
keys. When activated, the Num Lock key disables cursor-control functions
on the numeric keypad. Toggle keys are activated with a single keystroke
and remain active until released by a second keystroke.

The shift-key and toggle-key status information is kept by the ROM
BIOS in a low-memory location (0040:00I7H), where you can use or change
it. When you press a shift key or a toggle key, the ROM BIOS sets a specific
bit in one of these two bytes. When the ROM BIOS receives the release scan
code of a shift key, it switches the status bit back to its original shift state.

Whenever the ROM BIOS receives a scan code for an ordinary key

stroke, such as the letter z or a right arrow key, it first checks the shift state
and then translates the key into the appropriate 2-byte code. (We'll discuss
the status bytes in more detail on page 137.)

The combination keys
While the ROM BIOS routine is translating scan codes, it checks for Sys Req
keystrokes and for certain shift-key combinations; specifically, it checks for
the Ctrl-Alt-Del, Shift-PrtSc, Ctrl-Num Lock, and Ctrl-Break combina
tions. These five command-like key actions cause the ROM BIOS to perform
a specific task immediately.

131

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Ctrl-Alt-Del causes the computer to reboot. Ctrl-Alt-Del is probably
used more often than any other special key combination. It works depend
ably as long as the keyboard interrupt service is working. If the interrupt
service is not working, turn the power off, wait a few seconds, then turn it
on again; the power-on program resets all interrupt vectors and services.

Shift-PrtSc (Print Screen on the 101/102-key keyboard) causes the
ROM BIOS interrupt 09H handler to execute software interrupt 05H. The
default interrupt 05H handler is also part of the ROM BIOS; it prints a
"snapshot" of the current contents of the screen.

Ctrl-Num Lock (Pause on the 101/102-key keyboard) suspends opera
tion of a program until another keystroke occurs.

Ctrl-Break causes the ROM BIOS to generate software interrupt IBH
and to set bit 7 of the byte at 0040:007 IH to 1. The default DOS handler for in
terrupt IBH simply sets a flag internal to DOS that causes DOS to interpret
Ctrl-Break as Ctrl-C. You can override the default DOS action for Ctrl-
Break by pointing the interrupt IBH vector (located at 0000:006CH) to your
own interrupt handler.

Sys Req (on the 84-key keyboard) and Alt-Sys Req (on the 101/102-key
keyboard) cause the ROM BIOS to issue interrupt 15H with AH = 85H. Your
program can provide its own interrupt 15H handler that intercepts and pro
cesses Sys Req keystrokes. (See Chapter 12 for details.)

These are the only key combinations that are especially meaningful to
the ROM BIOS. When an invalid combination is reported from the keyboard,
the ROM BIOS simply ignores it and moves on to the next valid key action.

Two more features of the PC keyboard should be presented before we
discuss the details of keyboard coding: repeat key action and duplicate keys.

Repeat key action
The PC keyboard features automatic repeat key action, a process called
typematic by IBM. The circuitry inside the keyboard monitors how long
each key is pressed, and if a key is held down longer than a defined interval,
the circuitry generates repeat key actions. This typematic action is reported
as successive keystroke scan codes, without the intervening key-release
codes. This makes it possible for an interrupt 09H handler to distinguish be
tween actual keystrokes and typematic action. However, the ROM BIOS does
not always distinguish between the two. The ROM BIOS keyboard-handling
routine treats each automatic repeat key action as though the key were ac
tually pressed and interprets the key accordingly.

132

Chapter 6; Keyboard Basics

For example, if you press and hold the A key long enough for the key
board to begin generating successive keystroke signals, then the ROM BIOS
will create a series of As to be passed on to whatever program is reading
keyboard data. On the other hand, when you press and hold a shift key, the
ROM BIOS sets bits in its status bytes in segment 40H. While you hold the

shift key down, the ROM BIOS continues to set the same bits to I.

Keyboard-enhancer programs

Thanks to the flexible software design of the PC, it's possible to

create programs that customize the keyboard. Such programs are

called keyboard-enhancer programs.
Keyboard-enhancer programs monitor the scan codes that come

in from the keyboard and respond to them in ways that aren't

supported by the ROM BIOS or by DOS. Typically, these programs

are fed instructions, called keyboard macros, that tell them what

keystrokes to look for and what changes to make. The change might
involve suppressing a keystroke (acting as if it never happened),

replacing one keystroke with another, or replacing one keystroke with
a long series of keystrokes. The most common use of keyboard macros
is to abbreviate frequently used phrases; for example, you might

instruct a keyboard enhancer to convert a key combination, such as
Alt-S, into a salutation you use in your correspondence, such as
Sincerely yours. You can also use keyboard macros to condense
multiple-keystroke program commands to a single keystroke.

Keyboard enhancers work by combining the powers of two

special facilities — one that's part of DOS and one that's part of the

PC's ROM BIOS. The DOS facility allows the enhancer program to
remain resident in the computer's memory, quietly monitoring the
operation of the computer while the ordinary control of the computer

is turned over to a conventional program, such as a word processor.

The ROM BIOS facility lets programs divert the stream of keyboard
information so that it can be inspected and changed before it is passed

on to a program. These programs use the DOS Terminate and Stay
Resident facility to stay active in memory while other programs are
run; then they use the ROM BIOS keyboard-monitoring facility to
preview keyboard data and change it as needed.

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When you release the key, the ROM BIOS resets the status bits. All this boils
down to the simple fact that the ROM BIOS treats repeat key actions in a
sensible way, acting on them or ignoring them as needed.

Duplicate keys
We've already described how the keyboard differentiates duplicate keys by
assigning different scan codes to each. The ROM BIOS translates duplicate
keys into the same ASCII character codes. For example, if you press either
of the two asterisk keys, the ROM BIOS returns ASCII 2AH (the ASCII code
for an asterisk); if you press either of the two Ctrl keys on a 101/102-key
keyboard, the ROM BIOS sets the appropriate bit in its shift-state byte.

The ROM BIOS also lets programs tell the difference between
duplicate keys, in some cases. Remember that the ROM BIOS translates each
keystroke into a scan code as well as an ASCII code. A program that
requests a keystroke from the ROM BIOS can inspect the scan code to
determine which key was pressed. In the case of shift keys, a program can
inspect the BIOS shift-state bytes at 0040:0017H and 0040:0018H to determine
exactly which shift keys are pressed. (See the discussion of the shift-state
bytes on pages 137 and 138.)

Enterii^ ASCII Codes Directly
We should mention that the PC keyboard, in conjunction with the ROM BIOS,
provides an alternate way to enter nearly any ASCII character code. This is
done by holding down the Alt key and then entering the decimal ASCII
character code from the numeric keypad on the right side of the keyboard.
This method lets you enter any ASCII code from OIH through FFH (decimal
1 through 255).

Keyboard Data Format
Once a keyboard action is translated, it is stored as a pair of bytes in the
ROM BIOS buffer. We call the low-order byte the main byte and the high-
order byte the auxiliary byte. The contents of these bytes will vary,
depending on whether an ASCII key or a special key was pressed.

The ASCII Keys
When the main byte is an ASCII character value from OIH to FFH, one of
two events has occurred: One of the standard keyboard characters was
pressed, or an ASCII character was entered directly using the Alt-number
method mentioned above. (See Appendix C for the complete ASCII

134

Chapter 6: Keyboard Basics

character set.) For these ASCII characters, the auxiliary byte contains the
scan code of the pressed key. (The scan code is 0 for characters entered with
Alt-number.) Usually you can ignore this scan code. DOS does not report
keyboard scan codes, nor do high-level programming language functions
like getch() in C or INKEY$ in BASIC. However, a program can examine the
auxiliary byte (scan code) to differentiate among duplicate keyboard
characters.

The Special Keys
When the main byte is null (OOH), it means that a special, non-ASCII key

was pressed. The special keys include function keys, shifted function keys,
cursor-control keys such as Home and End, and some of the Ctrl- and Alt-
key combinations. When any of these keys are pressed by themselves or in
combination with other keys, the auxiliary byte contains a single value that

indicates which key was pressed. Figure 6-5 lists these values in a rough
mixture of logical and numeric order. (For a complete breakdown of ROM
BIOS key codes, see the IBM BIOS Interface Technical Reference Manual,)

□ NOTE: With the 101/102-key keyboard, the main byte value for
the gray cursor-control keys is EOH. This value distinguishes these
keys from their counterparts on the numeric keypad, which have a
main byte value of OOH.

Value
(hex) (dec) Keys Pressed

Value
(hex) (dec) Keys Pressed

Value
(hex) (dec) Keys Pressed

3BH 59 F1 54H 84 Shift-Fl 5EH 94 Ctrl-Fl
3CH 60 F2 55H 85 Shift-F2 5FH 95 Ctrl-F2
3DH 61 F3 56H 86 Shift-F3 60H 96 Ctrl-F3
3EH 62 F4 57H 87 Shift-F4 61H 97 Ctrl-F4
3FH 63 F5 58H 88 Shift-F5 62H 98 Ctrl-F5
40H 64 F6 59H 89 Shift-F6 63H 99 Ctrl-F6
41H 65 F7 5AH 90 Shift-F7 64H 100 Ctrl-F7
42H 66 F8 5BH 91 Shift-F8 65H 101 Ctrl-F8
43H 67 F9 5CH 92 Shift-F9 66H 102 Ctrl-F9
44H 68 FIG 5DH 93 Shift-FlO 67H 103 Ctrl-FlO
85H 133 Fll 87H 135 Shift-Fl 1 89H 137 Ctrl-Fl 1
86H 134 F12 88H 136 Shift-Fl 2 8AH 138 Ctrl-F12

Figure 6-5. ROM BIOS auxiliary byte values for the special keys. (continued)

135

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 6-5. continued

Value

(hex) (dec)
Value

Keys Pressed
Value

68H 104 Alt-Fl lOH 16 Alt-Q OFH 15 Shift-Tab

69H 105 Alt-F2 IIH 17 Alt-W

6AH 106 Alt-F3 12H 18 Alt-E 47H 71 Home

6BH 107 Alt-F4 13H 19 Alt-R 48H 72 Up arrow

6CH 108 Alt-F5 14H 20 Alt-T 49H 73 PgUp

6DH 109 Alt-F6 15H 21 Alt-Y

6EH 110 Alt-F7 16H 22 Alt-U
4BH 75 Left arrow

6FH 111 Alt-F8 17H 23 Alt-I
4DH 77 Right arrow

70H 112 Alt-F9 18H 24 Alt-0

71H 113 Alt-Fl 0 19H 25 Alt-P 4FH 79 End

8BH 139 Alt-Fl 1

8CH 140 Alt-F12 lEH 30 Alt-A 50H 80 Down arrow

IFH 31 Alt-S 51H 81 PgDn
78H 120 Alt-1 20H 32 Alt-D 52H 82 Insert

79H 121 Alt-2 21H 33 Alt-F 53H 83 Del

7AH 122 Alt-3 22H 34 Alt-G

7BH 123 Alt-4 23H 35 Alt-H 72H 114 Ctrl-PrtSc

7CH 124 Alt-5 24H 36 Alt-J 73H 115 Ctrl-Left arrow

7DH 125 Alt-6 25H 37 Alt-K 74H 116 Ctrl-Right arrow

7EH 126 Alt-7 26H 38 Alt-L 75H 117 Ctrl-End

7FH 127 Alt-8 76H 118 Ctrl-PgDn

80H 128 Alt-9 2CH 44 Alt-Z 77H 119 Ctrl-Home

81H 129 Alt-0 2DH 45 Alt-X

82H 130 Alt-Hyphen 2EH 46 Alt-C 84H 132 Ctrl-PgUp

83H 131 Alt-= 2FH 47 Alt-V

30H 48 Alt-B

31H 49 Alt-N

32H 50 Alt-M

Codes generated by the ROM BIOS for the complete set of charac
ters and special keys are handled differently in different programming
languages. BASIC, for example, takes a mixed approach to the special keys.
When you use ordinary input statements, BASIC returns the ASCII

136

Chapter 6: Keyboard Basics

characters and filters out any special keys. Some of these keys can be acted
on with the ON KEY statement, but you can use the BASIC INKEYS function
to get directly to the ROM BIOS coding for keyboard characters and find out
immediately what special key was pressed. If the INKEYS function returns a
I-byte string, it is reporting an ordinary or extended ASCII keyboard
character. If INKEYS returns a 2-byte string, the first byte in the string is the
ROM BIOS's main byte and will always be OOH; the second byte is the
auxiliary byte and will indicate which special key was pressed.

ROM BIOS Keyboard Control
The ROM BIOS stores keyboard status information in several portions of the

ROM BIOS data area in segment 40H in low memory. Your programs can use
some of the ROM BIOS status variables to check the keyboard status or to

modify ROM BIOS keyboard processing.
The two keyboard status bytes at locations 0040:0017H (shown in

Figure 6-6) and 0040:0018H (shown in Figure 6-7) are coded with individu
ally meaningful bits that indicate which shift keys and toggle keys are
active. All the standard models of the PC family have these two bytes,

although the bits representing the Sys Req, left Alt, and left Ctrl keys are
updated only for the keyboards that support these keys.

The status byte at 0040:0017H is particularly useful because it
establishes the state of ROM BIOS keystroke processing. Changes to this

status byte affect the next keystroke that the ROM BIOS processes.

BU

7 6543 2 1 0 Meaning

X Insert state: 1 = active; 0 = inactive

. X Caps Lock: 1 = active; 0 = inactive

. . X Num Lock: 1 = active; 0 = inactive

. . . X. . . . Scroll Lock: 1 = active; 0 = inactive

. . . . X. . . 1 = Alt pressed

X. . 1 = Ctrl pressed

X. 1 = Left Shift pressed

X 1 = Right Shift pressed

Figure 6-6. The coding of the keyboard status byte at location 0040:0017H. Bits 4-7 are
toggles; their values change each time the key is pressed. Bits 0-3 are set only while the
corresponding key is pressed.

137

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit

76543210 Meaning

X.

X.

X. . .

. X. .

. . X.

. . . X

X.

. X

1 = Ins pressed

1 = Caps Lock pressed

1 = Num Lock pressed

1 = Scroll Lock pressed

1 = Hold state active (Ctrl-Num Lock or Pause)

1 = Sys Req key pressed

1 = Left Alt key pressed

1 = Left Ctrl key pressed

Figure 6-7. The coding of the keyboard status byte at location 0040:0018H. These bits are
set only while the corresponding key is pressed.

The Insert State

The ROM BIOS keeps track of the insert state in bit 7 of byte 0040;0017H.
However, every program we know of ignores this bit and keeps its own
record of the insert state. This means that you should not rely on this status
bit to tell you anything about the current state of Insert key processing.

The Caps Lock State
Some programmers force the Caps Lock state to be active by setting bit 6 of
byte 0040:0017H. This can confuse or irritate some program users, so we
don't recommend it. However, this trick works reliably and precedent exists
for using it. If you do you'll see that the ROM BIOS updates the LED indica
tor on the 84- and 101/102-key keyboards accordingly. This also occurs when
you update the Num Lock or Scroll Lock states.

The Num Lock State

Because the Num Lock key's location on the keyboard makes it susceptible
to inadvertent keystrokes, some programmers force the Num Lock toggle
(bit 5 of byte 0040:0017H) to a predetermined state at the beginning of a pro
gram. For example, clearing the Num Lock status bit before requesting user
input from the keypad forces keypad keystrokes to be processed as direction
keys instead of numbers, even if the Num Lock key was pressed acciden
tally. This can be particularly helpful with the 83-key keyboard for the IBM
PC and PC/XT because this keyboard has no status LEDs and provides no
visual indication of the Num Lock state.

138

Chapter 6: Keyboard Basics

The Keyboard-Hold State
The ROM BIOS establishes the keyboard-hold (pause) state when it detects a

Ctrl-Num Lock or Pause keystroke. During keyboard hold, the ROM BIOS
executes a do-nothing loop until a printable key is pressed; it doesn't return

control of the computer to whatever program is running until this happens.

This feature is used to suspend the operation of the computer.
During keyboard hold, all hardware interrupts are handled normally.

For example, if a disk drive generates an interrupt (signaling the comple
tion of a disk operation), the disk interrupt handler receives the interrupt
and processes it normally. But when the interrupt handler finishes working,
it passes control back to whatever was happening when the interrupt took

place — which is that endless do-nothing loop inside the ROM BIOS. So, dur
ing the keyboard hold, the computer can respond to external interrupts but

programs are normally completely suspended. The keyboard BIOS con

tinues to handle interrupts that signal key actions, and when it detects a nor
mal keystroke (for example, the Spacebar or a function key, but not just a
shift key), it ends the keyboard hold, finally returning control to whatever
program was running.

The keyboard-hold state is of no practical use in programming, except
that it provides a standard way for users of our programs to suspend a

program's operation.

Be aware that the keyboard-hold state is not "bullet-proof." A pro
gram can continue working through the keyboard hold by acting on an ex
ternal interrupt, such as the clock-tick interrupt. If a program really wanted
to avoid being put on hold, it could set up an interrupt handler that would
work through the hold state, or it could simply turn the hold state off when

ever the hold state was turned on.

The To^e-Key States
Notice that bits 4 through 7 in the bytes at 0040:0017H and 0040:0018H refer to

the same keys. In the first byte, the bits show the current state of the toggle
keys; in the second byte, they show whether or not the corresponding toggle
key is pressed.

You can read the status of any of these bits to your heart's content, but
few, if any, are likely to be useful in your programs. With the partial excep
tion of controlling the Caps Lock state, we don't think it's wise to change
any of the shift-state bits (bits 4 through 6 of byte 0040:0017H). And it is

potentially very disruptive to change any of the key-is-pressed bits (bits 0

through 3 of byte 0040:0017H or any bits in byte 0040:0018H).

139

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Comments
If you want to gain a deeper understanding of the PC's keyboard operation,
study the ROM BIOS program listing in the IBM technical reference manuals
for the PC, PC/XT, or PC/AT. If you do this, be careful to avoid making a
simple mistake that is common when anyone first studies the ROM BIOS,
particularly the interrupts used by the ROM BIOS. The ROM BIOS provides
two different interrupts for the keyboard: one that responds to keyboard
hardware interrupts (interrupt 09H) and collects keyboard data into the low-
memory buffer, and one that responds to a software interrupt requesting
keyboard services (interrupt 16H, decimal 22) and passes data from the low-
memory buffer to DOS and your programs. It is easy to confuse the opera
tion of these two interrupts, and it is just as easy to further confuse them
with the break-key interrupts, IBH and 23H (decimal 27 and 35). The table in

Figure 6-8 lists the keyboard interrupts.

Interrupt
Hex Dec Origin of Interrupt Use

09H 9 Keyboard Signals keyboard action.

16H 22 User program Invokes standard BIOS keyboard
services. (See Chapter 11.)

IBH 27 ROM BIOS Occurs when Ctrl-Break is pressed under
BIOS control; a routine is invoked if you
create it.

23H 35 DOS If you create it, an interrupt routine is
invoked when a break-key combination is
pressed under DOS control.

Figure 6-8. The interrupts related to keyboard action.

A general theme running throughout this book advises you not to play
fast and loose, but to play by the rules. This means, again, to write pro
grams that are general to the IBM PC family rather than tied to the quirks of
any one model, and to write programs that use portable means (such as DOS

or ROM BIOS services) to manipulate data, instead of direct hardware pro
gramming. These rules apply to keyboard programming as much as they do
to any other type of programming.

140

Chapter 7

Clocks, Timers,
and Sound

Generation

Clocks and Timers 142

The CPU Clock 142

System Timers 144

Using the System Timer Tick 145

The Physics of Sound 146

How the Computer Produces Sound 148

Timer-Chip Sound Control 148

Direct Speaker Control 151

Speaker Volume and Sound Quality 152

The Real-Time Clock 153

Using the Date and Time 153

Setting the Alarm 153

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Clocks and timers are the heartbeat of a computer. The computer's essential
functions of computation and data transfer take place in step with the pulses
generated by electronic clocks. PCs and PS/2s play host to several clocks and

timers that you should know about:

• The system timer generates "clock-ticks" and other timing pulses

at precisely controlled intervals.

• The sound generator produces tones through a speaker with a wide
range of frequencies and durations.

• The real-time clock!calendar keeps track of the date and time and

can also serve as an "alarm clock." (This is supported only in the
PC/AT and PS/2s.)

To understand how to use the system timer, the sound generator, and

the real-time clock, you need to know about the basic clock and timing
mechanisms in PCs and PS/2s. That is what we'll outline in this chapter.

Clocks and Timers

PCs and PS/2S have several clocks and timers that run at different rates and

perform different functions. Some of them are intrinsic to the circuit design
of these computers; their operation is independent of software control.
Others are designed to support timing functions in software; the operation
of these timers can be controlled by software through ROM BIOS services or

by direct hardware programming.

The CPU Clock

Probably the most basic of the timed events in a PC or PS/2 is the step-by-
step operation of the computer's CPU, whose speed is determined by the fre
quency of a special oscillator circuit that generates high-frequency pulses at
regular intervals. This frequency is the CPU's clock speedy and it determines
how quickly the CPU can carry out its functions.

The CPU oscillator keeps time for the CPU in much the same way a

metronome keeps time for a musician. At each tick of the CPU clock (that is,
at each pulse in the CPU oscillator's signal), the CPU carries out part of one
machine instruction. All instructions require two or more clock cycles to
complete. For example, the register INC instruction requires two clock
cycles to execute; more complicated instructions like CALL and MUL take a
longer amount of time.

142

Chapter 7: Clocks, Timers, and Sound Generation

In IBM PCs and PC/XTs, the CPU's clock speed is 4,772,727 cycles per
second, or about 4.77 megahertz. (A megahertz, or MHz, is one million
cycles per second.) One CPU clock cycle thus lasts about 1/4,772,727 of a sec
ond, or about 210 nanoseconds (billionths of a second). With this clock fre
quency, a 2-cycle INC instruction executes in roughly 420 nanoseconds (0.42
microseconds or millionths of a second).

The odd clock speed of 4.77 MHz was actually a convenient frequency
for the designers of the original PC to use. In fact, the CPU clock frequency
is derived from a basic oscillator frequency of 14.31818 MHz, which is com
monly used in television circuitry. Dividing the basic frequency by 3 gives
the CPU clock frequency. Dividing by 4 gives a clock rate of 3.57955 MHz,
which is the frequency of the color burst signal used in color televisions and
in the PC's Color Graphics Adapter. Dividing the basic frequency by 12
gives 1.19318 MHz, which is the clock frequency used by the PC's system
timers.

In later, faster members of the PC and PS/2 family, the CPU clock
speed is higher, so the overall computational speed of these computers is
greater. The 80286 and 80386 processors also execute many machine instruc
tions in fewer clock cycles than the 8088 used in the PC and PC/XT. For ex
ample, the register PUSH instruction in the 8088 executes in 15 clock cycles;
in the 80286 the same instruction takes 3 cycles; and in the 80386 only 2
cycles. The combination of a higher CPU clock rate and faster machine in
structions means that the 80286- and 80386-based members of the PC family
execute programs significantly faster than do the 8088- and 8086-based ma

chines. (See Figure 7-1.)

Model CPU

CPU Clock

Frequency

Approximate Speed
Relative

to 4.77 MHz IBM PC

PC 8088 4.77 MHz 1.0

PC/XT 8088 4.77 MHz 1.0

PC/AT 80286 6 MHz 3.4

8 MHz 4.8

PS/2 models 25 and 30 8086 8 MHz 2.5

PS/2 models 50 and 60 80286 10 MHz 6.1

PS/2 Model 80 80386 16 MHz 12.5

20 MHz 15.5

Figure 7-1. CPU clock frequencies and relative computation speeds for PCs and PS! 2s.

143

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

System Timers
Apart from the operation of the CPU, other basic hardware and software
functions occur at regular intervals based on a preset clock frequency. For
example, the dynamic RAM chips that constitute the computer's main
memory must be accessed at regular intervals to refresh the information
represented in them. Also, ROM BIOS and operating system functions such
as keeping track of the time of day require the computer to generate a
"clock-tick" signal at a predetermined rate. All PCs and PS/2s have cir
cuitry that generates the necessary timing signals.

In the PC and PC/XT, an Intel 8253-5 programmable timer/counter chip

produces the RAM refresh and timer-tick signals. In the PC/AT, an Intel
8254-2 is used in the same way. The PS/2 models 25 and 30 use an 8253-5 for
the timer tick, but RAM refresh timing is a function of a custom integrated
circuit. In the PS/2 models 50, 60, and 80, all timing functions are imple

mented in custom silicon. Despite these hardware variations, the timer pro
gramming interface is the same in all PCs and PS/2s.

In the PC/XT/AT family, the timer chip has three output channels, each

with a particular dedicated function:

• Channel 0 is the system clock-tick timer. When the computer is
cold booted, the ROM BIOS programs the timer to oscillate with a
frequency of about 18.2 ticks per second. This signal is tied to the
computer's interrupt controller in such a way that interrupt 08H is
generated each time the clock ticks.

• Channel 1 is always dedicated to producing the RAM refresh tim
ing signal; it's not intended for use in software applications.

• Channel 2 is used to control the computer's speaker: The frequency
of the timer's channel 2 signal determines the frequency of the
sound emitted by the loudspeaker. (We'll come back to this later.)

PS/2 models 50, 60, and 80 also have a timer channel 3. The signal pro

duced on channel 3 is tied to the computer's nonmaskable interrupt (inter
rupt 02H), and can be used by an operating system as a "watchdog" to
ensure that some other critical function, such as servicing a clock-tick inter

rupt, does not crash the computer by taking too long to execute.

144

Chapter 7: Clocks, Timers, and Sound Generation

Using the System Timer Tick
In all PCs and PS/2s, the input oscillator to the system timer circuit has a fre
quency of 1.19318 MHz. On each cycle, the timer chip decrements the values
in a set of internal 16-bit counters, one for each of the timer's output chan
nels. When the value in a counter reaches 0, the chip generates a single out
put pulse on the corresponding channel, resets the count, and starts
counting down again.

When the ROM BIOS initializes the system timer, it stores a countdown
value of 0 in the count register for channel 0. This means that the timer chip
decrements the counter 2^^ times between output pulses on channel 0, so
output pulses occur 1,193,180/65,536, or about 18.2 times per second. The out
put from timer channel 0 is used as the signal on interrupt request level 0
(IRQO), so interrupt 08H occurs whenever channel 0 of the system timer
counts down to 0—that is, 18.2 times per second.

The ROM BIOS contains an interrupt handler for interrupt 08H that in
crements a running count of clock ticks at 0040:006CH in the BIOS data area.
This same interrupt handler also decrements the byte at 0040:0040H; if the
value in the byte reaches 0, the interrupt handler issues a command to the
diskette drive controller to turn off the diskette drive motor if it's on.

The ROM BIOS interrupt 08H handler also issues software interrupt
ICH, which is intended for use in programs that want to be notified when a

system timer tick occurs. A program can detect when each timer tick occurs
simply by pointing the interrupt ICH vector at 0000:0070H to its own inter
rupt handler. If you use an interrupt ICH handler in a program, however, be
aware that the ROM BIOS interrupt 08H handler does not allow subsequent
clock-tick interrupts on IRQO to occur until your interrupt iCH handler
returns. If you install an interrupt ICH handler, be certain that it doesn't
keep IRQO disabled for too long or the system may crash.

The system timer tick and its interrupt are useful in programs that
must perform a simple task at a regular interval regardless of what else is
going on in the computer. The timer-tick interrupt has the highest priority
of any of the hardware interrupts (except the nonmaskable interrupt), so the
code in the corresponding interrupt 08H and ICH handlers takes precedence
over all other system software.

For this reason, the timer tick is used primarily in operating system
software and in memory-resident "pop-up" programs like SideKick or the
Norton Guides. Such programs have their own timer-tick interrupt handlers
that check whether it is time to pop up on the screen. These programs gener
ally rely on the system timer tick to occur at the default frequency of 18.2
ticks per second.

145

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Because timer-tick function is so essential to the proper operation of
the computer, you should change the output frequency of system timer
channel 0 only if you are careful to preserve the functionality of the ROM
BIOS interrupt 08H handler. For example, BASIC uses the timer tick to meas
ure the duration of tones created with the PLAY or SOUND command. How

ever, because the standard rate of 18.2 ticks per second is not fast enough to

provide the precision that some kinds of music demand, BASIC reprograms
the timer to tick four times faster, which causes interrupt 08H to occur 72.8

times per second instead of 18.2 times per second. When BASIC counts
against the quadruple rate, it is able to more accurately reproduce the proper
tempo of a piece of music.

BASIC can do this because it has a special interrupt 08H handler that
calls the default interrupt 08H handler on every fourth timer tick. This en
sures that the usual interrupt 08H functions still occur 18.2 times per second.
If you reprogram system timer channel 0 to a nonstandard rate, your pro
gram should use the same technique of preserving interrupt 08H
functionality.

Programming system timer channel 2, the sound frequency generator,
is not as demanding, because no ROM BIOS or operating system functions
rely on it. Before we cover the programming details, however, we'll
describe some of the basic mechanics of creating sounds with a computer.

The Physics of Sound
Sounds are simply regular pulses or vibrations in air pressure. Sound is pro
duced when air particles are set into motion by a vibrating source. When
the vibrating source pushes out, it compresses the air particles around it. As
it pulls in, the pressure release pulls the particles apart. A vibration com
posed of both the pressing and the pulling actions causes air particles to
bump into each other. This motion begins a chain reaction that carries the
vibration through the air away from the original source. Such a motion is
called a sound wave.

The speaker in the IBM PCs and PS/2s is made to vibrate by the electri
cal impulses sent to it by the computer. Because computers normally deal
with binary numbers, the voltages they produce are either high or low.
Every transition from one voltage state to another either pushes the speaker
cone out or relaxes it. A sound is produced when the voltage to the speaker
goes from low to high to low again, causing the speaker to move out and
then in. This single vibration, consisting of a pulse out and a pulse in, is
called a cycle. Through the speaker, a single cycle of sound is heard as a
click. A continuous sound is produced when a continuous stream of pulses

146

Chapter 7: Clocks, Timers, and Sound Generation

is sent to the speaker. As the pulse rate increases, so does the pitch of the
tone. For example, if you pulse the speaker in and out 261.63 times a second

(that is, at a rate of 261.63 hertz, or cycles per second), you hear the musical
note known as middle C. Figure 7-2 lists the frequencies required to generate
other musical notes.

Note Frequency Note Frequency Note Frequency Note Frequency

Co 16.35 C2 65.41 C4 261.63 Ce 1046.50

C#o 17.32 C#2 69.30 C#4 271 AS C#6 1108.73

Do 18.35 D2 73.42 D4 293.66 D6 1174.66

D#o 19.45 D#2 77.78 D#4 311.13 D#6 1244.51

Eo 20.60 E2 82.41 E4 329.63 Ee 1328.51

Fo 21.83 F2 87.31 F4 349.23 F6 1396.91

F#o 23.12 F#2 92.50 F#4 369.99 F#6 1479.98

Co 24.50 C2 98.00 G4 392.00 C6 1567.98

C#o 25.96 C#2 103.83 C#4 415.30 C#6 1661.22

^0 27.50 A2 110.00 A4 440.00 Ae 1760.00

A#o 29.14 A#2 116.54 A#4 466.16 A#6 1864.66

Bo 30.87 B2 123.47 B4 493.88 Be 1975.53

c, 32.70 C3 130.81 C5 523.25 C7 2093.00

C#i 34.65 C#3 138.59 C#5 554.37 C#7 2217.46

Di 36.71 D3 146.83 Ds 587.33 D7 2349.32

D#, 38.89 D#3 155.56 D#5 622.25 D#7 2489.02

E, 41.20 E3 164.81 E5 659.26 E7 2637.02

F, 43.65 F3 174.61 F5 698.46 F7 2793.83

F#i 46.25 F#3 185.00 F#5 739.99 F#7 2959.96

Ci 49.00 C3 196.00 C5 783.99 C7 3135.96

C#i 51.91 C#3 207.65 C#5 830.61 C#7 3322.44

Ai 55.00 A3 220.00 A5 880.00 A7 3520.00

A#, 58.27 A#3 233.08 A#5 932.33 A#7 3729.31

B, 61.74 B3 246.94 B5 987.77 B7 3951.07

Cg 4186.01

Note: Equal Tempered Chromatic Scale; A4 = 440
American Standard pitch—adopted by the American Standards Association in

Figure 7-2. Eight octaves of musical note frequencies.

1936

147

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The average person can hear sounds ranging from roughly 20 to 20,000
hertz. The IBM PC can generate sounds through its speaker at frequencies
that could theoretically range from about 18 to more than a million hertz,
far beyond the range of human hearing. To give this frequency range some

perspective, compare it to an average human voice, which has a range of
only 125 to 1000 hertz.

The speaker that comes with the standard IBM personal computers has
no volume control and is not really intended for accurate sound reproduc
tion. As a result, different frequencies will produce different effects; some

may sound louder than others and some may have a more accurate pitch.
This variation is a by-product of the speaker design and is not something
you can control.

How the Computer Produces Sound
You can generate sounds through the speaker in two ways, using one or both
of two different sound sources. One method is to write a program that turns

the speaker on and off by manipulating two speaker bits in the 1/0 port that
provides access to the speaker-control circuitry. When you use this method,
your program controls the timing of the pulse and the resulting sound fre
quency. The other method is to use channel 2 of the system timer chip to
pulse the speaker at a precise frequency. Using the timer chip is a more
popular method for two reasons: Because speaker pulses are controlled by
the timer chip instead of a program, the CPU can devote its time to the other
demands of the computer system; and the timer chip is not dependent on the
working speed of the CPU, which varies according to which PC or PS/2
model you use. The program method and timer method can be used together
or separately to create many simple and complex sounds.

Timer-Chip Sound Control
The programmable timer chip is the heart of the standard PC models'
sound-making abilities. As we have seen, channel 2 of the timer chip is
dedicated to sound generation. To create sounds, you must program channel
2 properly and then use the pulses from channel 2 to drive the speaker.

The timer can be programmed to produce pulses at whatever fre
quency you want, but because it does not keep track of how long the sound
continues, the sound will continue forever unless it is turned off. Therefore,

your programs must choose when to end a sound through some sort of
timing instruction.

148

Chapter 7: Clocks, Timers, and Sound Generation

Programming the timer chip
To program timer channel 2, load the timer chip with an appropriate
countdown value for the channel 2 counter. (The timer chip holds this value
in an internal register so that it can reset the counter each time it reaches
zero.) The countdown value takes effect immediately after you load it into

the timer chip. The timer chip decrements the counter with each cycle of its
1.19318 MHz clock until the counter reaches zero, and then it sends an output

pulse on channel 2 to the sound generator circuitry and starts counting
down again.

In effect, the timer "divides" the countdown value into the clock fre

quency to produce an output frequency. The result is that the timer sends out
a series of pulses that produce a sound of a certain frequency when you turn
on the speaker.

The controlling count and the resulting frequency have a reciprocal
relationship, as shown by these formulas:

Count =1,193,180-5- Frequency

Frequency=1,193,180Count

You can see that a low-frequency (low-pitched) sound is produced by a high
count and that a high-frequency (high-pitched) sound is produced by a low
count. A count of 100 would produce a high pitch of roughly 11,931 cycles
per second, and a count of 10,000 would produce a low pitch of about 119
cycles per second.

You can produce just about any frequency, within the limitations of
16-bit arithmetic. The lowest frequency is 18.2 hertz with a divisor of 65,535
(FFFFH), and the highest is 1.193 megahertz with a divisor of 1. BASIC holds
this to a practical range of 37 through 32,767 hertz. The following program
demonstrates that the actual frequency range of the internal speaker is even

less than BASIC provides.
Once you calculate the count that you need for the frequency you

want, you send it to the timer channel 2 registers. This is done with three
port outputs. The first port output notifies the timer that the count is coming
by sending the value B6H (decimal 182) to port 43H (decimal 67). The next
two outputs send the low- and high-order bytes of the count, a 16-bit
unsigned word, to port 42H (decimal 66) — the low-order byte followed by
the high-order byte. The BASIC program on the following page illustrates
the process.

149

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

10 COUNT = 1193280! / 3000

20 LO.COUNT =.COUNT MOD 256

30 HI.COUNT = COUNT / 256

40 OUT &H43, &HB6

50 OUT &H42, LO.COUNT

60 OUT &H42. HI.COUNT

3000 is the desired frequency

calculate low-order byte value

calculate high-order byte value

get timer ready

load low-order byte

load high-order byte

Activating the speaker
After you have programmed the timer, you still need to activate the speaker
circuitry in order to use the signal that the timer is generating. As with most
other parts of the PC and PS/2, the speaker is manipulated by sending
certain values to a specific port, a process illustrated in Figure 7-3. The
speaker is controlled by changing the values of bits 0 and 1 at I/O port 61H
(decimal 97). Only 2 of the port's 8 bits are used by the speaker: the low-
order bits numbered 0 and 1. The other 6 bits are used for other purposes, so
it is important that you don't disturb them while working with the speaker.

Get

timer

ready
Port

43H

Send pulses
to speaker ̂

CPU

Load

frequency

count

W

Port

42H

8253-5

Programmable
timer

►

Amplifier

Turn on

speaker
Port

61H

Speaker

Figure 7-3. How soundfrequencies are generated through the system timer and speaker.

The lowest bit, bit 0, controls transmission of the timer chip's output
signal to the speaker. The second bit, bit 1, controls the pulsing of the
speaker. Both bits must be set to make the speaker respond to the timer
chip's signal. You can turn them on without disturbing the nonspeaker bits
with an operation like this:

70 OLD.PORT = INP (&H61)

80 NEW.PORT = (OLD.PORT OR &H03)

90 OUT &H61. NEW.PORT

' read the value at port 61H
' set bits 0 and 1

' turn speaker on

150

Chapter 7: Clocks, Timers, and Sound Generation

Direct Speaker Control
The timer controls the speaker by sending periodic signals that pulse the
speaker in and out. You can do the same thing with a program that sends in
or out signals directly to the speaker. Do this by setting bit 0 of port 61H
(decimal 97) to 0 to turn the speaker off and then alternately setting bit 1 on
and off to pulse the speaker. When you use this method, the speed of the
program determines the frequency of the sound; the faster the program exe
cutes, the higher the pitch. The following BASIC program is an example of
this method:

10 X = INP (&H61) AND &HFC ' read port value, turn off bits 1 and 0

20 OUT &H61. X ' pull speaker in

30 OUT &H61. X OR 2 ' push speaker out

40 GOTO 20

The actions in lines 20 and 30 pulse the speaker in and out. Each one is a
half-cycle, and the two together produce one complete sound cycle.

This example runs as fast as BASIC can process it, producing as high a
note as possible. If you needed more range in your application, you could
use a faster language and insert deliberate delays equal to half the frequency
cycle time between each complete cycle (half the cycle time, because each
ON or OFF operation is a half-cycle). No matter what language you use, you
must include a duration count to end the sound. To produce different sounds

at a particular frequency, such as clicking or buzzing sounds, just vary the
delays between pulses.

Despite all these wonderful possibilities, generating sounds through
the speaker by direct program action is not a good way to make sounds. It
has three big disadvantages compared to the use of the timer:

• A program requires the constant attention of the CPU, so the com
puter has a hard time getting any other work done.

• The frequency is at the mercy of the speed of the computer; that is,
the same program would make a lower or higher sound on a slower
or faster model.

• The clock-tick interrupts interfere with the smoothness of the
sound, making a warble. The only way to avoid this is to suspend
the clock tick by disabling the interrupts—and that disrupts the
computer's sense of time.

151

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

As far as we know, there is only one advantage to making sounds
using the direct method: With the proper control over the program delays,
the direct method lets you make a low-fidelity polyphonic sound. Be
forewarned, though, that this requires some very clever and tedious
programming and, all in all, may not be worth the trouble.

Speaker Volume and Sound Quality
The computer's internal speaker has no volume control of any kind and,
like all speakers, varies in how well it responds to different frequencies;
some frequencies may sound louder than others. In the case of a crude
speaker like that found in most PCs and PS/2s, the loudness of the sound

varies widely with the frequency. You can use the following program to test
this—it may help you choose the best sound pitch for your purpose:

10 PLAY "MF" • plays each sound separately

20 FREQUENCY = 37

30 WHILE FREQUENCY < 32000 ' use all frequencies to

32000 Hz

40 PRINT USING FREQUENCY ' display frequency

50 SOUND FREQUENCY, 5 * produce sound with

duration of 5

60 FREQUENCY = FREQUENCY * 1.1 ' increment frequency by 1/10

70 WEND

Be aware that the speakers in the various PC and PS/2 models may not
sound alike, partly because the materials of each system housing resonate
differently as speaker enclosures. Try the following samples on two
different models and be prepared for these variations in sound:

100 'sound samples

110 •

120 'warble (two rapidly alternating tones) ,

130 FOR N% = 0 TO 5

140 SOUND 440, .7

150 SOUND 466.16, .5

160 NEXT

170 WHILE(INKEY$="") : WEND ' wait for a keystroke

180 '

190 'two tones played quickly

200 SOUND 900, .1

210 SOUND 760, 1

220 WHILE(INKEY$="") : WEND

152

Chapter 7: Clocks, Timers, and Sound Generation

230 •

240 'random noise

250 X = INP(&H61) AND &HFC

260 1=20 ' changing I changes the noise

270 FOR N% = 0 TO 500

280 IF (RND * 100 < I) THEN OUT &H61.X OR 2 : OUT &H61,X

290 NEXT

The Real-Time Clock

The PC/AT and the PS/2s all have a real-time clock that keeps track of
the current date and time. In the PC/AT, the real-time clock is part of the
Motorola MC146818 chip that supports the PC/AT's nonvolatile CMOS RAM.
In the PS/2S, the real-time clock is in custom silicon. In all these machines,
the real-time clock runs off a battery so that the time and date are main
tained even while the computer is turned off.

Using the Date and Time
When you boot a PC/AT or PS/2, the ROM BIOS start-up routines read the
time of day from the real-time clock and convert it into the corresponding
number of timer ticks. This value is used to initialize the 4-byte count

stored at 0040:006CH in the ROM BIOS data area. All versions of DOS use this

count value to determine the current time of day. Starting in version 3.0,
DOS also obtains the current date from the real-time clock and initializes its

own internal record of the date at boot-up time.
To work with the current date and time in a program, we recommend

that you use the DOS date and time services (Chapter 16) to get and set the
current values. You could also use ROM BIOS services to access the real

time clock (Chapter 10). However, if you call the ROM BIOS to change the
date or time, DOS may not be aware of the change and may assume an
incorrect time or date.

Setting the Alarm
The real-time clock's alarm feature generates an interrupt at a specific
time. To take advantage of this feature, you must create an interrupt handler
that performs an action when the alarm interrupt occurs. You can even
make this action independent of other programs by leaving the interrupt
handler resident in memory with a DOS Terminate-and-Stay-Resident
service. (See Chapters 16 and 17.)

The ROM BIOS provides a set of services through interrupt lAH that
give you access to the real-time clock's alarm feature. See Chapter 12 for
more details.

153

Chapter 8

ROM BIOS Basics

The ROM BIOS Philosophy 157

The ROM BIOS Service Interrupts 157

ROM BIOS Service Operating Characteristics 158

Creating an Assembly-Language Interface 160

The Basic Form of an Interface Routine 161

Advanced BIOS Interface 168

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

One secret of successful programming for the PC family lies in the effective
use of the software that is built right into the machine: the ROM BIOS ser
vices. Conceptually, the ROM BIOS services are sandwiched between the
hardware and the high-level languages (including the operating system).
They work directly with the computer's hardware and peripheral devices,
performing some of the system's most fundamental tasks, such as reading
and writing individual bytes of data to the display screen or disk. DOS ser
vices and programming-language services are often built from these basic
functions and enhanced to make a particular process more efficient. You
can enhance your programs in the same way by plugging them directly into
the ROM BIOS, thereby gaining access to an extremely powerful set of tools
and using your computers in the way that IBM intended them to be used.

That last point is worth emphasizing. IBM has gone to considerable
lengths to create a clean and well-defined method for directing the opera
tion of the computer through the ROM BIOS services. As each new PC model
is designed, IBM (and any other computer maker who is faithfully extending
the PC family) makes sure its ROM BIOS services are thoroughly compatible
with those of the other members of the family. As long as you control your
computers through the ROM BIOS, whether directly or indirectly, you are
safe from any compatibility problems. If you bypass the ROM BIOS and pro
gram directly to the hardware, you are not only asking for trouble, but you
are also severely limiting the range and viability of your programs.

That's not to say that you should always use ROM BIOS services when
they're available. The input/output functions provided in DOS and in high-
level programming languages often provide the same services as the ROM
BIOS, but in a form that is easier to use within your programs. However,
when a program needs more direct access to the computer's input/output
devices than DOS or your programming language can provide, the ROM
BIOS services are usually the answer.

The next five chapters discuss the ROM BIOS service routines. For
tunately, the routines fall naturally into groups derived from the hardware
devices they support, so the video services, disk services, and keyboard ser
vices can all be reviewed separately. But before you take a closer look at the
individual services, you need to find out how to incorporate them into your
programs. This chapter sets the stage by explaining what goes into writing
an interface routine, the bridge between programming languages and the
ROM BIOS services. First, a word on how the ROM BIOS operates.

156

Chapter 8: ROM BIOS Basics

The ROM BIOS Philosophy
All ROM BIOS services are invoked by interrupts. Each interrupt instruction
selects a particular entry in the interrupt vector table in low memory. The
addresses of all ROM BIOS service routines are stored in this table. This

design makes it possible for any program to request a service without know
ing the specific memory location of the ROM BIOS service routine. It also
allows the services to be moved around, expanded, or adapted without
affecting the programs that use the services. Although IBM has tried to
maintain the absolute memory location of some parts of the ROM BIOS, it
would be foolish to use these addresses because they may change in the
future. The standard, preferred, and most reliable way to invoke a ROM
BIOS service is to use its interrupt rather than its absolute address.

The ROM BIOS services could be supervised by one master interrupt,
but instead they are divided into subject categories, each with its own con
trolling interrupt. This design lets each interrupt handler be easily replaced.
For example, if a hardware manufacturer created a radically different video
display that operated under a completely new ROM BIOS program, the manu
facturer could provide the new ROM BIOS program along with the hardware.
The new ROM BIOS program might be stored in RAM, and it would replace
the one part of IBM's ROM BIOS that was used with the old hardware. By
making the ROM BIOS modular, IBM has made it easier to improve and ex
tend the capabilities of its computers.

The ROM BIOS Service Interrupts
The twelve ROM BIOS interrupts fall into five groups (Figure 8-1):

• Six interrupts serve specific peripheral devices.

• Two interrupts report on the computer's equipment.

• One interrupt works with the time/date clock.

• One interrupt performs the print-screen operation.

• Two interrupts place the computer into another state altogether,
activating ROM BASIC and the system start-up routine.

As you'll see, most of the interrupts are tied to a group of subservices
that actually do the work. For example, the video service interrupt lOH
(decimal 16) has 25 subservices that do everything from setting the video
mode to changing the size of the cursor. You call a subservice by invoking
its governing interrupt and specifying the subservice number in register
AH. This process is explained in the example at the end of this chapter.

157

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Interrupt
Hex Dec Use

Peripheral Devices Services

lOH 16 Video-display services (see Chapter 9)
13H 19 Diskette services (see Chapter 10)

14H 20 Communications services (see Chapter 12)

15H 21 System services (see Chapter 12)

16H 22 Standard keyboard services (see Chapter 11)

17H 23 Printer services (see Chapter 12)

Equipment Status Services

IIH 17 Equipment-list service (see Chapter 12)

12H 18 Memory-size service (see Chapter 12)

TimelDate Service

lAH 26 Time and date services (see Chapter 12)

Print-Screen Service

5H 5 Print-screen service (see Chapter 12)

Special Services

18H 24 Activate ROM BASIC (see Chapter 12)

19H 25 Activate bootstrap start-up routine (see Chapter 12)

Figure 8-1. The 12 ROM BIOS services.

ROM BIOS Service Operating Characteristics
The ROM BIOS services use some common calling conventions that provide
consistency in the use of registers, flags, the stack, and memory. We'll
outline the characteristics of these operating conventions, beginning with
the segment registers.

The code segment register (CS) is automatically reserved, loaded, and
restored as part of the interrupt process. Consequently, you don't have to
worry about your program's CS. The DS and ES registers are preserved by
the ROM BIOS service routines, except in the few cases where they are ex
plicitly used. The stack segment register (SS) is left unchanged, and the ROM
BIOS services depend on you to provide a working stack. (Everything
depends on a working stack!)

158

Chapter 8: ROM BIOS Basics

The stack requirements of the ROM BIOS services are not spelled out
and can vary considerably, particularly because some services invoke other
services. Generally, however, most programs ought to be working with a
much larger stack than the ROM BIOS services need.

The ROM BIOS varies in its usage of the other 8086 registers. The
instruction pointer (IP) is preserved by the same mechanism that preserves
the code segment. In effect, the stack pointer (SP) is preserved because all
the ROM BIOS services leave the stack clean, popping off anything that was
pushed on during the service-routine execution.

As usual, the general-purpose registers, AX through DX, are con
sidered fair game. The standard rule is not to expect any contents of these
registers to be maintained when you pass control to another routine, and
that applies to the ROM BIOS services as well. If you closely inspect the cod
ing of the services in the IBM technical reference manuals, you will find
that one or more registers are left undisturbed in one service or another, but
you would be foolish to try to take advantage of this. As a general rule,
when a simple result is returned from a subroutine, it is left in the AX regis
ter; this applies to both the ROM BIOS and to all programming languages.
We'll see how often this really happens when we cover the ROM BIOS
services in detail.

The index registers (SI and DI) can be changed, exactly like the AX
through DX registers. The stackframe register (BP) can also be changed by a
few ROM BIOS service routines.

The various flags in the flag register are routinely changed as a by
product of the instruction steps in the ROM BIOS routines. You should not
expect any of them to be preserved. In a few instances, the carry flag (CF)
or the zero flag (ZF) is used to signal the overall success or failure of a
requested operation.

These details are important but rather tedious, and there is little
reason for you to pay much attention to them. If your programs follow the
general interface rules given in the next section, and if they follow the spe
cific requirements of your programming language (covered in Chapters 19
and 20), you may not need to be concerned with them at all.

□ NOTE: If you set out to use the ROM BIOS services in your pro
grams, you'll naturally be concerned about the possible conflicts
between the services and the operating conventions that your lan
guage follows. Put your mind at ease. You will find that you do not
have to take any extraordinary precautions to protect your pro
gramming language from the ROM BIOS, or vice versa.

159

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Creating an Assembly-Language Interface
In order to make direct use of the ROM BIOS services from your programs,
you generally need to create an assembly-language interface routine to link
the programming language to the ROM BIOS. When we say "interface
routine," we are referring to the conventional program-development sub
routines— subroutines that are assembled into object modules (.OBJ files)
and then linked into working programs (.EXE or .COM files in DOS). For
more on this subject, see Chapter 19.

Working with assembly language can seem a fearsome task if you are
not already comfortable with it. While there are plenty of good reasons to
be intimidated by assembly language—after all, it is the most difficult and
demanding kind of programming—it's really not that difficult to create an
assembly-language interface routine.

ROM BIOS Interrupt Conflicts
In the hardware specification for the 8086 family of microprpeessprs.
Inter reserved interrupt numbers OGH through IFH for use by the
microprocessor itself. (See Figure 8-2.) Unfortunately, IBM had
appropriated several of these reserved interrupt niunbers for its own
use in the design of the IBM PC. This wasn't a problem With the PC
and PC/XT, which used the Intel 8088, because the 8088 predefined
only interrupts OOH through 04H.

When the PC/AT appeared, however, IBM's use of Intel's
reserved interrupt numbers led to a conflict; The reason: The AT's<
80286 chip predefines some of the same interrupt mimbers that IBM's,
ROM BIOS uses. The conflict appears when you use the 80286
BOUND instruction to validate an array index, because the 80286
signals an out-of-bounds array index by executing interrupt 05H—
which IBM had previously assigned to the ROM BIOS print-screen
function. If you aren't careful, a program that executes the BOUND
instruction can unexpectedly print the screen.

To resolve the conflict, you must install an interrupt 05H
handler that inspects the code that caused the interriipt: This handler,
call determine whether the interrupt was executed in software or by
the CPU. You can also avoid this problem by using a protected-mode
operating system like OS/2, which bypasses the ROM BIOS. If you
use DOS, however, be aware that a programming error can
occasionally lead to unexpected execution of a ROM BIOS routine.

SI

160

Chapter 8: ROM BIOS Basics

To create your own interfaces, you will need to have an assembler that is
compatible with the DOS standards for object files. All the examples we
give here are for the Microsoft Macro Assembler.

□ NOTE: Interpreted BASIC can work with machine-language
subroutines put directly into memory. Preparing the sort of
assembler subroutine that will work with BASIC can be done as
easily with DEBUG's A (assemble) command as it can with an
ordinary assembler. See Chapter 20 for more on this subject.

The Basic Form of an Interface Routine
An interface routine's form varies with its intended use. An assembly-
language interface is a handshaker between your programming language

Interrupt CPU Function

OOH 8088,8086,80286,80386 Divide error

OiH 8088,8086,80286,80386 ' Single-step
02H 8088,8086,80286,80386 NMI (nonmaskable interrupt)

03H 8088,8086,80286,80386 Breakpoint (INT 3)
04H ' 8088,8086,80286,80386 Overflow (INTO)

05H ' 80286,80386 BOUND out of range

06H 80286,80386 Invalid opcode

07H 80286,80386 Coprocessor not available
08H 80286,80386 Double exception (double fault)
09H 80286,80386 Coprocessor segment overrun

OAH 80386 Invalid task-state segment

OBH 80386 Segment not present
OCH 80386 Stack fault

ODH 80286,80386 General protection exception
OEH 80386 Page fault

lOH 80286,80386 Coprocessor error

Figure 8-2. Predefined hardware interrupts in Intel microprocessors.

161

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

and a ROM BIOS service, so it has to be tailored to meet the needs of both
ends. It matters which programming language is being used; it matters
which ROM BIOS service is being invoked; and it matters whether any data
is being passed in one direction or the other. However, the general outline
of an assembly-language interface is basically the same, no matter what you
are doing.

One of the best ways to understand how an assembly-language inter
face is coded is to view it as five nested parts, which are outlined here;

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke ROM BIOS service

Level 4: Pass back results to caller

Level 3: Exit code

Level 2: Finish subroutine assembler overhead

Level 1: Finish general assembler overhead

In this outline. Levels 1 and 2 tell the assembler what's going on, but don't
produce any working instructions. Levels 3 through 5 produce the actual
machine-language instructions.

We'll examine each of these levels to show you the rules and explain
what's going on. Don't forget that the specific requirements of an interface
routine change for different circumstances. We'll point out the few design
elements that are universal to all routines.

Here is a simple ROM BIOS interface routine. It's designed to be called
from a C program, but the elements of the interface design are the same
whether you use this routine as is or adapt it to another programming
language.

_TEXT SEGMENT byte public 'CODE'

_GetMemSi ze

ASSUME cs:_TEXT

PUBLIC _GetMemSi ze

PROG near

push bp

mov bp.sp

i nt 12H

(continued)

162

Chapter 8: ROM BIOS Basics

pop bp

ret

_GetMemSize ENDP

_TEXT ENDS

END

In the next few pages we'll examine the construction of this routine.

Level 1: General assembler overhead

Here is an outline of a typical Level-1 section of an interface routine, with
the lines numbered for reference:

1-1 _TEXT SEGMENT byte public 'CODE'

1-2 ASSUME cs:_TEXT

(Levels 2 through 5 appear here)

1-3 _TEXT ENDS

1-4 END

Line 1-1 is a SEGMENT directive that declares the name of a logical

grouping of executable machine instructions and informs the assembler
(and any person who reads the source code) that what follows consists of
executable code. Line 1-2, the ASSUME directive, tells the assembler to

associate the CS register with any address labels in the _TEXT segment.
This makes sense because the CS register is used by the 8086 to address
executable code.

Line 1-3 ends the segment started in line 1-1, and line 1-4 marks the
end of the source code for this routine.

The names _TEXT and CODE conform to the conventions used by

virtually all C language compilers for PCs and PS/2s, as do the BYTE and
PUBLIC attributes. Alternative names and attributes are available to

advanced programmers, but for now we'll stick with the simplest.

Level 2: Subroutine assembler overhead

Next, let's look at an outline of a typical Level 2, the assembler overhead for
a subroutine (called a procedure in assembler parlance). The sample on the
following page shows some typical Level-2 coding.

163

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

2-1 PUBLIC _GetMemSize
2-2 _GetMemSize PROC near

(Levels 3 through 5 appear here)

2-3 _GetMeinSize ENDP

Line 2-1 instructs the assembler to make the name of the procedure,
_GetMemSize, public information, which means that the link program can
then connect it to other routines that refer to it by name.

Lines 2-2 and 2-3 bracket the procedure, named _GetMemSize. PROC
and ENDP are mandatory and surround any procedure, with PROC defining
the beginning of the procedure and ENDP signaling the end of it. Again, the
near attribute on the PROC statement follows the conventions established for
linking assembly-language routines to C programs. In more advanced C
programs and in routines linked with programs written in languages like
FORTRAN and BASIC, you must sometimes use a different attribute, far.
(More about this in Chapter 20.)

Level 3: Entry and exit code
Levels 3, 4, and 5 contain actual executable instructions. In Level 3, the
assembly-language routine handles the housekeeping overhead required if a
subroutine is to work cooperatively with the calling program. The key to
this cooperation is the stack.

When the calling program transfers control to the subroutine, it does
so by means of a CALL instruction. (In this example, the instruction would
be CALL _GetMemSize.) When this instruction executes, the 8086 pushes a
return address—the address of the instruction following the CALL—onto
the stack. Later, the assembly-language routine can return control to the
calling program by executing a RET instruction, which pops the return
address off the stack and transfers control to the instruction at that address.

If any parameters are to be passed to the assembly-language routine,
the calling program pushes them onto the stack before it executes the CALL
instruction. Thus, when the routine gets control, the value on top of the
stack is the return address, and any parameters are found on the stack below
the return address. If you keep in mind that the stack grows from higher to
lower addresses and that each value on the stack is 2 bytes in size, you end
up with the situation depicted in Figure 8-3.

To access the parameters on the stack, most compilers and assembly-
language programmers copy the value in SP into register BP. In this way the

164

Chapter 8: ROM BIOS Basics

values on the stack can be accessed even within a routine that changes SP by
pushing parameters or calling a subroutine. The conventional way of doing
this is shown by the code on the next page.

3-1

3-2

3-3

3-4

push bp ; preserve the current contents of BP

mov bp.sp ; copy SP to BP

(Levels 4 and 5 appear here)

pop bp

ret

After lines 3-1 and 3-2 have executed, the stack is addressable as in

Figure 8-4. (In a moment, we'll show how useful this is.) When it's time to
return control to the calling program, the routine restores the caller's BP
register value (line 3-3) and then executes a RET instruction (line 3-4).

Bottom of stack

Higher addresses
T

Parameter

Parameter

Lower addresses

Return address

<

"SP + 4

-SP + 2

-SP

Figure 8-3. The stack at the time a subroutine is called.

Bottom of stack

T

Parameter

Parameter

Return address

Caller's BP

<

-BP+ 6

-BP+ 4

-BP+ 2

-BP

Figure 8-4. The stack after register BP is initialized.

165

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

If you think about it, you'll realize that things could be more
complicated. For example, a calling program might use either a near or a far
CALL instruction to transfer control to a subroutine. If your program uses
far subroutine calls by convention (instead of the near calls used by default
in C), the PROC directive (Line 2-2) would require the far attribute instead
of near. This would instruct the assembler to generate a far RET instruction
instead of a near RET.

Furthermore, with a far calling convention, the return address on the
stack would be 4 bytes in size instead of 2 bytes, so the first parameter
would be at address [BP + 6] instead of [BP + 4] as shown in Figure 8-4. In
this book, however, we'll stick to the most straightforward case: near PROCs
and 2-byte return addresses.

Level 4: Get parameter data from caller
Level 4 deals with the parameters by passing them from the caller to the
ROM BIOS, and with the results by passing them from the ROM BIOS to
the caller. (Note, however, that the sample program contains no parameters
from the caller.) The caller's parameters are on the stack, either in the form
of data or addresses. (See Chapter 20 for help with this.) The registers,
mostly AX through DX, are used for ROM BIOS input and output. The trick
here—and it can be tricky—is to use the correct stack offsets to find the
parameters. We'll sneak up on this problem in stages.

First, you get to the parameters on the stack by addressing relative to
the address stored in BP in lines 3-1 and 3-2. (Refer to Figure 8-2 to
determine how items on the stack relate to the value in BP.) When more
than one parameter is present on the stack, you must decide which
parameter is which. Most languages push their parameters onto the stack in
the order they are written. This means that the last parameter is the one
closest to the top of the stack, at [BP + 4]. However, C uses the reverse order,
so that the parameter at [BP + 4] is the first one written in the calling
program.

Parameters normally take up 2 or 4 bytes on the stack, although 2
bytes is more common. If any of these parameters were 4 bytes in size, you
would need to adjust the subsequent references accordingly.

If data were placed on the stack, then you could get it immediately by
addressing it like this: [BP + 4]. If an address were placed on the stack, two
steps would be needed: First, you would get the address, and second, you
would use the address to get the data. A Level-4 example showing both data
([BP + 4]) and address ([BP + 6]) retrieval follows on the next page.

166

Chapter 8: ROM BIOS Basics

4-1 mov ax,[bp+4] ; value of parameterl

4-2 mov bx,Cbp+6] ; address of parameter2

4-3 mov dx,[bx] ; value of parameter2

(Level 5 appears here)

4-4 mov bx,[bp+6] ; address of parameter2 (again)

4-5 mov [bx],dx ; store new value at parameter2 address

All of these MOV instructions move data from the second operand to

the first operand. Line 4-1 grabs data right off the stack and slaps it into the
AX register. Lines 4-2 and 4-3 get data by means of an address on the stack:
Line 4-2 gets the address (parking it in BX), and then line 4-3 uses that
address to get to the actual data, which is moved into DX. Lines 4-4 and 4-5
reverse this process: Line 4-4 gets the address again, and then line 4-5
moves the contents of DX into that memory location.

□ NOTE: A crucial bit of assembler notation is demonstrated here:
BX refers to whafs in BX, and [BX] refers to a memory location
whose address is in BX. A reference like [BP + 6] indicates a
memory location 6 bytes past the address stored in register BP.

While sorting out these references may not be a snap, if you think it
through carefully, it works out right.

Level 5: Invoke ROM BIOS service
Level 5 is our final step: It simply invokes the ROM BIOS service.

Once all registers contain appropriate values (usually passed from
the calling program and copied into registers by means of the stack), the
routine can transfer control to the ROM BIOS using an interrupt:

5-1 int 12h

In this example, this single INT instruction does all the work for you. The
ROM BIOS returns the computer's memory size in register AX, where C
expects the routine to leave it when the routine returns control to the calling
program. In other cases, you might need to leave a result elsewhere, as in
Lines 4-4 and 4-5, above.

Most ROM BIOS interrupts, however, provide access to several
different services. In such cases, you must specify a service number in
register AH before you execute the interrupt. For example, to access the
first video service, you would execute the commands on the following page.

167

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

mov ah,0 ; AH=serv1ce number 0

int lOh ; ROM BIOS video services interrupt

This five-step process outlines the basic principles of nearly all
aspects of an assembly-language interface. In the following chapters, you'll
see how this design is used in specific examples.

Advanced BIOS Interface
To conclude this chapter we'd like to mention the alternative BIOS interface
that IBM introduced in the PS/2 models 50, 60, and 80. This Advanced BIOS
(ABIOS) interface addresses some of the major design shortcomings of the
interrupt-based interface described in this chapter.

The traditional, interrupt-based ROM BIOS interface is limited in two
important ways:

• It cannot be used in protected mode in a PS/2 Model 50, 60, or SO.

• It provides poor support for multitasking, so an operating system
that offers multitasking cannot rely on the traditional ROM BIOS
interface.

IBM's solution to these problems is the Advanced BIOS interface in the
PS/2 models 50, 60, and 80. Through the Advanced BIOS interface, BIOS ser
vices are accessed through a set of address tables and common data areas
designed for use in protected mode as well as with a multitasking operating
system. However, the complexity of the Advanced BIOS interface makes it
better suited to supporting an operating system than to supporting applica
tions programs. Unless you're writing a protected-mode, multitasking
operating system, we recommend that you keep using the traditional ROM
BIOS interface that is common to all computers in the PC family.

168

Chapter 9

ROM BIOS

Video Services

Accessing the ROM BIOS Video Services 171

Service OOH (decimal 0): Set Video Mode 172

Service OIH (decimal 1): Set Cursor Size 173

Service 02H (decimal 2): Set Cursor Position 174

Service 03H (decimal 3): Read Cursor Position 175

Service 04H (decimal 4): Read Light-Pen Position 175

Service 05H (decimal 5): Set Active Display Page 176

Service 06H (decimal 6): Scroll Window Up 176

Service 07H (decimal 7): Scroll Window Down 177

Service 08H (decimal 8): Read Character and Attribute 177

Service 09H (decimal 9): Write Character and Attribute 178

Service OAH (decimal 10): Write Character 179

Service OBH (decimal 11): Set 4-Color Palette 180

Service OCH (decimal 12): Write Pixel 181

Service ODH (decimal 13): Read Pixel 181

Service OEH (decimal 14): Write Character in Teletype Mode 182

Service OFH (decimal 15): Get Current Video Mode 182

Service lOH (decimal 16): Color Palette Interface 183

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service IIH (decimal 17): Character Generator Interface 186

Service 12H (decimal 18): ''Alternate Select" 189

Service 13H (decimal 19): Write Character String 191

Service lAH (decimal 26): Read/Write Display Combination Code 191

Service IBH (decimal 27): Return Functionality/State Information 192

Service ICH (decimal 28): Save/Restore Video State 193

Comments and Example 194

170

Chapter 9: ROM BIOS Video Services

In this chapter, we will discuss each of the video, or screen-control, services
provided by the ROM BIOS. We have devoted most of the chapter to detailed
descriptions of each video service. Beginning on page 194, we have in
cluded some programming hints and an assembly-language routine that
makes use of some of the video services. For a more general discussion of
video hardware in the PC family, see Chapter 4. For information on low-
memory locations used by the ROM BIOS for video status information, turn
to page 54.

Accessing the ROM BIOS Video Services
The ROM BIOS video services are all requested by generating interrupt lOH

(decimal 16). There are 25 principal services available under this interrupt.
(See Figure 9-1.) Like all other ROM BIOS services, the video services are
numbered from OOH and are selected by placing the service number in the
AH register. The services usually require you to specify additional parame
ters in register AL, BX, CX, or DX. We'll cover the purpose and placement of
the parameters under each service description.

Service

Hex Dec Description

OOH 0 Set Video Mode.

OIH 1 Set Cursor Size.

02H 2 Set Cursor Position.

03H 3 Read Cursor Position.

04H 4 Read Light-Pen Position.

05H 5 Set Active Display Page.

06H 6 Scroll Window Up.

07H 7 Scroll Window Down.

08H 8 Read Character and Attribute.

09H 9 Write Character and Attribute.

OAK 10 Write Character.

OBH 11 Set 4-Color Palette.

OCH 12 Write Pixel.

ODH 13 Read Pixel.

OEM 14 Write Character in Teletype Mode.

OFH 15 Get Current Video Mode.

lOH 16 Color Palette Interface.

Figure 9-1. The 25 video services. (continued)

171

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 9-1. continued

Service

Hex Dec Description

IIH 17 Character Generator Interface.

12H 18 ''Alternate Select."

13H 19 Write Character String.

14H 20 (PC convertible only)

15H 21 (PC convertible only)

lAH 26 Read/Write Display Combination Code.

IBH 27 Return Functionality/State Information.

ICH 28 Save/Restore Video State.

Service OOH (decimal 0): Set Video Mode
Service OOH (decimal 0) is used to configure your video subsystem into one
of the 20 video modes listed in Figure 9-2. For details of the video modes,
see page 72.

You may recall from our discussion in Chapter 4 that modes OOH
through 06H apply to the standard Color Graphics Adapter; mode 07H
applies to the Monochrome Display Adapter; modes ODH through lOH were
added for the Enhanced Graphics Adapter; and modes IIH through 13H

Mode Type Resolution Colors Video Subsystem

OOH, OIH Text 40x25 16 CGA, EGA, MCGA, VGA

02H, 03H Text 80x25 16 CGA, EGA, MCGA, VGA

04H, 05H Graphics 320 X 200 4 CGA, EGA, MCGA, VGA

06H Graphics 640 X 200 2 CGA, EGA, MCGA, VGA

07H Text 80x25 Mono MDA, EGA, VGA

08H, 09H, OAH (PCjr only)

OBH,OCH (used internally by EGA BIOS)

ODH Graphics 320 X 200 16 EGA,VGA

OEH Graphics 640x200 16 EGA, VGA

OFH Graphics 640 X 350 Mono EGA,VGA

lOH Graphics 640 X 350 16 EGA,VGA

IIH Graphics 640 X 480 2 MCGA,VGA

12H Graphics 640x480 16 VGA

13H Graphics 320 X 200 256 MCGA,VGA

Figure 9-2. Video modes available through ROM BIOS video service OOH.

172

Chapter 9: ROM BIOS Video Services

were introduced with the Multi-Color Graphics Array (PS/2 models 25 and

30) and Video Graphics Array (PS/2 models 50, 60, and 80).
Normally, the ROM BIOS clears the screen memory buffer when the

mode is set, even if it is set to the same mode again and again. In fact, reset

ting the same video mode can be an easy way to clear the screen. In some

versions of DOS, in fact, the DOS command CLS clears the screen this way.

Setting the video mode also sets the color palette to default color values,
however, so don't rely on service OOH to clear the screen if you're working

with colors; use video service 06H instead.

On the EGA, MCGA, and VGA, you can also tell the ROM BIOS not to

clear the screen when it sets up the video mode. Do this by adding BOH
(decimal 128) to the video mode number you specify in AL. For example, to
change to 640 x 200, 2-color mode without clearing the screen, call service
OOH with AL = 86H. Use this feature with caution, though. Displayable video

data is formatted differently in different modes, so a screenful of useful data

in one video mode may become unintelligible when you switch to another

mode without clearing the screen.

See Chapter 4, page 72 for more on video modes. See page 58, memory
location 0040:0049H, for more on how a record of the mode is stored in

memory. See service OFH (decimal 15) to find out how to determine the

current video mode.

Service OIH (decimal 1): Set Cursor Size
Service OIH (decimal 1) controls the form and size of the blinking cursor

that appears in text modes. The default cursor appears as one or two
blinking scan lines at the bottom of a character display position. You can

change the default cursor size by redefining the number of lines that are

displayed.

The Color Graphics Adapter (CGA) can display a cursor that has 8
scan lines, numbered from 0 at the top to 7 at the bottom. The Monochrome

Display Adapter (MDA) and the EGA can display a cursor that has 14 scan
lines, also numbered from the top, from 0 through 13. Both the MCGA and

the VGA have default text characters that are 16 scan lines high, so the maxi

mum size of the text cursor in default PS/2 text modes is 16 scan lines. You

set the cursor size by specifying the starting and ending scan lines. (These

are the same as the start and stop parameters of BASIC'S LOCATE state

ment.) The start line number is loaded into the CH register and the stop line
number into the CL register. Default cursor settings are CH = 6, CL = 7 for

the CGA, CH = 11, CL = 12 for the MDA and EGA, and CH = 13, CH = 14 for

the MCGA and VGA.

173

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

You will notice that the valid scan line numbers occupy only four of
the bits (bits 0 through 3) placed in these registers. If bit 5 of CH is set on by
specifying a value of 20H (decimal 32), the cursor will disappear. This is
one of two techniques that you can use to remove the cursor in the text
modes. The other technique is to actually move it off the screen, say to row
26, column 1. When a graphics mode is set, bit 5 is automatically set to keep
the cursor from being displayed. Because there is no true cursor in the

graphics modes, you must simulate one with the solid-block character, DFH
(decimal 223), or with a change of background attributes.

Service 02H (decimal 2): Set Cursor Position
Service 02H (decimal 2) sets the position of the cursor using row and col
umn coordinates. In text modes, multiple display pages can exist, each one

having an independently recorded cursor position. Even though the
graphics modes have no visible cursor, they keep track of the logical cursor
position in the same way as the text modes. This logical cursor position is

used to control character I/O.

The cursor position is specified by placing a row number in register
DH, a column number in DL, and a display page number in BH. The number

ing for the rows and columns begins with coordinates 0,0 in the top left cor
ner. The graphics modes also use the character row and column coordinates

to identify the cursor location, rather than pixel coordinates. The display

page number must be set to 0 in CGA-compatible graphics modes, although
the EGA and VGA both support multiple display pages in 16-color graphics
modes as well as in text modes.

See Figure 9-3 for a summary of register settings. See page 87 for
more on display pages. See service 03H for the reverse operation: Read
cursor position.

Service Number Parameters

AH = 02H DH = row number

DL = column number

BH = page number

Figure 9-3. Registers values for setting the cursor position using service 02H.

174

Chapter 9: ROM BIOS Video Services

Service 03H (decimal 3): Read Cursor Position
Service 03H (decimal 3) is the opposite of services 01H and 02H. When you
specify the page number in BH, the ROM BIOS reports the cursor size by
returning the starting scan line in CH and the ending scan line in CL. In

addition, it reports the cursor position by returning the row in DH and the
column in DL. (See Figure 9-4.)

Service Number Returns

AH = 03H BH = page number (set to 0 in graphics modes)

DH = row number

DL = column number

CH = starting scan line of cursor

CL = ending scan line of cursor

Figure 9-4. Values reported by video service 03H.

Service 04H (decimal 4): Read Light-Pen Position
Service 04H (decimal 4) reports the light-pen status on a CGA or EGA, spe
cifically whether or not the pen has been triggered, and where it is on the
screen if it has been triggered.

Register AH is set to indicate triggering: If AH = OIH, the light pen has
been triggered; if AH = OOH, it has not been triggered. If the pen has been
triggered, the ROM BIOS determines the light pen's character column and
pixel row (y-coordinate) from the video hardware. From these, the ROM

BIOS computes the character row and pixel column (x-coordinate). The

results are returned in registers BX, CX, and DX as shown in Figure 9-5.

Service Number Returns

AH = 04H DH = character row number

DL = character column number

CH = pixel line number (CGA and EGA video modes 04H,
05H,and06H)

CX = pixel line number (all other EGA video modes)

BX = pixel column number

Figure 9-5. Light-pen position values returned by service 04H.

175

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service 05H (decimal 5): Set Active Display Page
Service 05H (decimal 5) selects the active display page for text modes 0
through 3 and also for 16-color EGA and VGA graphics modes. You specify
the page number in register AL. (See Figure 9-6.) In text modes, page num
bers range from 0 through 7. Don't forget, however, that the CGA hardware
can display only four different 80-column pages, so CGA pages 4 through 7
overlap pages 0 through 3 when you're in 80 x 25 text mode. On the EGA and
in the PS/2 video subsystems, you can also select among multiple display

pages in 16-color graphics modes.

Service Number Parameters

AH = 05H AL = new display page number

Figure 9-6. The registers used to set the active display page using service 05H.

In all video modes, page 0 is used by default. Page 0 is located at the
beginning of display memory, with higher page numbers in higher memory
locations. See page 87 for more on display pages.

Service 06H (decimal 6): Scroll Window Up
Service 06H (decimal 6) and companion service 07H are used to define a
rectangular window of text on the screen and to scroll the window's con
tents up or down one or more lines. To accomplish the scrolling effect,
blank lines are inserted at the bottom of the window area with service 06H

(at the top with service 07H) and the top lines of the window (the bottom
lines with service 07H) are scrolled off and disappear.

The number of lines to be scrolled is specified in AL. If AL = OOH, the
entire window is blanked. (The same thing would happen if you scrolled

more lines than the window size allowed.) The location or size of the win

dow is specified in the CX and DX registers: CH is the top row, and DH is the
bottom row; CL is the left column, and DL is the right column. The display
attribute for the new blank lines inserted by the two services is taken
from BH. Figure 9-7 summarizes the register settings for both services 06H
and 07H.

When you fill a window with lines of text, you'll discover that win
dow scrolling is normally a two-stage process: When a new line is ready to
be written in the window, service 06H (or service 07H) scrolls the current

window contents. Then the new line is filled with text using the cursor-
positioning and character-writing services. The following example demon
strates this window action.

176

Chapter 9: ROM BIOS Video Services

DEBUG invoke DEBUG from DOS utilities

A ask to assemble instructions

INT 10 create interrupt lOH instruction

[Return] finish assembling

R AX ask to see and change contents of AX

0603 specify service 06H (scroll up), using

3-1ine window

R CX ask to see and change contents of CX

050A specify top left corner: row 5. column 10

R DX ask to see and change contents of DX

1020 specify bottom right corner: row 16, column 32

D 0 L 180 fill screen with nonsense

G =100 102 execute INT lOH, then stop

Service Number Parameters

AH = 06H (scroll up) AL = number of lines to scroll

AH = 07H (scroll down) CH = row number of upper-left corner

CL = column number of upper-left corner

DH = row number of lower-right corner

DL = column number of lower-right corner

BH = display attribute for blank lines

Figure 9-7. Register values for scrolling using services 06H and 07H.

See Chapter 8 for more on assembly-language routines. See the IBM
DOS Technical Reference Manual for more on DEBUG.

Service 07H (decimal 7): Scroll Window Down
Service 07H (decimal 7) is, as we've already mentioned, the mirror image of
service 06H. The difference between the two services is the scrolling action.
In service 07H, the new blank lines appear at the top of the window and the
old lines disappear at the bottom. The opposite scrolling action takes place
in service 06H. See Figure 9-7 under service 06H for the register parameter
settings.

Service 08H (decimal 8): Read Character and Attribute
Service 08H (decimal 8) is used to read characters "off the screen," that is,

directly out of the display memory. This service is unusually spiffy because
it works in both text and graphics modes.

In graphics modes, the same character-drawing tables used to write
characters are also used to recognize them by a pattern-matching operation.

177

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Even if you create your own character set in graphics mode, this service
will be able to recognize them. In text modes, of course, the ASCII character

codes are directly available in the display memory.
Service 08H returns the ASCII character code of the character in AL.

(See Figure 9-8.) In graphics modes, if the character doesn't match any
characters in the graphics character set, the ROM BIOS returns ASCII code 0.
In text modes, the service also returns the character's color attributes in AH.

Remember to specify a display page number in BH when you call this
service.

Service Number Parameters Returns

AH = 08H BH = active display AL = ASCII character read

page number from cursor location

AH = attribute of text character

(text modes only)

Figure 9-8. The registers used to read a character and attribute with service 08H.

See page 82 for more on text characters and attribute bytes. See page
89 for more on text- and graphics-mode characters. See Appendix C for
more on ASCII characters.

Service 09H (decimal 9): Write Character and Attribute
Service 09H (decimal 9) writes one or more copies of a single character and
its color attribute. The character is specified in AL, and the text-mode at

tribute or graphics-mode color is specified in BL. The number of times the
character is to be written (one or more times) is placed in CX, and BH con

tains the display page number. (See Figure 9-9.)

Service Number Parameters

AH = 09H AL = ASCII character to write to screen

BL = attribute value (text modes) or foreground color
(graphics modes)

BH = background color (video mode 13H only) or display
page number (all other modes)

CX = number of times to write character and attribute

Figure 9-9. The registers used to write a text character and attribute using service 09H.

178

Chapter 9: ROM BIOS Video Services

The ROM BIOS writes the character and its color attributes as many
times as requested, starting at the current cursor location. Although the cur
sor is not moved, duplicate characters are written at subsequent screen loca
tions. In text mode, the duplicated characters will successfully wrap around
from line to line, which increases the usefulness of this service. In graphics
mode, the characters will not wrap around.

Service 09H is quite useful both for writing individual characters and
for replicating a character. The repeat operation is most often used to
rapidly lay out blanks or other repeated characters, such as the horizontal
lines that are part of box drawings. (See Appendix C.) When you want to
make a single copy of the character, be sure to set the count in CX to 1. If
it's set to 0, the number of repetitions will be a lot more than you want.

Service 09H has an advantage over the similar service OEH, in that you
can control the color attributes. However, its one disadvantage is that the
cursor is not automatically advanced.

In graphics modes, the value specified in BL is the foreground
color—the color of the pixels that make up the character drawing. Nor
mally the ROM BIOS displays the character with the specified foreground
color on a black background. If, however, you set bit 7 of the color value in
BL to 1, then the ROM BIOS creates the character's new foreground color by
using an exclusive OR operation (XOR) to combine each of the previous
foreground pixels with the value in BL. The same feature also applies to the
character and pixel writing services, services OAH and OCH.

Here's an example of what can happen when the ROM BIOS uses the
XOR operation to display a character. Imagine you're in 320 x 200, 4-color
graphics mode and the screen is completely filled with white pixels. If you
now write a white character in the usual way, with a color value of 03H
(white) in register BL, the ROM BIOS displays a white character on a black
background. If, however, you write the same character with a color value of
83H (bit 7 set to 1), the ROM BIOS uses XOR to display a black character on a
white background.

See page 82 for more on display attributes in text modes. See page 84
for more on color attributes in graphics modes.

Service OAH (decimal 10): Write Character
Service OAH (decimal 10) is the same as service 09H (write character and at
tribute to cursor location) with one exception: Service 09H lets you change
the existing screen color attribute in text mode but service OAH does not.

179

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

However, in graphics mode you must still specify a color in BL (see
Figure 9-10), which makes the description of this service as only a character-
writing service partly incorrect. Service GAR has the same graphics color
rules as services 09H and OCR: The color can be used directly or used with
XOR and the existing color. (See service 09R for an explanation.)

See page 82 for more on display attributes in text modes. See page 84
for more on color attributes in graphics modes.

Service Number Parameters

AR = OAR AL = ASCII character to write to screen

BL = foreground color (graphics modes only)

BR = background color (video mode 13R only) or display
page number (all other modes)

CX = number of times to write character

Figure 9-10. The registers used to write a character using service OAH.

Service OBH (decimal 11): Set 4-CoIor Palette
Service OBR (decimal 11) actually consists of two subservices. You select ei
ther subservice OOR or subservice OIR by storing the proper value in register
BR. (See Figure 9-11.) Subservice OOR lets you set the border color in CGA
alphanumeric modes or the background color in CGA 320 x 200, 4-color
graphics mode. You designate the border color in BL with a value between
OOR and OPR.

Subservice OIR lets you select one of the two 4-color palettes used in
320 X 200, 4-color mode. The value in BL specifies which of the two hard
ware palettes to use. A value of 0 designates the red-green-brown palette,
and a value of 1 selects the cyan-magenta-white palette. (See page 77 for
more on color palettes.)

This service was designed primarily for use with the CGA. Use service
lOR to control colors in other video modes on the EGA, MCGA, and VGA.

Service Number Subservice Number Parameters

AR = OBR BR = OOR BL = border or background color

BR = 01R BL = palette number (0 or 1)

Figure 9-11. Color control in CGA-compatible video modes using service OBH.

180

Chapter 9: ROM BIOS Video Services

Service OCH (decimal 12): Write Pixel
Service OCH (decimal 12) writes an individual pixel. You specify the pixel's
location on the screen by passing its column (x-coordinate) in register CX

and its row (y-coordinate) in DX. Remember that pixel rows and columns
are not the same as the character row and column you use in other services

to locate the cursor or to display a character. Pixel coordinates correspond
to individual dots, not to characters.

If you're using a graphics mode that supports multiple display pages,
be sure to specify the display page number in register BH. (See Figure 9-12.)
Also, when you specify the pixel's color in register AL, you have the option
of setting bit 7 of the color value to 1. As in service 09H, this tells the BIOS
to display the pixel with an XORed color value. (See service 09H for an
explanation.)

Service Number Parameters

AH = OCH AL = pixel color

BH = display page number

DX = row number of pixel

CX = column number of pixel

Figure 9-12. The registers used to write a pixel using service OCH.

See page 91 for more on pixels in graphics modes.

Service ODH (decimal 13): Read Pixel
Service ODH (decimal 13) is the reverse of service OCH: It reads a pixel's

color value rather than writing it. A pixel has only a single color attribute,
which is returned through service ODH. (The read-character service 08H

returns both a color and an ASCII character code.) The row is specified in
DX, the column in CX, and the display page in BH. The pixel color value is

returned in AL. (See Figure 9-13.) All high-order bits of the value returned
in AL are set to 0, as you would expect.

Service Number Parameters Returns

AH = ODH BH = display page number AL = pixel color value

DX = row number of pixel

CX = column number of pixel

Figure 9-13. The registers used to read a pixel using service ODH.

181

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service OEH (decimal 14): Write Character in Teletype Mode
Service OEH (decimal 14) is the workhorse service of conventional character

output. It writes individual characters to the screen in what is known as
teletype (TTY) mode. This makes the screen act as the simplest and crudest
form of printer—exactly what is needed for routine text output. As such,
this service has no regard for such niceties as color, blinking characters, or
control over the cursor location.

With this service, the character is written at the current cursor loca

tion and the cursor is advanced one position, wrapping to new lines or

scrolling the screen as needed. The character to be written is specified in
register AL.

In text modes, the character is displayed as in service OAH; that is,
with the color attributes already in use at the screen location where the char
acter is written. In graphics modes, however, you must also specify the
foreground color value to be used for the character. (See Figure 9-14.)

There are four characters that service OEH reacts to according to their

ASCII meaning: 07H (decimal 7)—beep, 08H (decimal 8)—backspace, OAH
(decimal 10)—line feed, and ODH (decimal 13)—carriage return. All other

characters are displayed normally.
The primary advantage of this service over service 09H is that the

cursor is automatically moved; the advantage of service 09H is that you can
control the color attribute. Now, if you could only combine the two....

Service Number Parameters

AH = OEH AL = ASCII character to write

BL = foreground color (in graphics modes only)

BH = display page (IBM PC BIOS dated 10/19/81 or earlier)

Figure 9-14. The registers used to write a character in teletype mode using service OEH.

Service OFH (decimal 15): Get Current Video Mode
Service OFH (decimal 15) returns the current video mode and two other use

ful pieces of information: the screen width in characters (80 or 40) and the
display page number.

The video mode number, as explained under service OOH, is returned
in AL. The screen width is returned in AH as a number of characters per

line. The display page number will be returned in BH. (See Figure 9-15.)

182

Chapter 9: ROM BIOS Video Services

Service Number Returns

AH = OFH AL = current display mode

AH = number of characters per line

BH = active display page

Figure 9-15. Information returned by service OFH.

See page 72 for more on video modes. See page 58, memory location
0040:0049H, for more on how a record of the mode is kept.

Service lOH (decimal 16): Color Palette Interface
Service lOH (decimal 16) was introduced with the PCjr and carried forward
in the EGA and PS/2 ROM BIOS. It consists of a set of subservices (Figure

9-16) that let you control palette colors, blinking, and (on the MCGA and
VGA) the video DAG. Be aware that different subservices are supported with
different hardware. Before you use these subservices in a program, be sure
your program "knows" which subsystem it's running on. (Video service
lAH can provide this information to a program.)

Subservice Number Description

AL = OGH Update a specified palette register.

AL = 01H Specify the border color.

AL = 02H Update all 16 palette registers plus border.

AL = 03H Select background intensity or blink attribute.

AL = 07H Read a specified palette register.

AL = 08H Read the border color register.

AL = 09H Read all 16 palette registers plus border.

AL= lOH Update a specified video DAC color register.

AL = 12H Update a block of video DAC color registers.

AL= 13H Set video DAC color paging.

AL=15H Read a specified video DAC color register.

AL=17H Read a block of video DAC color registers.

AL= lAH Get video DAC color paging status.

AL=1BH Gray-scale a block of video DAC color registers

Figure 9-16. Subservices available through video BIOS service lOH.

183

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Subservice OOH (decimal 0) updates one of the 16 palette registers on
an EGA or VGA. You specify the palette register number in BL and a new

palette register value in BH when you call this subservice. The VGA BIOS

also supports subservice 07H (decimal 7), which performs the complemen
tary operation: When you call subservice 07H with a palette register number
in BL, the ROM BIOS returns that palette register's current contents in BH.
(Subservice 07H isn't available in the EGA BIOS because the EGA has write-

only palette registers.)

Subservice OIH (decimal 1) sets the border color on an EGA or VGA.
You pass the color value to the BIOS in register BH when you call this sub-
service. The VGA BIOS supports subservice 08H, which returns the current
border color value in BH, but again this complementary subservice isn't
available on the EGA.

Here are two tips about setting the border color on an EGA or VGA.
First, in most EGA video modes the border area is very small, and selecting
any border color other than black results in a narrow, smeared border. On
the VGA, the border is better. Second, if compatibility with the CGA is im
portant, remember that you can also use video service OBH (page 180) to set
the border color.

Subservice 02H (decimal 2) updates all 16 palette registers, plus the
border color, with a single ROM BIOS call. Before you call subservice 02H,
you must store all 16 palette register values plus the border color value in a
17-byte table. You then pass the address (segment and offset) of this table to
the BIOS in registers ES and DX when you call this subservice. The VGA also

provides a subservice that lets you read the palette registers back into a ta
ble: When you call subservice 09H (decimal 9) with ES:DX pointing to a 17-
byte table, the ROM BIOS fills the table with the 16 current palette register
values and the border color.

Subservice 03H (decimal 3) lets you selectively enable or disable the
blinking attribute. The ROM BIOS uses blinking by default, but if you prefer
to have a full range of 16 background colors instead of only 8, you can use
subservice 03H to disable blinking. The value you pass in register BL deter
mines whether blinking is enabled (BL = OIH) or disabled (BL = OOH).

Subservices lOH (decimal 16) and 15H (decimal 21) are supported
only by the MCGA and VGA BIOS. These two subservices give you direct ac
cess to one of the 256 color registers in the video digital to analog convertor
(DAC). To update a video DAG color register, call subservice lOH with the
color register number in BX and 6-bit red, green, and blue color values in
registers DH, CH, and CL. To read a specified color register, place the color
register number in BX and use subservice 15H, which returns the RGB values
in DH, CH, and CL.

184

Chapter 9: ROM BIOS Video Services

The related subservices 12H (decimal 18) and 17H (decimal 23) oper
ate on a block of video DAG color registers instead of only one. To use sub-
service 12H, create a table of 3-byte red-green-blue values. Then place the

segment-offset address of the table in ES and DX, the first color register
number to update in BX, and the number of registers to update in CX. When
you call subservice 12H, the ROM BIOS stores each red-green-blue value in
turn into the block of color registers you specified in BX and CX.

The complementary subservice 17H requires you to pass the address of
a table in ES:DX, along with a starting register number in BX and a register
count in CX. The ROM BIOS fills the table with the red-green-blue values it
reads from the block of color registers you specified.

On the VGA, which has both palette registers and video DAC color

registers, you can use subservices 13H (decimal 19) and lAH (decimal 26) to
switch rapidly between different palettes. By default, the ROM BIOS con
figures the VGA hardware so that color decoding is the same as on the EGA:
Each of the 16 palette registers contains a 6-bit value that specifies one of
the first 64 video DAC registers, and these 64 color registers specify the 64

colors available in the EGA palette.

Subservice 13H lets you use the other three color pages, or groups of
64 video DAC color registers. (See Figure 9-17.) If you call subservice 13H

with BH = OIH and BL = OIH, for example, the BIOS configures the VGA

hardware to display colors from the second group of 64 color registers
(color page 1). To use the first group (color page 0) again, you could call the
same subservice with BH = OOH and BL = OIH. If, for example, you used the

default, EGA-compatible colors in color page 0, and their gray-scale equiva
lents in color page 1, you could switch rapidly between the two with a single
call to subservice 13H.

If you need to switch rapidly between more than four palettes, you can
use subservice 13H with BH = OIH and BL = OOH to configure the VGA color
decoding hardware to use 4-bit palette register values instead of 6-bit

Parameters Description

BL = OOH BH = OOH Use four 64-register pages.

BH = 01H Use sixteen 16-register pages.

BL = 01H BH = n Color page number.
(w = 00H-03H if using 64-register pages
n = OOH-OFH if using 16-register pages)

Figure 9-17. Video DAC color paging with service lOH, subservice 13H.

185

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

values. In this case, each palette register value can specify one of only 16

different video DAG registers. This makes 16 color pages available, each

comprising 16 color registers. You can select any of the 16 color pages using
subservice 13H with BL = OIH.

The VGA ROM BIOS supplements subservice 13H with a complemen

tary function, subservice lAH. This subservice returns the color page status

in BL (16- or 64-register color pages) and BH (current color page number).

With subservice IBH (decimal 27) on the MCGA and VGA, you can
convert the color values in a block of consecutive video DAG color registers

to corresponding shades of gray. Call this subservice with BX containing
the number of the first video DAG register to convert, and with GX con

taining the number of registers to update.

Service IIH (decimal 17); Character Generator Interface
Service IIH (decimal 17) first appeared in the EGA ROM BIOS. The many

subservices available in service IIH were augmented and expanded in the

PS/2 ROM BIOS to provide full support for the new video subsystems (MGGA
and VGA) introduced with the PS/2s.

To make sense of the many service IIH subservices, it helps to con

sider them in four groups (Figure 9-18):

• Subservices in the first group (subservices OOH through 04H)

change the character set used in text modes.

• Subservices in the second group (subservices lOH through 14H)

change the text-mode character set as well as the displayed height

of text-mode characters.

• Subservices in the third group (subservices 20H through 24H) up

date graphics-mode character sets.

• The subservice in the fourth group (subservice 30H) returns infor

mation about the character sets currently displayed and about the

character sets available to the ROM BIOS.

Subservices OOH (decimal 0), OIH (decimal 1), 02H (decimal 2) and

04H (decimal 4) all change the character set used to display text-mode char

acters on the EGA, MGGA, or VGA. Subservices OIH, 02H, and 04H are the

easiest to use. You need specify only which available tables in character
generator RAM should contain the character set. Thus, for example, a call to

service IIH with AL = 02H and BL = OOH instructs the ROM BIOS to use its

8x8 characters in the first (default) table in character generator RAM.

186

Chapter 9: ROM BIOS Video Services

If you want to define your own characters you need to use subservice
OOH, as follows: Place a table of the bit patterns that define the characters in
a buffer. Then call subservice OOH with the address of the table in ES:BP, the

number of characters in CX, the ASCII code of the first character in the table
in DX, and the number of bytes in each character's bit pattern in BH.

Subservice 03H (decimal 3) lets you select among text-mode character

sets once they are loaded into character generator RAM. The EGA and MCGA
have four such tables; the VGA has eight. The value in BL specifies which
one or two of the tables is to be used to display text-mode characters. On the
EGA and MCGA, bits 0 and 1 of BL specify one table, and bits 2 and 3 specify
a second table. If the two bit fields specify the same table, that's the table
that will be used for all text-mode characters.

Subservice Number Description

Load a text-mode character set:

AL = OOH Load a user-specified character set.

AL = 01H Load the ROM BIOS 8x14 character set.

AL = 02H Load the ROM BIOS 8x8 character set.

AL = 03H Select displayed character set.

AL = 04H Load the ROM BIOS 8x16 character set (MCGA, VGA
only).

Load a text-mode character set and adjust the displayed character height:

AL = lOH Load a user-specified character set.

AL = 1IH Load the ROM BIOS 8x14 character set.

AL = 12H Load the ROM BIOS 8x8 character set.

AL = 14H Load the ROM BIOS 8x16 character set (MCGA, VGA
only).

Load a graphics-mode character set:
AL = 20H Load a CGA-compatible, user-specified character set.

AL = 21H Load a user-specified character set.

AL = 22H Load the ROM BIOS 8 x 14 character set.

AL = 23H Load the ROM BIOS 8x8 character set.

AL = 24H Load the ROM BIOS 8x16 character set (MCGA, VGA
only).

Get character generator information:
AL = 30H Get character generator information.

Figure 9-18. Subservices available through video BIOS service IIH.

187

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Subservices lOH (decimal 16), IIH (decimal 17), 12H (decimal 18), and
14H (decimal 20) are similar to subservices OOH, OIH, 02H, and 04H. The dif
ference is that with these higher-numbered subservices, the ROM BIOS not
only loads a character set but also adjusts the displayed character height ap
propriately. This difference is obvious if you compare the effect of execut
ing subservice 02H and subservice 12H to load the ROM BIOS 8X8 character

set. With subservice 02H, the 8x8 characters are used without adjusting the
displayed character height, so if you're in a default ROM BIOS text mode,
you'll see 25 rows of characters. With subservice 12H, the ROM BIOS adjusts
the displayed character height so that in a default ROM BIOS text mode you
see 43 rows of characters on an EGA or 50 rows of characters on a VGA.

Subservices 20H through 24H (decimal 32 through decimal 36) are re
lated to subservices OOH through 04H in that they also load character sets
into memory. However, this third group of subservices is designed for use
only in graphics modes. Subservice 20H loads a CGA-compatible set of 8 x 8
characters into RAM. To use subservice 20H, place a table containing the bit
patterns for ASCII characters 80H through FFH into memory, and pass the
address of this table to the ROM BIOS in registers ES:BP. Subservices 21H
through 24H are similar to subservices OOH, OIH, 02H, and 04H. Call them
with OOH in BL, the number of displayed character rows in DL, and (for sub-
service 21H) the number of bytes in each character's bit pattern in CX.

Subservice 30H (decimal 48) returns several pieces of handy informa
tion regarding the ROM BIOS character generator. This subservice reports
the height of the displayed character matrix in CX and the number of the
bottom character row in DL. For example, if you call subservice 30H in the
default EGA text mode (80 x 25), the BIOS returns 14 in CX and 24 in DL.

Parameter Returns

BH = OOH CGA-compatible 8x8 graphics-mode characters
(contents of interrupt IFH vector)

BH = OIH Current graphics-mode characters (contents of
interrupt 43H vector)

BH = 02H ROM BIOS 8x14 characters

BH = 03H ROM BIOS 8 X 8 characters

BH = 04H Second half of ROM BIOS 8x8 character table

BH = 05H ROM BIOS 9x14 alternate characters

BH = 06H ROM BIOS 8x16 characters (MCGA and VGA only)
BH = 07H ROM BIOS 9x16 alternate characters (VGA only)

Figure 9-19. Character bit pattern table addresses returned in ES.BP by subservice 30H
of video ROM BIOS service IIH.

188

Chapter 9: ROM BIOS Video Services

Subservice 30H also returns the address of any of several bit pattern
tables for the default ROM BIOS character sets. The value you pass in BH
when you call this subservice determines which address the ROM BIOS
returns in ES:BP. (See Figure 9-19.)

Service 12H (decimal 18): "Alternate Select"
Service 12H (decimal 18) made its debut along with service IIH in the EGA

BIOS. It, too, is supported in the ROM BIOS in all PC/2 video subsystems.
IBM's name for this service derives from the purpose of one of the subser-
vices of service 12H, namely, to select an alternate print-screen routine for
the ROM BIOS Shift-PrtSc function. The name lingers on even though ser
vice 12H has been expanded by adding a number of unrelated subservices.

(See Figure 9-20.)

Subservice Number Description

BL=10H Return video configuration information.

BL = 20H Select alternate print-screen routine.

BL = 30H Select scan lines for VGA text modes.

BL = 31H Enable/disable default palette loading.

BL = 32H Enable/disable CPU access to video RAM.

BL = 33H Enable/disable gray-scale summing.

BL = 34H Enable/disable ROM BIOS cursor emulation.

BL = 35H PS/2 display switch interface.

BL = 36H Enable/disable video refresh.

Figure 9-20. Subservices available through video BIOS service 12H.

Subservice lOH (decimal 16) reports on the configuration of an EGA or
VGA. The value returned in BH indicates whether the current video mode is

color (BH = OGH) or monochrome (BH = OIH). BL contains a number be

tween 0 and 3 that represents the amount of RAM installed on an EGA (0

means 64 KB; 1 means 128 KB; 2 means 192 KB; 3 means 256 KB). The value

in CH reflects the status of input from the EGA feature connector, and CL

contains the settings of the EGA configuration switches.

Subservice 20H (decimal 32) is provided for the convenience of users

of the EGA or a VGA adapter. It replaces the motherboard ROM BIOS print-
screen routine with a more flexible routine in the adapter ROM BIOS. Unlike
the motherboard ROM BIOS routine, the adapter BIOS routine can print a

snapshot of a text-mode screen that has more than 25 rows of characters. In

PS/2S, of course, the motherboard routine can already do this, eliminating
the need for this subservice.

189

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Subservice 30H (decimal 48) lets you specify how many scan lines to
display in VGA text modes. The default ROM BIOS text modes contain 400
scan lines. When you call subservice 30H, the value you pass in register AL
can instruct the ROM BIOS to use a different vertical resolution: If AL = OOH,

ROM BIOS text modes will display 200 scan lines, as they do on a CGA. If AL

= OIH, text modes will display an EGA-compatible 350 scan lines. Finally,

when AL = 02H, the ROM BIOS uses its default resolution of 400 scan lines.

When you use subservice 30H, the vertical resolution does not change
until the next time a program uses video ROM BIOS service OOH to select a
text mode. Thus, changing the vertical resolution actually requires you to
make two different ROM BIOS calls: one to specify the resolution and
another to set up the text mode.

Subservice 31H (decimal 49) lets you enable or disable palette loading
when the ROM BIOS sets up a new MCGA or VGA video mode. Calling sub-
service 31H with AL = OIH disables palette loading, so you can subsequently
change video modes without changing the colors in a previously-loaded
palette. A call with AL = OOH enables default palette loading.

Subservices 32H (decimal 50) and 35H (decimal 53) are provided for
programmers who want to use two different video subsystems in the same
PS/2 computer. In particular, these routines support the use of a VGA

alongside the built-in MCGA subsystem in a PS/2 Model 30.

Subservice 32H enables or disables buffer and port addressing accord
ing to the value passed in AL (AL = OOH means enable; AL = OIH means

disable). This feature is important if any addresses in the two video sub
systems overlap: Before accessing one subsystem, you must disable

addressing in the other one.

Subservice 35H provides a complete switching interface that lets you
selectively access both an MCGA and a VGA in the same computer. This

subservice relies on the function provided through subservice 32H to inde
pendently enable and disable each video subsystem. See Chapter 13 and the
IBM BIOS Interface Technical Reference manual for details.

Subservice 33H (decimal 51) tells the ROM BIOS whether or not to

average colors to gray scales when it establishes a new video mode on an
MCGA or VGA. A call to this subservice with AL = OIH disables the gray-

scaling; a call with AL = OOH enables gray-scaling. You can also use this

subservice to force the ROM BIOS to use a gray-scale palette even if you're
using a color monitor.

Subservice 34H (decimal 52) enables or disables text-mode cursor

emulation on the VGA. When you call this subservice with AL = OOH, the

ROM BIOS emulates CGA text-mode cursor sizing whenever you change

190

Chapter 9: ROM BIOS Video Services

video modes or update the cursor size. When called with AL = OIH, this sub-
service disables text-mode cursor emulation.

Subservice 36H (decimal 54) lets you enable or disable VGA video

refresh. Calling this subservice with AL = OIH disables refresh, and a call

with AL = OGH enables refresh. When you disable refresh, the screen goes

blank, but reads and writes to the video buffer are somewhat faster than

when refresh is enabled. If you are writing a program that needs to run as
fast as possible, and if you don't mind having the screen go blank while you
access the video buffer, then consider using subservice 36H to temporarily
blank the screen while you update it.

Service 13H (decimal 19): Write Character String
Service 13H (decimal 19), allows you to write a string of characters to the

display screen. Through the four subservices that make up this service, you
can specify the character attributes individually or as a group. You can also
move the cursor to the end of the string or leave it in place, depending on

which subservice you choose.

The subservice number is placed in AL, the pointer to the string in
ES:BP, the length of the string in CX, the starting position where the string is

to be written in DX, and the display page number in BH.

Subservices OOH (decimal 0) and OIH (decimal 1) write a string of

characters to the screen using the attribute specified in register BL. With

subservice OOH, the cursor is not moved from the location specified in regis
ter DX; with subservice OIH, the cursor is moved to the location following

the last character in the string.

Subservices 02H (decimal 2) and 03H (decimal 3) write a string of

characters and attributes to the screen, writing first the character and then

the attribute. With subservice 02H, the cursor is not moved from the location

specified in register DX; with subservice 03H, the cursor is moved to the
location following the last character in the string.

Service 13H is available only in the PC/AT, EGA, PS/2s, and later ver

sions of the PC/XT ROM BIOS.

Service lAH (decimal 26): Read/Write Display Combination Code
Service lAH (decimal 26) was introduced in the ROM BIOS in the PS/2s, but

it is also part of the ROM BIOS of the VGA. This service returns a 2-byte
code that indicates which combination of video subsystems and video dis

plays is found in your computer. The display combination codes recognized
by this ROM BIOS service are listed in Figure 9-21. Service lAH lets you
select either of two subservices using the value in register AL; subservice

OOH or subservice OIH.

191

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Subservice OOH (decimal 0) returns a 2-byte display combination code
in register EX. If your computer has two different video subsystems, the
value in BL indicates which one is active; that is, which is currently being
updated by the video ROM BIOS. The value in BH indicates the inactive sub

system. If your computer has only video subsystem, the value in BH is zero.
Subservice OIH (decimal 1) performs the reverse function of subser

vice OOH. It lets you change the current display combination code known to
the ROM BIOS. Don't use this subservice, however, unless you know exactly
what you're doing. It's a rare program indeed that requires you to change
the ROM BIOS's idea of what the video hardware actually is.

Code Video Subsystem

OOH (No display)

OIH MDA

02H CGA

03H (Reserved)

04H EGA with color display

05H EGA with monochrome display

06H Professional Graphics Controller

07H VGA with monochrome display

08H VGA with color display

09H,0AH (Reserved)

OBH MCGA with monochrome display

OCH MCGA with color display

OFFH (Unknown)

Figure 9-21. Display combination codes returned by video BIOS service lAH.

Service IBH (decimal 27): Return Functionality/State Information
Service IBH (decimal 27) is available in all PS/2s as well as with the VGA. It

returns a great deal of detailed information regarding the capabilities of the
ROM BIOS as well as the current ROM BIOS and video hardware status.

Service IBH returns this information in a 64-byte buffer whose ad
dress is passed in registers ES:D1. In addition to this address, you must also
specify an "implementation type" value of 0 in register BX. (Presumably
future IBM video products will recognize implementation type values other
than 0.)

The BIOS fills the buffer with information about the current video

mode (the mode number, character columns and rows, number of colors

192

Chapter 9: ROM BIOS Video Services

available) as well as about the video hardware configuration (total video
memory available, display combination code, and so on). See the IBM BIOS
Interface Technical Reference manual for details on the buffer format.

In the first 4 bytes of the buffer, the ROM BIOS returns a pointer to a
table of "static" functionality information. This table lists nearly all of the
features the ROM BIOS and the video hardware can support: the video
modes available, support for palette switching, RAM-loadable character
sets, light-pen support, and many other details.

When you write a program that runs on a PS/2 or in a system with a
VGA adapter, service IBH offers a simple and consistent way for your pro
gram to determine what the video subsystem's current and potential capa
bilities are. Unfortunately, you can't rely on this service if your program
must be compatible with non-PS/2 computers. Neither the PC motherboard
ROM BIOS nor the EGA BIOS supports this service. A program can determine
whether service IBH is supported by examining the value returned by this
service in AL; this value is IBH if the service is supported.

Service ICH (decimal 28): Save/Restore Video State
Service ICH (decimal 28) is provided by the ROM BIOS only in the PS/2
models 50, 60, and 80, and with VGA adapters. (In other words, where you
find a VGA you also find service ICH.) This BIOS service lets you preserve
all information that describes the state of the video BIOS and hardware. The

ROM BIOS can preserve three types of information: the video DAC state, the

BIOS data area in RAM, and the current values in all video control registers.
You can select three different subservices with the value you pass in

register AL: subservices OOH, OIH, and 02H.

Subservice OOH (decimal 0) is designed to be called before subser
vices OIH or 02H. Subservice OOH requires you to specify which of the three
types of information you want to preserve, by setting one or more of the
three low-order bits of the value in CX. When this service returns, BX con

tains the size of the buffer you will need to store the information.
Subservice OIH (decimal 1) saves the current video state information

in the buffer whose address you pass in ES:BX. Then you can change video
modes, reprogram the palette, or otherwise program the ROM BIOS or video
hardware.

Subservice 02H (decimal 2) lets you restore the previous video state.

193

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Comments and Example
In cruising through the ROM BIOS video services, you've seen how they
work individually. Once you have that information in mind, the next ques
tion usually is: Given a choice between using the ROM BIOS services di
rectly or using higher-level services such as the DOS services or the services
built into your programming language, which is best? The general advice
that we always give is to use the highest-level services that will accomplish
what you want to do. In this case, there is no specific reason for you to avoid
using the ROM BIOS video services—you can't do any great harm by using
them. But in the next chapter on the diskette services, we'll argue the case
the other way, advising you to avoid using the ROM BIOS diskette services
because more risk is associated with them.

The video capabilities of the PC models are remarkable, and the ROM
BIOS services give you full use of them. The DOS services, as you'll see in
Chapters 14 through 18, are rather weak and provide only the simplest char
acter services. Likewise, many programming languages (for example, Pas
cal and C) only provide a dressed-up version of the DOS services and
nothing more. So, if you need to use the PC's fancy screen capabilities and
if you aren't using a language such as BASIC that provides the services you
need, you should be using the ROM BIOS services. Getting control of the dis
play screen is one of the very best reasons for using the ROM BIOS services.

Using the ROM BIOS services directly usually calls for an assembly-
language interface, so we'll give you an example of how one can be set up.
For the example, we'll set up a module in a format that would be called by
C. We'll make the module switch to video mode 1 (40-column text in color)
and set the border color to blue.

Here is the assembly module (see Chapter 8, page 161, for general
notes on the format):

-TEXT SEGMENT byte publi

ASSUME cs:_TEXT

PUBLIC _B1ue40

-81ue40 PROG near

push bp ;

mov bp.sp : use BP to access the stack

194

Chapter 9: ROM BIOS Video Services

; set video mode

mov ah,0 ; BIOS service number

mov al,l ; video mode number

int lOh ; call BIOS to set 40x25 text mode

: set border color

mov ah.OBh ; BIOS service number

mov bh,0 ; subservice number

mov bl,l ; color value (blue)

int lOh ; call BIOS to set border color

pop bp ; restore previous BP value

ret

_Blue40 ENDP

-TEXT ENDS

195

Chapter 10

ROM BIOS

Disk Services

The ROM BIOS Disk Services 198

Service OOH (decimal 0): Reset Disk System 199

Service OIH (decimal 1): Get Disk Status 199

Service 02H (decimal 2): Read Disk Sectors 200

Service 03H (decimal 3): Write Disk Sectors 202

Service 04H (decimal 4): Verify Disk Sectors 202

Service 05H (decimal 5): Format Disk Track 203

Service 06H (decimal 6): Format PC/XT Fixed-Disk Track 206

Service 07H (decimal 7): Format PC/XT Fixed Disk 206

Service 08H (decimal 8): Get Disk-Drive Parameters 206

Service 09H (decimal 9): Initialize Fixed-Disk Parameter Tables 206

Service OAH and OBH (decimal 10 and 11): Read and Write Long 207

Service OCH (decimal 12): Seek to Cylinder 207

Service ODH (decimal 13): Alternate Fixed-Disk Reset 207

Service lOH (decimal 16): Test for Drive Ready 207

Service IIH (decimal 17): Recalibrate Drive 207

Service 15H (decimal 21): Get Disk Type 207

Service 16H (decimal 22): Diskette Change Status 208

Service 17H (decimal 23): Set Diskette Type 208

Service 18H (decimal 24): Set Media Type for Format 209

Service 19H (decimal 25): Park Heads 209

Service lAH (decimal 26): Format ESDI Unit 209

Disk-Base Tables 209

Comments and Examples 212

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

We're now going to cover the disk services provided by the ROM BIOS. To
understand the logical structure of the contents of a disk, see Chapter 5,
particularly pages 106 through 121. For information about the higher-level
disk services provided by DOS, see Chapters 15 through 18.

Generally speaking, disk operations are best left to disk operating sys
tems. If you decide to use any of the ROM BIOS disk services, we recom
mend that you read the section entitled "Comments and Examples" on
page 212 of this chapter.

The ROM BIOS Disk Services
The original IBM PC ROM BIOS offered only six different disk services. As
the diskette and fixed-disk subsystems of the PC and PS/2 family have
become increasingly sophisticated, the number of ROM BIOS services that

support disk I/O has increased. To keep the ROM BIOS software modular and
flexible, IBM separated the support routines for fixed-disk subsystems from
the diskette support routines. Nevertheless, the number of BIOS disk ser

vices has grown from six on the original IBM PC to 22 in the PS/2s. (See
Figure 10-1.)

All ROM BIOS disk services are invoked with interrupt 13H (decimal
19) and selected by loading the service number into the AH register. Disk
drives are identified by a zero-based number passed in DL, with the high-
order bit set to 1 to indicate a fixed disk. Thus the first diskette drive in the

computer is identified by drive number OOH, and the first fixed disk is desig
nated by drive number 80H.

The ROM BIOS uses a set of descriptive parameter tables called disk-
base tables to gain information about the capabilities of the disk controller
hardware and the disk media. The ROM BIOS maintains the segmented ad
dresses of the disk-base tables it uses in interrupt vectors: The address of
the table for the current diskette drive is in the interrupt lEH vector
(0000:0074H); addresses of tables for the first and second fixed drives are in

interrupt vectors 41H (0000:0104H) and 46H (0000:0118H).
For most programmers, the disk-base tables are an invisible part of the

disk services. However, some disk-base parameters may occasionally need
to be changed for special purposes. For this reason we include a brief de

scription of the disk-base table toward the end of this chapter.
The following sections describe each of the ROM BIOS services.

198

Chapter 10: ROM BIOS Disk Services

Service Description Diskette Fixed Disk

OOH Reset Disk System. X X

OIH Get Disk Status. X X

02H Read Disk Sectors. X X

03H Write Disk Sectors. X X

04H Verify Disk Sectors. X X

05H Format Disk Track. X X

06H Format PC/XT Fixed-Disk Track. X

07H Format PC/XT Fixed Disk. X

08H Get Disk-Drive Parameters. X X

09H Initialize Fixed-Disk Parameter Tables. X

OAH Read Long. X

OBH Write Long. X

OCH Seek to Cylinder. X

ODH Alternate Fixed-Disk Reset. X

lOH Test for Drive Ready. X

IIH Recalibrate Drive. X

15H Get Disk Type. X X

16H Get Diskette Change Status. X

17H Set Diskette Type. X

18H Set Media Type for Format. X

19H Park Heads. X

lAH Format ESDI Unit. X

Figure 10-1. The ROM BIOS disk services.

Service OOH (decimal 0): Reset Disk System
Service OOH resets the disk controller and drive. This service does not affect

the disk itself. Instead, a reset through service OOH forces the ROM BIOS
disk-support routines to start from scratch for the next disk operation by
recalibrating the disk drive's read/write head—an operation that positions
the head on a certain track. This reset service is normally used after an
error in any other drive operation.

When you call service OOH for a fixed-disk drive, the ROM BIOS also
resets the diskette-drive controller. If you want to reset the fixed-disk
controller only, use service ODH. (See page 207.)

Service OIH (decimal 1): Get Disk Status
Service OIH (decimal 1) reports the disk status in register OAH. The status is
preserved after each disk operation, including the read, write, verify, and

199

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

format operations. By preserving the disk status, an error-handling or error-
reporting routine can be completely independent of the routines that operate
the disk. This can be very useful. Under the right circumstances, you can
rely on DOS or your programming language to drive the disk (a wise choice;
see "Comments and Examples" on page 212), and at the same time have
your program find out and report the details of what went wrong. See
Figure 10-2 for details of the status byte.

Value (hex) Meaning Value (hex) Meaning

OOH No error lOH Bad CRC or EGG

OIH Bad command IIH EGG corrected data error (F)

02H Address mark not found 20H Controller failed

03H Write attempted on 40H Seek failed

write-protected disk (D) 80H Time out

04H Sector not found
AAH Drive not ready (F)

05H Reset failed (F) BBH Undefined error (F)
06H Diskette removed (D) CCH Write fault (F)
07H Bad parameter table (F) EOH Status error (F)
08H DMA overrun FFH Sense operation failed
09H DMA across 64 KB boundary

OAH Bad sector flag (F)

OBH Bad cylinder (F)

OCH Bad media type (D)

ODH Invalid number of sectors on format (F)

OEH Control data address mark detected (F)

OFH DMA arbitration level out of range (F)

(F) = fixed disk only
(D) = diskette only

Figure 10-2. The value of the disk status byte returned in register AH by service 01H.

Service 02H (decimal 2): Read Disk Sectors
Service 02H (decimal 2) reads one or more disk sectors into memory. If you
want to read more than one sector, every sector must be on the same track
and read/write head. This is largely because the ROM BIOS doesn't know
how many sectors might be on a track, so it can't know when to switch from
one head or track to another. Usually, this service is used for reading either
individual sectors or an entire trackful of sectors for bulk operations such as
DISKCOPY in DOS. Various registers are used for control information in a
read operation. They are summarized in Figure 10-3.

200

Chapter 10: ROM BIOS Disk Services

Parameters Status Results

DL = drive number If CF = 0, then no error and AH = 0

DH = head number If CF = 1, then error and AH contains

CH = cylinder number (D)
low-order 8 bits of cylinder number (F)

CL = sector number (D)
high-order 2 bits of cylinder number
plus 6-bit sector number (F)

AL = number of sectors to be read

ES:BX = address of buffer

service 01H status bits

(F) = fixed disk only
(D) = diskette only

Figure 10-3. The registers used for control information by the read, write, verify, and
format services.

DL contains the drive number, and DH contains the diskette side or

fixed-disk read/write head number.

CH and CL identify, for diskettes, the cylinder and sector number to
be read. CH contains the cylinder number, which should be less than the
total number of cylinders on the formatted diskette. (See Chapter 5 for a ta
ble of standard IBM formats.) Of course, the cylinder number can be higher
with non-IBM formats or with some copy-protection schemes. CL contains
the sector number.

For fixed disks, there may be more than 256 cylinders, so the ROM
BIOS requires you to specify a 10-bit cylinder number in CH and CL: You
must place the 8 low-order bits of the cylinder number in CH. The 2 high-
order bits of CL contain the 2 high-order bits of the cylinder number. The 6
low-order bits of CL designate the sector number to be read. Don't forget
that sectors are numbered from 1, unlike drives, cylinders, or heads (sides).

AL contains the number of sectors to be read. For diskettes, this is nor

mally either 1, 8, 9, 15, or 18. We are warned by IBM not to request 0 sectors.
ES:BX contains the buffer location. The location of the memory area

where the data will be placed is provided by a segmented address given in
this register pair.

The data area should be big enough to accommodate as much as is
read; keep in mind that while normal DOS sectors are 512 bytes, sectors can
be as large as 1024 bytes. (See the format service that follows.) When this
service reads more than one sector, it lays the sectors out in memory one
right after another.

201

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

CF (the carry flag) contains the error status of the operation. The

result of the operation is actually reported through a combination of the
carry flag and the AH register. If CF = 0, no error occurred, AH will also be
0, and, for a diskette, the number of sectors read will be returned in AL. If

CF = 1, an error did occur, and AH will contain the status value detailed

under service OIH, the status service.

When using service 02H with a diskette drive or any other active dis

kette service, remember that the diskette-drive motor takes some time to

reach a working speed and that none of these services waits for this to hap
pen. Although our own experience with the ROM BIOS diskette services sug

gests that this is rarely a problem, IBM recommends that any program using
these services try three times before assuming that an error is real and that
it use the reset service between tries. The logic of the suggested operation is
as follows (partly expressed in BASIC):

10 ERROR COUNT = 0

20 WHILE ERROR.COUNT < 3

30 * do read/write/verify/format operation

40 * error checking here: if no error goto 90

50 ERROR.COUNT = ERROR.COUNT + 1

60 • do reset operation

70 WEND

80 • act on error

90 ' carry on after success

Be sure to see the section on page 209 for the effect of the disk-base
table on the reset operation.

Service 03H (decimal 3): Write Disk Sectors
Service 03H (decimal 3) writes one or more sectors to a disk—the reverse

of service 02H. All registers, details, and comments given for service 02H
also apply to service 03H. (Also see Figure 10-3.) The disk sectors must be
formatted before they can be written to.

Service 04H (decimal 4): Verify Disk Sectors
Service 04H (decimal 4) verifies the contents of one or more disk sectors.
This operation is not what many people think it is: No comparison is made
between the data on the disk and the data in memory. The verification
performed by this service simply checks that the sectors can be found and
read and that the cyclical redundancy check (CRC) is correct. The CRC acts

as a sophisticated parity check for the data in each sector and will detect

most errors, such as lost or scrambled bits, very reliably.

202

Chapter 10: ROM BIOS Disk Services

Most programmers use the verify service to check the results of a
write operation after using service 03H, but you can verify any part of a disk
at any time. The DOS FORMAT program, for example, verifies each track
after it is formatted. However, many people regard verification as an
unnecessary operation because the disk drives are so reliable and because
ordinary error reporting works so well. Even DOS doesn't verify a write
operation unless you ask it to with the VERIFY ON command.

□ NOTE: Ifs worth pausing here to note that there is nothing
unusual or alarming about having ''bad tracks'' marked on a disk,
particularly a fixed disk. In fact^ it is quite common for a fixed disk
to have a few bad patches on it. The DOS FORMAT program notices
bad tracks and marks them as such in the disk's file-allocation
table. Later, the bad-track marking tells DOS that these areas
should be bypassed. Bad tracks are also common on diskettes; with
a diskette, unlike a fixed disk, you have the option of throwing away
the defective media and using only perfect disks.

The verify service operates exactly as do the read and write services
and uses the same registers. The only difference between them is that the
verify operation does not use any memory area and therefore does not use
the register pair ES:BX.

Service 05H (decimal 5): Format Disk Track
Service 05H (decimal 5) formats one track. The format service operates as
do the read and write services except that you need not specify a sector
number in CL. Ail other parameters are as shown in Figure 10-3.

Because formatting is done one full track at a time, you cannot format
individual sectors. However, on a diskette you can specify individual
characteristics for each sector on a track.

Every sector on a diskette track has 4 descriptive bytes associated with
it. You specify these 4 bytes for each sector to be formatted by creating a
table of 4-byte groups and passing the table's address in the register pair
ES;BX. When you format a disk track, the 4-byte groups are written to the
diskette immediately in front of the individual sectors in the track. The 4
bytes of data associated with a sector on the disk are known as address
marks and are used by the disk controller to identify individual sectors
during the read, write, and verify operations. The 4 bytes are referred to as
C for cylinder, H for head, R for record (or sector number), and N for
number of bytes per sector (also called the size code).

203

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When a sector is being read or written, the diskette controller searches
the diskette track for the sector's ID, the essential part of which is R, the
record or sector number. The cylinder and head parameters are not actually
needed in this address mark because the read/write head is positioned
mechanically at the proper track and the side is selected electronically, but
they are recorded and tested as a safety check.

The size code (N) can take on any one of the four standard values
shown in Figure 10-4. The normal setting is code 2 (512 bytes).

Sectors are numbered on the diskette in the order specified by R. On
diskettes, the sectors are normally numbered in numeric sequence (unless
rearranged for copy protection), but on fixed disks the order of the sectors
can be rearranged (interleaved), either for better performance or to create
timing differences for copy-protection purposes. The actual interleave used
on a fixed disk depends on the capabilities of the disk-controller hardware.
For example, the PC/XT's fixed disk has its sectors interleaved so that logi
cally consecutive sectors are physically located six sectors apart.

N Sector Size (bytes) Sector Size (KB)

0 128 Vs

1 256 V4

2 512 V2

3 1024 1

Figure 10-4. The four standard sizes of the N size code.

To format a diskette track using service 05H, perform the following
steps:

1. Call service 17H to inform the ROM BIOS what kind of diskette is to

be formatted. (See page 208 for more about service 17H.) This
service needs to be called only once.

2. Call service 18H to describe the diskette media to the ROM BIOS.

(See page 209.)

3. Create a table of address marks for the track. There must be a

4-byte entry in the table for each sector. For example, for track 0,
side 1 of a typical nine-sector DOS diskette, the table would contain
nine entries:

01 12 0122 0132 ... 0192

4. Call service 05H to format the track.

204

Chapter 10: ROM BIOS Disk Services

The method for formatting a fixed-disk track is somewhat different.
You should omit the calls to services 17H and 18H (steps 1 and 2 above)
because there is no need to describe the disk media to the ROM BIOS. Also,

with a PC/AT or PS/2, the table whose address you pass in 3 step has a format

that consists only of alternating flag bytes (OOH = good sector, 80H = bad
sector) and sector number (R) bytes. With a PC/XT, you don't need a table at
all. Instead, you call service 05H with an interleave value in AL, and the
ROM BIOS does the rest.

You may want to verify the formatting process by following each call
to service 05H with a call to service 04H.

When a diskette track is formatted, the diskette drive pays attention to

the diskette's index hole and uses it as a starting marker to format the track.
The index hole is ignored in all other operations (read, write, or verify), and
tracks are simply searched for by their address marks.

Nothing in this format service specifies the initial data value written
into each formatted sector of a diskette. That is controlled by the disk-base

table. (See page 209.)

□ NOTE: Service 05H should not be used with ESDI drives in PS/2s,
Use service lAH instead.

Using Service 05H for Copy Protection
Diskette tracks can be formatted in all sorts of ways, but DOS can only read
certain formats. Consequently, some copy-protection schemes are based on
an unconventional format that prevents the ROM BIOS or the operating sys
tem from successfully reading and copying data. You can choose from sev
eral different copy-protection methods:

• You can rearrange the order of the sectors, which alters the access
time in a way that the copy-protection scheme can detect.

• You can squeeze more sectors onto a track (10 is about the outside
limit for 512-byte sectors on a 360 KB diskette).

• You can simply leave out a sector number.

• You can add a sector with an oddball address mark (for example,
you can make C = 45 or R = 22).

• You can specify one or more sectors to be an unconventional size.

Any of these techniques can be used either for copy protection or for
changing the operating characteristics of the diskette. Depending on what
options are used, a conventionally formatted diskette may have its copy
protection characteristics completely hidden from DOS.

205

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service 06H (decimal 6): Format PC/XT Fixed-Disk Track
This service is provided only in the PC/XT fixed-disk ROM BIOS. This ser
vice commands the XT's fixed-disk controller to format a track in which the

disk media is defective. The disk controller records which sectors are defec

tive in a table located in a reserved cylinder. The register parameters are the
same as those shown in Figure 10-3, except that register AL contains a sector
interleave value and no address need be specified in ES;BX.

Service 07H (decimal 7): Format PC/XT Fixed Disk
This service, like service 06H, is supported only in the PC/XT fixed-disk
ROM BIOS. It formats the entire fixed-disk drive, starting at the cylinder
number specified in CH and CL. Register parameters for service 07H are the
same as for service 05H (Figure 10-3), except that register AL contains a sec
tor interleave value and no head number need be specified in register DH.

Service 08H (decimal 8): Get Disk-Drive Parameters
In the PC/AT and PS/2 BIOS, service 08H (decimal 8) returns disk-drive
parameters for the drive whose number you specify in DL. DL reports the
number of disk drives attached to the disk controller, so diskette and fixed-
disk drive counts are reported separately. DH reports the maximum head
number, CH returns the maximum cylinder number, and CL returns the
highest valid sector number plus the 2 high-order bits of the maximum
cylinder number.

For diskette drives, the PC/AT ROM BIOS (after 1/10/84) and the PS/2
ROM BIOS also report the drive type in BL: OIH = 360 KB, S'A inch; 02H = 1.2
MB, 51/4 inch; 03H = 720 KB, 3'/2 inch; 04H = 1.44 MB, Vh inch.

Service (19H (decimal 9): Initialize Fixed-Disk Parameter Tables
Service 09H (decimal 9) establishes the disk-base tables for two fixed-disk
drives for the PC/AT or PS/2 ROM BIOS. Call this service with a valid fixed-

disk drive number in DL and with the interrupt 41H and 46H vectors contain
ing the addresses of disk-base tables for two different fixed-disk drives.

Because fixed disks are nonremovable, this service should only be used to
install a ''foreign" disk drive not recognized by the ROM BIOS or the
operating system. For more details, see the IBM BIOS Interface Technical
Reference Manual

□ NOTE: Do not use service 09Hfor PS12 ESDI drives.

206

Chapter 10: ROM BIOS Disk Services

Service OAH and OBH (decimal 10 and 11): Read and Write Long
Service OAH (decimal 10) reads, and service OBH (decimal 11) writes,
"long" sectors on PC/AT or PS/2 fixed disks. A long sector consists of a
sector of data plus a 4- or 6-byte error correction code (EGG) that the fixed-
disk controller uses for error checking and error correction of the sector's
data. These services use the same register parameters as parallel services
02H and 03H.

□ NOTE: The IBM BIOS Interface Technical Reference Manual
states that services OAH and OBH are "reservedfor diagnostics," so
stay away from these services unless you have a very good reason
for using them.

Service OCH (decimal 12): Seek to Cylinder
Service OGH (decimal 12) performs a seek operation that positions the disk
read/write heads at a particular cylinder on a fixed disk. Register DL pro
vides the drive ID, DH provides the head number, and GH and GL provide
the 10-bit cylinder number.

Service ODH (decimal 13): Alternate Fixed-Disk Reset
For fixed-disk drives, this service is the same as service OGH (reset disk sys
tem) except that the ROM BIOS does not automatically reset the diskette-
drive controller. This service is available only in the PG/AT and PS/2 ROM
BIOS; it should not be used with the PS/2 ESDI drives.

Service lOH (decimal 16): Test for Drive Ready
Service lOH (decimal 16) tests to see if a fixed-disk drive is ready. The drive
is specified in register DL and the status is returned in register AH.

Service IIH (decimal 17): Recalibrate Drive
Service IIH (decimal 17) recalibrates a fixed-disk drive. The drive is speci
fied in register DL and the status is returned in register AH.

Service 15H (decimal 21): Get Disk Type
Service 15H (decimal 21) returns information about the type of disk drive
installed in a PG/AT or PS/2. Given the drive ID in register DL, it returns in
register AH one of four disk-type indicators. If AH = OGH, no drive is present
for the specified drive ID; if AH = GIH, a diskette drive that cannot sense
when the disk has been changed (typical of many PG and PG/XT disk drives)
is installed; if AH = G2H, a diskette drive that can sense a change of disks

2G7

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

(drives like the AT's high-capacity diskette drives) is installed; finally, if
AH = 03H, a fixed-disk drive is installed. When the drive type is 3, the regis
ter pair CX:DX contains a 4-byte integer that gives the total number of disk
sectors on the drive.

Service 16H (decimal 22): Diskette Change Status
In the PC/AT and PS/2 ROM BIOS, service 16H (decimal 22) reports whether
the diskette in the drive specified in DL was changed. The status is reported
in AH (Figure 10-5).

Remember several important points about service 16H. First, before
you use this ROM BIOS service, call service 15H to ensure that the diskette-

drive hardware can sense when a diskette is changed. Also, you should fol
low a call to service 16H with a call to service 17H (Set Diskette Type)
whenever you detect a diskette change.

Keep in mind that the hardware can only detect whether the diskette-
drive door was opened; it cannot tell whether a different physical diskette
was placed in the drive. You must still read data from the diskette to deter

mine whether a different diskette is actually in the drive. Data such as a vol
ume label, the root directory, or a file allocation table can help to uniquely
identify a diskette.

Value Meaning

AH = OOH No diskette change.

AH = 01H Service called with invalid parameter.

AH = 06H Diskette has been changed.

AH = 80H Diskette drive not ready.

Figure 10-5. Status values returned in AH by diskette service I6H.

Service 17H (decimal 23): Set Diskette Type
In the PC/AT and PS/2 ROM BIOS, service 17H (decimal 23) describes the type
of diskette in use in a specified drive. Call this service with a drive ID in
register DL and a diskette-type ID in AL. (See Figure 10-6.) The ROM BIOS
resets the diskette change status if it was previously set. It then records the
diskette type in an internal status variable that can be referenced by other
ROM BIOS services.

208

Chapter 10: ROM BIOS Disk Services

Value Meaning

AL = OIH 320/360 KB diskette in 360 KB drive

AL = 02H 360 KB diskette in 1.2 MB drive

AL = 03H 1.2 MB diskette in 1.2 MB drive

AL = 04H 720 KB diskette in 720 KB drive (PC/AT or PS/2) or 720 KB
or 1.44 MB diskette in 1.44 MB drive (PS/2)

Figure 10-6. Diskette-type ID values for diskette service 17H.

Service 18H (decimal 24): Set Media Type for Format
Service 18H (decimal 24) describes the number of tracks and sectors per
track to the ROM BIOS before it formats a diskette in a specified drive.
These values are placed in registers CH, CL, and DL when you call this ser
vice (see Figure 10-3). This service is available only in the PC/AT and PS/2
ROM BIOS.

Service 19H (decimal 25): Park Heads
Service 19H (decimal 25) parks the drive heads for the PS/2 fixed disk whose
drive ID you specify in register DL. Calling this function causes the disk
controller to move the drive heads away from the portion of the disk media
where data is stored. This is a good idea if you plan to move the computer
because it may prevent mechanical damage to the heads or to the surfaces of
the disk media. On the Reference Diskette that accompanies every PS/2, IBM
supplies a utility program that uses this ROM BIOS service to park the heads.

Service lAH (decimal 26): Format ESDI Unit
This service is provided only in the ROM BIOS of the ESDI (Enhanced Small
Device Interface) adapter for high-capacity PS/2 fixed disks. It formats a
fixed disk attached to this adapter. See the IBM BIOS Interface Technical Ref
erence Manual for more details.

Disk-Base Tables

As we mentioned near the beginning of this chapter, the ROM BIOS main
tains a set of disk-base tables that describe the capabilities of each diskette
drive and fixed-disk drive in the computer. During system startup, the ROM
BIOS associates an appropriate disk-base table with each fixed-disk drive.
(In the PC/AT and PS/2s, a data byte in the nonvolatile CMOS RAM desig
nates which of several ROM tables to use.) There is no reason to change the
parameters in the fixed-disk tables once they have been set up by the ROM
BIOS. Doing so may lead to garbled data on the disk.

209

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The situation is different in the case of diskette drives. The parameters
in the disk-base table associated with a diskette drive may need to be up
dated to accommodate different diskette formats. We'll spend the next few
pages describing the structure of a disk-base table for a diskette drive and
showing how a modified table can be useful.

The disk-base table comprises the 11 bytes shown in Figure 10-7.
Bytes 0 and 1 are referred to as the specify bytes. They are part of the

command strings sent to the diskette-drive controller, which in IBM's
technical reference manuals is also called the NEC (Nippon Electric Com
pany) controller. The 4 high-order bits of byte 0 specify the step-rate time
(SRT), which is the time the drive controller allows for the drive heads to

move from track to track. The default ROM BIOS SRT value for diskette

drives is conservative; for some drives, DOS reduces this value to speed up
drive performance.

Byte 2 specifies how long the diskette motor is to be left running after
each operation. The motor is left on in case the diskette is needed again.
The value is in units of clock ticks (roughly 18.2 ticks per second). All ver
sions of the table have this set to 37 (25H)—meaning that the motor stays on
for about 2 seconds.

Offset Use

OOH Specify byte 1: step-rate time, head-unload time

OIH Specify byte 2: head-load time, DMA mode

02H Wait time until diskette motor turned off

03H Bytes per sector: 0 = 128; 1 = 256; 2 = 512; 3 = 1024

04H Last sector number

05H Gap length between sectors for read/write operations
06H Data length when sector length not specified
07H Gap length between sectors for formatting operations
08H Data value stored in formatted sectors

09H Head-settle time

OAH Motor start-up time

Figure 10-7. The use of the 11 bytes in the disk-base table for a diskette drive.

Byte 3 gives the sector length code—the same N code used in the for
mat operation. (See page 203 under service 05H.) This is normally set to 2,
representing the customary sector length of 512 bytes. In any read, write, or
verify operation, the length code in the disk base must be set to the proper
value, especially when working with sectors of unconventional length.

210

Chapter 10: ROM BIOS Disk Services

Byte 4 gives the sector number of the last sector on the track.
Byte 5 specifies the gap size between sectors, which is used when

reading or writing data. In effect, it tells the diskette-drive controller how
long to wait before looking for the next sector's address marking so that it
can avoid looking at nonsense on the diskette. This length of time is known
as the search gap.

Byte 6 is called the data tranter length (DTL) and is set to FFH (deci
mal 255). This byte sets the maximum data length when the sector length is
not specified.

Byte 7 sets the gap size between sectors when a track is formatted.
Naturally, it is bigger than the search gap at offset 5. The normal format
gap-size value varies with the diskette drive. For example, the value is 54H
for the PC/AT's 1.2 MB drive and 6CH for 3'/2-inch PS/2 diskette drives.

Byte 8 provides the data value stored in each byte of the sectors when
a diskette track is formatted. The default value is F6H, the division symbol.
You can change it to anything you want, if you can think of a good reason
to do so.

Byte 9 sets the head-settle time, which is how long the system waits for
vibration to end after seeking to a new track. This value also depends on the
drive hardware. On the original PC, the value was 19H (25 milliseconds), but
the ROM BIOS default for the PC/AT 1.2 MB drive and the PS/2 diskette drives
is only OFH (15 milliseconds).

Byte OAH (decimal 10), the final byte of the disk-base table, sets the
amount of time allowed for the diskette-drive motor to get up to speed and
is measured in Vs seconds.

It's fun to tinker with the disk-base values; there are enough of them
to give you an opportunity for all sorts of excitement and mischief. To do
this, you need to write a program that builds your customized disk-base
table in a buffer in memory. Then tell the ROM BIOS to use your table by
carrying out the following steps:

1. Save the segmented address of the current disk base table. (This is
the value in the interrupt lEH vector, 0000:0078H.)

2. Store the segmented address of your modified table in the interrupt
lEH vector.

3. Call ROM BIOS disk service OOH to reset the disk system. The ROM
BIOS will reinitialize the diskette-drive controller with parameters
from your table.

When you're finished, be sure to restore the address of the previous
disk-base table and reset the disk system again.

211

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Comments and Examples
In the last chapter, where we covered the ROM BIOS video services, we were
able to recommend that you make direct use of the ROM BIOS services when
DOS or your programming language does not provide the support you need.
But in the case of the ROM BIOS disk services, things are different.

For the disk operations that a program would normally want per
formed, the manipulation and supervision of disk input/output should be left
to DOS and performed either through the conventional file services of a pro
gramming language or through the DOS services. (See Chapters 14 through
18.) There are several reasons for this. The main reason is that it is far easier
to let DOS do the work. The DOS facilities take care of all fundamental disk

operations, including formatting and labeling disks, cataloging files, and
basic read and write operations. Most of the time it isn't necessary to go any
deeper into the system software. However, there are times when you may
want to work with disk data in an absolute and precise way, usually for copy
protection. This is when you should use the ROM BIOS services.

For our example, we'll use C to call a couple of subroutines that use
ROM BIOS functions 02H and 03H to read and write absolute disk sectors. We
start by defining how we want the interface to look from the C side, which
the following program illustrates. If you are not familiar with C and don't
want to decipher this routine, you can pass it by and still get the full benefit
by studying the assembly-language interface example that follows it.

ma i n()

{

unsigned char Buffer[512]; /* a 512-byte buffer for reading */

/* or writing one sector */

int Drive;

int C.H.R; /* address mark parameters */
int StatusCode; /* status value returned by BIOS */

StatusCode = ReadSectorC Drive, C, H, R, (char far *)Buffer);
StatusCode = WriteSectorC Drive, C, H, R, (char far *)Buffer);

This C fragment shows how you would call the ROM BIOS read and
write services from a high-level language. The functions ReadSector() and
WriteSector() are two assembly-language routines that use interrupt 13H to
interface with the ROM BIOS disk services. The parameters are familiar: C,
H, and R are the cylinder, head, and sector numbers we described

212

Chapter 10: ROM BIOS Disk Services

earlier. The C compiler passes the buffer address as a segment and offset
because of the explicit type cast (char far *).

The form of the assembly-language interface should be familiar if you
read the general remarks in Chapter 8 on page 161 or studied the example in
Chapter 9 on page 194. The assembly-language routines themselves copy the
parameters from the stack into the registers. The trick is in how the cylinder
number is processed; The 2 high-order bits of the 10-bit cylinder number are
combined with the 6-bit sector number in CL.

-TEXT SEGMENT byte public 'CODE"

ASSUME cs:_TEXT

-ReadSector

PUBLIC -ReadSector

PROG near routine to read one sector

push

mov

mov

call

bp

bp.sp

ah,2

DIskService

address the stack through BP

AH = ROM BIOS service number 02h

pop

ret

bp restore previous BP

-ReadSector ENDP

-WriteSector

PUBLIC -WriteSector

PROC near routine to write one sector

push

mov

bp

bp.sp

mov

call

ah.3

DiskService

AH = ROM BIOS service number 03h

pop

ret

bp

-WriteSector ENDP

DiskService PROC near

push ax

; Call with AH = ROM BIOS service number

; save service number on stack

(continued)

213

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

DiskServi ce

-TEXT

ret

ENDP

ENDS

mov dl.[bp+4] DL = drive ID

mov ax.[bp+6] AX = cylinder number

mov dh,[bp+8] DH = head number

mov cl,[bp+10] CL = sector number

and cl.00111111b limit sector number to 6 bits

les bx.[bp+12] ES:BX -> buffer

ror ah.l move bits 8 and 9

ror ah.l of cylinder number

to bits 6 and 7 of AH

and ah.11000000b

mov ch.al CM = bits 0-7 of cylinder number

or cl .ah copy bits 8 and 9

of cylinder number

to bits 6 and 7 of CL

pop ax AH = ROM BIOS service number

mov al.l AL = 1 (# of sectors to read/writ

int 13h call ROM BIOS service

mov al.ah ; leave return status

xor ah.ah ; # in AX

Note how the code that copies the parameters from the stack to the
registers is consolidated in a subroutine, DiskScrvicc. When you work with
the ROM BIOS disk services, you'll find that you can often use subroutines
similar to DiskService because most of the ROM BIOS disk services use
similar parameter register assignments.

214

Chapter 11

ROM BIOS

Keyboard Services

Accessing the Keyboard Services 216

Service OOH (decimal 0): Read Next Keyboard Character 216

Service OIH (decimal 1): Report Whether Character Ready 217

Service 02H (decimal 2): Get Shift Status 217

Service 03H (decimal 3): Set Typematic Rate and Delay 218

Service 05H (decimal 5): Keyboard Write 219

Service lOH (decimal 16): Extended Keyboard Read 220

Service IIH (decimal 17): Get Extended Keystroke Status 220

Service 12H (decimal 18): Get Extended Shift Status 220

Comments and Example 221

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Although the ROM BIOS services for the keyboard are not as numerous or as
complicated as those for the display screen (Chapter 9) and for diskette
drives (Chapter 10), the ROM BIOS keyboard services are important enough
to warrant their own chapter. All other ROM BIOS services are gathered
together in Chapter 12.

Accessing the Keyboard Services
The keyboard services are invoked with interrupt 16H (decimal 22). As with
all other ROM BIOS services, the keyboard services are selected according to
the value in register AH. Figure 11-1 lists the ROM BIOS keyboard services.

Service Description

OOH Read Next Keyboard Character.

01H Report Whether Character Ready.

02H Get Shift Status.

03H Set Typematic Rate and Delay.

05H Keyboard Write.

lOH Extended Keyboard Read.

11H Get Extended Keystroke Status.

12H Get Extended Shift Status.

Figure 11-1. The ROM BIOS keyboard services.

Service OOH (decimal 0): Read Next Keyboard Character
Service OOH (decimal 0) reports the next keyboard input character. If a char
acter is ready in the ROM BIOS keyboard buffer, it is reported immediately.
If not, the service waits until one is ready. As described on page 134, each
keyboard character is reported as a pair of bytes, which we call the main
and auxiliary bytes. The main byte, returned in AL, is either 0 for special
characters (such as the function keys) or else an ASCII code for ordinary
ASCII characters. The auxiliary byte, returned in AH, is either the character
ID for special characters or the standard PC-keyboard scan code that iden
tifies which key was pressed.

If no character is waiting in the keyboard buffer when service OOH is
called, the service waits—essentially freezing the program that called it—
until a character does appear. The service we'll discuss next allows a pro
gram to test for keyboard input without the risk of suspending program
execution.

216

Chapter 11: ROM BIOS Keyboard Services

Contrary to what some versions of the IBM PC Technical Reference

Manual suggest, services OOH and OIH apply to both ordinary ASCII charac
ters and special characters, such as function keys.

Service OIH (decimal 1): Report Whether Character Ready
Service OIH (decimal 1) reports whether a keyboard input character is
ready. This is a sneak-preview or look-ahead operation: Even though the
character is reported, it remains in the keyboard input buffer of the ROM
BIOS until it is removed by service OOH. The zero flag (ZF) is used as the sig
nal: 1 indicates no input is ready; 0 indicates a character is ready. Take care
not to be confused by the apparent reversal of the flag values — 1 means no
and 0 means yes, in this instance. When a character is ready (ZF = 0), it is
reported in AL and AH, just as it is with service OOH.

This service is particularly useful for two commonly performed pro
gram operations. One is test-and-go, where a program checks for keyboard
action but needs to continue running if there is none. Usually, this is done to
allow an ongoing process to be interrupted by a keystroke. The other com
mon operation is clearing the keyboard buffer. Programs can generally
allow users to type ahead, entering commands in advance; however, in
some operations (for example, at safety-check points, such as "OK to
end?") this practice can be unwise. In these circumstances, programs need
to be able to flush the keyboard buffer, clearing it of any input. The key
board buffer is flushed by using services OOH and OIH, as this program
outline demonstrates:

call service OIH to test whether a character Is available in the

keyboard buffer

WHILE (ZF = 0)

BEGIN

call service OOH to remove character from keyboard buffer

call service OIH to test for another character

END

Contrary to what some technical reference manuals suggest, services
OOH and OIH apply to both ordinary ASCII characters and special characters,
such as function keys.

Service 02H (decimal 2): Get Shift Status
Service 02H (decimal 2) reports the shift status in register AL. The shift
status is taken bit by bit from the first keyboard status byte, which is kept at

217

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit

7 65 43 2 1 0 Meaning

X Insert state: 1 = active

. X CapsLock: 1 = active

. . X NumLock: 1 = active

. . . X. . . . ScrollLock: 1 = active

. . . . X. . . 1 = Alt pressed

X. . 1 = Ctrl pressed

X. 1 = Left Shift pressed

X 1 = Right Shift pressed

Figure 11-2. The keyboard status bits returned to register AL using keyboard service 02H.

memory location 0040:0017H. Figure 11-2 describes the settings of each bit.
(See page 137 for information about the other keyboard status byte at
0040;0018H.)

Generally, service 02H and the status bit information are not par
ticularly useful. If you plan to do some fancy keyboard programming, how
ever, they can come in handy. You'll frequently see them used in programs
that do unconventional things, such as differentiating between the left and
right Shift keys.

Service 03H (decimal 3): Set Typematic Rate and Delay
Service 03H (decimal 3) was introduced with the PCjr, but has been sup
ported in both the PC/AT (in ROM BIOS versions dated 11/15/85 and later) and
in all PS/2S. It lets you adjust the rate at which the keyboard's typematic
function operates; that is, the rate at which a keystroke repeats automati
cally while you hold down a key. This service also lets you to adjust the
typematic delay (the amount of time you can hold down a key before the
typematic repeat function takes effect).

To use this service, call interrupt 16H with AH = 03H, and AL = 05H.
BL must contain a value between OOH and IFH (decimal 31) that indicates
the desired typematic rate (Figure 11-3). The value in BH specifies the type
matic delay (Figure 11-4). The default typematic rate for the PC/AT is 10
characters per second; for PS/2s it is 10.9 characters per second. The default
delay for both the PC/AT and PS/2s is 500 ms.

218

Chapter 11: ROM BIOS Keyboard Services

OOH = 30.0 OBH = 10.9 16R = 4.3

OIH = 26.7 OCR =10.0 17R = 4.0

02H = 24.0 ODR = 9.2 18R = 3.7

03H = 21.8 OER = 8.6 19R = 3.3

04H = 20.0 0FR = 8.0 lAR = 3.0

05H=18.5 lOR = 7.5 1BR = 2.7

06H=17.1 11R = 6.7 ICR = 2.5

07H = 16.0 12R = 6.0 1DR = 2.3

08H=15.0 13R = 5.5 1ER = 2.1

09H=13.3 14R = 5.0 IFR = 2.0

OAR = 12.0 15R = 4.6 20R through FFR - Reserved

Figure 11-3. Values for register BL in keyboard service 03H. The rates shown are in
characters per second.

O0H = 25O

OIH = 500

02H = 750

03H = 1000

04H through FFH - Reserved

Figure 11-4. Values for register BH in keyboard service 03H. The delay values shown are
in milliseconds.

Service 05H (decimal 5): Keyboard Write
Service 05H (decimal 5) is handy because it lets you store keystroke data in
the keyboard buffer as if a key were pressed. You must supply an ASCII
code in register CL and a keyboard scan code in CH. The ROM BIOS places
these codes into the keyboard buffer following any keystroke data that may
already be present there.

Service 05H lets a program process input as if it were typed at the
keyboard. For example, if you call service 05H with the following data, the
result is the same as if the keys R-U-N-Enter were pressed:

CH = 13H. CL = 52H, call service 05H (the R key)

CH = 16H, CL = 55H, call service 05H (the U key)

CH = 31H, CL = 4EH, call service 05H (the N key)

CH = ICH, CL = ODH, call service 05H (the Enter key)

219

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

If your program did this when it detected that the F2 function key was
pressed, the result would be the same as if the word RUN followed by the
Enter key had been typed. (If you use BASIC, this should sound familiar.)

Beware: The keyboard buffer can hold only 15 character codes, so you
can call service 05H a maximum of 15 consecutive times before the buffer

overflows and the function fails.

Service lOH (decimal 16): Extended Keyboard Read
Service lOH (decimal 16) performs the same function as service OOH, but lets
you take full advantage of the 101/102-key keyboard: It returns ASCII
character codes and keyboard scan codes for keys that don't exist on the
older 84-key keyboard. For example, the extra Fll and F12 keys found on
the 101/102-key keyboard are ignored by service OOH but can be read using
service lOH.

Another example: On the 101/102-key keyboard, an extra Enter key
appears to the right of the numeric keypad. When this key is pressed,
service OOH returns the same character code (ODH) and scan code (ICH) as it
does for the standard Enter key. Service lOH lets you differentiate between
the two Enter keys because it returns a different scan code (EOH) for the
keypad Enter key.

Service IIH (decimal 17): Get Extended Keystroke Status
Service IIH (decimal 17) is analogous to service OIH, but it, too, lets you use
the 101/102-key keyboard to full advantage. The scan codes returned in
register AH by this service distinguish between different keys on the
101/102-key keyboard.

Service 12H (decimal 18): Get Extended Shift Status
Like services lOH and IIH, service 12H (decimal 18) provides additional
support for the 101/102-key keyboard. Service 12H expands the function of
service 02H to provide information on the extra shift keys provided on the
101/102-key keyboard. This service returns the same value in register AL as
service 02H (Figure 11-2), but it also returns an additional byte of flags in
register AH (Figure 11-5).

This extra byte indicates the status of each individual Ctrl and Alt
key. It also indicates whether the Sys Req, Caps Lock, Num Lock, or Scroll
Lock keys are currently pressed. This information lets you detect when a
user presses any combination of these keys at the same time.

220

Chapter 11: ROM BIOS Keyboard Services

Bit

76543210 Meaning

X Sys Req pressed

. X Caps Lock pressed

. . X Num Lock pressed

. . . X. . . . Scroll Lock pressed

. . . . X. . . Right Alt pressed

X. . Right Ctrl pressed

X. Left Alt pressed

X Left Ctrl pressed

Figure 11-5. Extended keyboard status bits returned in register AH by keyboard service
12H.

Comments and Example
If you are in a position to choose between the keyboard services of your

programming language or the ROM BIOS keyboard services, you could

safely and wisely use either one. Although in some cases there are
arguments against using the ROM BIOS services directly, as with the diskette

services, those arguments do not apply as strongly to the keyboard services.

However, as always, you should fully examine the potential of the DOS

services before resorting to the ROM BIOS services; you may find all you
need there, and the DOS services are more long-lived in the ever-changing

environments of personal computers.

Most programming languages depend on the DOS services for their
keyboard operations, a factor that has some distinct advantages. One
advantage is that the DOS services allow the use of the standard DOS editing

operations on string input (input that is not acted on until the Enter key is
pressed). Provided that you do not need input control of your own, it can
save you a great deal of programming effort (and user education) to let DOS
handle the string input, either directly through the DOS services or

indirectly through your language's services. But if you need full control of
keyboard input, you'll probably end up using the ROM BIOS routines in the
long run. Either way, the choice is yours.

Another advantage to using the DOS keyboard services is that the DOS

services can redirect keyboard input so that characters are read from a file

instead of the keyboard. If you rely on the ROM BIOS keyboard services, you

can't redirect keyboard input. (Chapters 16 and 17 contain information on
input/output redirection.)

221

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

For our assembly-language example of the use of keyboard services,
we'll get a little fancier than we have in previous examples and show you a
complete buffer f lusher. This routine will perform the action outlined under
keyboard service OIH, the report-whether-character-ready service.

-TEXT SEGMENT

ASSUME

byte public •CODE*

cs:-TEXT

-kbclear

PUBLIC

PROG

-kbclear

near

push

mov

bp

bp.sp

LOl: mov

i nt

jz

ah.l ; test whether" buffer is empty

16h

L02 ; if so, exit

mov

int

Jmp

ah.O

16h ; otherwise, discard data

LOl ; .. and 1oop

L02: pop

ret

bp

-kbclear ENDP

-TEXT ENDS

The routine works by using interrupt 16H, service OIH to check
whether the keyboard buffer is empty. If no characters exist in the buffer,
service OIH sets the zero flag, and executing the instruction JZ L02 causes
the routine to exit by branching to the instruction labeled L02. If the buffer
still contains characters, however, service OIH clears the zero flag, and the

JZ L02 instruction doesn't jump. In this case the routine continues to the
instructions that call service OOH to read a character from the buffer. Then

the process repeats because the instruction JMP LOl transfers control back to
label LOl. Sooner or later, of course, the repeated calls to service OOH empty
the buffer, service OIH sets the zero flag, and the routine terminates.

Among the new things this buffer-f lusher routine illustrates is the use
of labels and branching. When we discussed the generalities of assembly-
language interface routines in Chapter 8, we mentioned that an ASSUME CS
statement is necessary in some circumstances, and you see one in action
here.

222

Chapter 11: ROM BIOS Keyboard Services

The ASSUME directive in this example tells the assembler that the
labels in the code segment (that is, labels that would normally be addressed
using the OS register) do indeed lie in the segment whose name is _TEXT.
This may seem obvious, since no other segments appear in this routine.

Nevertheless, it is possible to write assembly-language routines in
which labels in one segment are addressed relative to some other segment;
in such a case, the ASSUME directive would not necessarily reference the
segment within which the labels appear. In later chapters you'll see
examples of this technique, but here the only segment to worry about is the
_TEXT segment, and the ASSUME directive makes this fact explicit.

223

Chapter 12

Miscellaneous

Services

RS-232 Serial Communications Services 227

Service OOH (decimal 0): Initialize Serial Port 228

Service OIH (decimal 1): Send Out One Character 229

Service 02H (decimal 2): Receive One Character 230

Service 03H (decimal 3): Get Serial Port Status 230

Service 04H (decimal 4): Initialize Extended Serial Port 231

Service 05H (decimal 5): Control Extended Communications Port 232

Miscellaneous System Services 232

Service OOH (decimal 0): Turn On Cassette Motor 233

Service OIH (decimal 1): Turn Off Cassette Motor 233

Service 02H (decimal 2): Read Cassette Data Blocks 233

Service 03H (decimal 3): Write Cassette Data Blocks 234

Service 21H (decimal 33): Read or Write PS/2 POST Error Log 234

Service 83H (decimal 131): Start or Cancel Interval Timer 234

Service 84H (decimal 132): Read Joystick Input 235

Service 86H (decimal 134): Wait During a Specified Interval 235

Service 87H (decimal 135): Protected-Mode Data Move 235

Service 88H (decimal 136): Get Extended Memory Size 236

Service 89H (decimal 137): Switch to Protected Mode 236

Service COH (decimal 192): Get System Configuration Parameters 236

Service CIH (decimal 193): Get ROM BIOS Extended Data Segment 237

Service C2H (decimal 194): Pointing-Device Interface 237

Service C3H (decimal 195): Enable/Disable Watchdog Timer 239

Service C4H (decimal 196): Programmable Option Select 239

ROM BIOS Hooks 239

Service 4FH (decimal 79): Keyboard Intercept 240

Service 80H (decimal 128): Device Open 241

Service 81H (decimal 129): Device Close 241

Service 82H (decimal 130): Program Termination 241

Service 85H (decimal 133): Sys Req Keystroke 241

Service 90H (decimal 144): Device Busy 242

Service 91H (decimal 145): Interrupt Complete 243

Printer Services 243

Service OOH (decimal 0): Send 1 Byte to Printer 243

Service OIH (decimal 1): Initialize Printer 244

Service 02H (decimal 2): Get Printer Status 244

Other Services 244

Interrupt 05H (decimal 5): Print-Screen Service 245

Interrupt IIH (decimal 17): Equipment-List Service 246

Interrupt 12H (decimal 18): Memory-Size Service 247

Interrupt 18H (decimal 24): ROM BASIC Loader Service 247

Interrupt 19H (decimal 25): Bootstrap Loader Service 247

Interrupt lAH (decimal 26): Time-of-Day Services 248

226

Chapter 12: Miscellaneous Services

In this chapter, we'll be covering all ROM BIOS services that are either not
important enough or not complex enough to warrant their own chapters:
RS-232 serial communications services, system services, ROM BIOS hooks,
and printer services. We'll also cover some services that are odd enough to
be considered miscellaneous, even in a chapter of miscellany.

RS-232 Serial Communications Services
This section discusses the RS-232 asynchronous serial communications port
services in the ROM BIOS. Before we begin describing the ROM BIOS ser
vices in detail, you need to know a few important things about the serial
communications port, particularly the terminology. We assume you have a
basic understanding of data communications, but if you discover that you
don't understand the following information, turn to one of the many
specialty books on communications for some background information.

Many words are used to describe the RS-232 data path in and out of the
computer. One of the most common is port However, this use of the word

port is completely different from our previous use of the word. Throughout
most of this book, we have used port to refer to the addressable paths used
by the 8088 microprocessor to talk to other parts of the computer within the
confines of the computer's circuitry. All references to port numbers, the
BASIC statements INP and OUT, and the assembly-language operations IN
and OUT refer to these addressable ports. The RS-232 asynchronous serial
communications port differs because it is a general-purpose I/O path, which
can be used to interconnect many kinds of information-processing equip
ment outside the computer. Typically, the serial ports are used for telecom

munications (meaning a telephone connection through a modem) or to send
data to a serial-type printer.

Four serial communications services are common to all IBM models.

These services are invoked with interrupt 14H (decimal 20), selected
through register AH, and numbered OGH through 03H. (See Figure 12-1.) The

PS/2 ROM BIOS contains two additional services that provide extended sup
port for the more capable PS/2 serial port.

The original design of the IBM personal computers allowed up to
seven serial ports to be added, although a computer rarely uses more than
one or two. The PS/2 ROM BIOS explicitly supports only four serial ports.
No matter how many serial ports exist, the serial port number is specified
in the DX register for all ROM BIOS serial communications services. The

first serial port is indicated by OGH in DX.

227

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service Description

OOH Initialize Serial Port.

01H Send Out One Character.

02H Receive One Character.

03H Get Serial Port Status.

04H Initialize Extended Serial Port.

05H Control Extended Communication Port.

Figure 12-1. The RS-232 serial port services available through interrupt 14H
(decimal 20).

Service OOH (decimal 0): Initialize Serial Port
Service OOH (decimal 0) sets the various RS-232 parameters and initializes
the serial port. It sets four parameters: the baud rate, the parity, the number
of stop bits, and the character size (also called the word length). The
parameters are combined into one 8-bit code, which is placed in the AL
register with the format shown in Figure 12-2. The bit settings for each code
are shown in Figure 12-3. When the service is finished, the communication
port status is reported in AX, just as it is for service 03H. (See service 03H
for the details.)

Bit

76543210 Use

XXX Baud-rate code

. . . XX. . . Parity code

X. . Stop-bit code

XX Character-size code

Figure 12-2. The bit order of the serial port parameters passed in register AL to
service OOH.

□ NOTE: Although it is painfully slow, 300 baud used to be the
most commonly used baud rate for personal computers using
modems. A rate of 1200 baud is now the most common, particularly
for serious applications that require faster transmission, but
widespread use of at least 2400 baud communications is inevitable.

228

Chapter 12: Miscellaneous Services

BAUD RATE PARITY

BU BU

7 6 5 Value BUs per Second 4 3 Value Meaning

0 0 0 0 110 0 0 0 None

0 0 1 I 150 0 1 1 Odd parity

0 1 0 2 300 1 0 2 None

0 1 1 3 600 1 1 3 Even parity

I 0 0 4 1200

1 0 1 5 2400

1 1 0 6 4800 CHARACTER SIZE

1 1 1 7 9600
BU

1 0 Value Meaning

STOP BITS
0 0 0 Not used

0 1 1 Not used

BU 1 0 2 7-bit*
2 Value Meaning

1 1 3 8-bit

One

Two * There are only 128 standard ASCII characters, so
they can be transmitted as 7-bit characters, rather than
8-bit characters.

Figure 12-3. The bit settings for the four serial port parameters for service OOH.

Service OIH (decimal 1): Send Out One Character
Service OIH (decimal 1) transmits one character out the serial port specified
in DX. When you call service OIH, you place the character to be transmitted
in AL. When service OIH returns, it reports the status of the communica

tions port. If AH = OOH, then the service was successful. Otherwise bit 7 of
AH indicates that an error occurred, and the other bits of AH report the type
of error. These bits are outlined in the discussion of service 03H, the status

service.

The error report supplied through this service has one anomaly:
Because bit 7 reports that an error has occurred, it is not available to indi
cate a time-out error (as the details in service 03H would suggest). Conse
quently, when this service or service 02H reports an error, the simplest and
most reliable way to check the nature of the error is to use the complete
status report given by service 03H, rather than the less-complete status code
returned with the error through services OIH and 02H.

229

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service 02H (decimal 2): Receive One Character
Service 02H (decimal 2) receives one character from the communications
line specified in DX and returns it in the AL register. The service waits for a
character or any signal that indicates the completion of the service, such as
a time-out. AH reports the success or failure of the service in bit 7, as ex
plained in the discussion of service OIH. Again, consider the advice under
service OIH for error handling and see service 03H for the error codes.

Service 03H (decimal 3): Get Serial Port Status
Service 03H (decimal 3) returns the complete serial port status in the AX
register. The 16 status bits in AX are divided into two groups: AH reports the
line status (which is also reported when errors occur with services OIH and
02H), and AL reports the modem status, when applicable. Figure 12-4 con
tains the bit codings of the status bits. Some codes report errors, and others
simply report a condition.

□ NOTE: One special bit of information about the time-out error
(AHy bit 7) is worth noting: The earliest version of the ROM BIOS for
the original PC had a programming error that caused a serial-port
time-out to be reported as a transfer-shift-register-emptylbreak-
detect-error combination (bits 01010000 rather than 10000000). This
has been corrected on all subsequent versions of the ROM BIOS, but
it has caused many communications programs to treat these error
codes skeptically. You may want to keep this in mind. See page 62
for details on identifying the ROM BIOS version dates and machine
ID codes.

Bit
76543210 Meaning (when set tol)

Bit
76543210 Meaning (when set tol)

AH Register (line status)
1

AL Register (modem status)
Time-out error

Transfer shift register empty
Transfer holding register empty
Break-detect error

Framing error
Parity error
Overrun error

Data ready

1 Received line signal detect
Ring indicator
Data-set-ready
Clear-to-send

Delta receive line signal detect
Trailing-edge ring detector
Delta data-set-ready
Delta clear-to-send

Figure 12-4. The bit coding for the status bytes returned in register AX by service 03H.

230

Chapter 12: Miscellaneous Services

Service 04H (decimal 4): Initialize Extended Serial Port
Service 04H (decimal 4) is available only in the PS/2 ROM BIOS. It expands
the capabilities of service OOH to provide support for the PS/2's improved
serial ports. If you compare service 04H with service OOH, you'll find that

the four serial port initialization parameters passed in AL in service OOH are
separated into four registers in service 04H (Figure 12-5). Also, service 04H
returns both modem and line status in register AX, exactly as service 03H

does. Because service 04H has these expanded capabilities, you should gen

erally use it instead of service OOH for PS/2 serial port initialization.

BREAK (register AL)

Value Meaning

OOH No break

OIH Break

PARITY (register BH)

Value Meaning

OOH None

OIH Odd

02H Even

03H Stick parity odd

04H Stick parity even

BAUD RATE (register CL)

Value Meaning Value Meaning

OOH 110 baud 05H 2400 baud

OIH 150 baud 06H 4800 baud

02H 300 baud 07H 9600 baud

03H 600 baud 08H 19,200 baud

04H 1200 baud

Value

STOP BITS (register BL)

Meaning

OOH One

01H Two (for word length = 6,7, or 8)
1V2 (for word length = 5)

WORD LENGTH (register CH)

Value Meaning

OOH 5 bits

OIH 6 bits

02H 7 bits

03H 8 bits

Figure 12-5. Register values for serial port initialization with interrupt 14H, service 04H.
(Register DX contains a serial port number between 0 and 3.)

231

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service 05H (decimal 5): Control Extended Communications Port
This service, provided only by the PS/2 ROM BIOS, lets you read from or
write to the modem control register of a specified serial communications
port. When you call service 05H with AL = OOH and a serial port number in
DX, service 05H returns with register BL containing the value in the modem
control register of the specified serial port. When you call service 05H with
AL = OIH, the ROM BIOS copies the value you pass in register BL into the
modem control register for the specified port. In both cases, service 05H
returns the modem status and line status in registers AL and AH, as does ser
vice 03H.

Miscellaneous System Services
The miscellaneous system services provided through interrupt 15H are in
deed miscellaneous. (See Figure 12-6.) Many are intended primarily for
writers of operating-system software. Most application programmers will
find little use for these services in their programs, because the functions
provided are better carried out by calls to the operating system than they
are through the ROM BIOS. Some of these services, such as the pointing-
device interface (subservice C2H), provide functionality not otherwise avail
able in the ROM BIOS or in DOS; others are obsolete and virtually unusable.

Service Description

OOH Turn On Cassette Motor.

OIH Turn Off Cassette Motor.

02H Read Cassette Data Blocks.

03H Write Cassette Data Blocks.

21H Read or Write PS/2 Power-On Self-Test Error Log.

4FH Keyboard Intercept.

80H Device Open.

81H Device Close.

82H Program Termination.

83H Start or Cancel Interval Timer.

84H Read Joystick Input.

85H Sys Req Keystroke.

86H Wait During a Specified Interval.

87H Protected-Mode Data Move.

88H Get Extended Memory Size.

89H Switch to Protected Mode.

Figure 12-6. Miscellaneous system services available through (continued)
interrupt 15H.

232

Chapter 12: Miscellaneous Services

Figure 12-6. continued

Service Description

90H Device Busy.

91H Interrupt Complete.

COH Get System Configuration Parameters.

C1H Get Extended BIOS Data Segment.

C2H Pointing-Device Interface.

C3H Enable/Disable Watchdog Timer.

C4H Programmable Option Select.

The four cassette tape services are used when working with the

cassette tape connection, which is a part of only two PC models: the original
PC and the now-defunct PCjr. The cassette port was created with the

original PC on the assumption that a demand might exist for it. None did,
and it has remained almost totally unused. Nevertheless, IBM does support

the use of the cassette port, both through the ROM BIOS services discussed
here and through BASIC, which lets you read and write either data or BASIC
programs on standard audio cassette tape.

The cassette port never proved worthwhile, however. Nobody sells PC
programs on tape, and nobody has found much use for the cassette port,
given the convenience of diskettes and hard disks.

Service OOH (decimal 0): Turn On Cassette Motor
Service OOH (decimal 0) turns on the cassette motor, which is not an

automatic operation of the ROM BIOS services as it is with the diskette
services. Any program that is using this service can expect a slight delay
while the motor starts.

Service OIH (decimal 1): Turn Off Cassette Motor
Service OIH (decimal 1) turns off the cassette motor. This is not an auto

matic operation of the ROM BIOS services as it is with the diskette services.

Service 02H (decimal 2): Read Cassette Data Blocks
Service 02H (decimal 2) reads one or more cassette data blocks. Cassette

data is transferred in standard-size 256-byte blocks, just as diskette data

normally uses a standard 512-byte sector. The number of bytes to be read is
placed in the CX register. Although data is placed on tape in 256-byte
blocks, any number of bytes can be read or written. Consequently, the
number of bytes placed in the CX register need not be a multiple of 256. The
register pair ES:BX is used as a pointer to the memory area where the data is
to be placed.

233

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

After the service is completed, DX contains the actual number of bytes
read, ES:BX points to the byte immediately after the last byte transferred,
and the carry flag (CF) is set or cleared to report the success or failure of
the operation. On failure, AH returns an error code. (See Figure 12-7.)

Code Meaning

01H Cyclical redundancy check (CRC) error

02H Lost data transitions: bit signals scrambled

04H No data found on tape

Figure 12-7. The error code returned by service 02H in register AH if the CF indicates a
failure to read the data blocks.

Service 03H (decimal 3): Write Cassette Data Blocks
Service 03H (decimal 3) writes one or more cassette data blocks of 256 bytes
each. (See service 02H.) As with service 02H, the CX register gives the count
of bytes requested, and ES:BX points to the data area in memory. If the
amount of data being written is not a multiple of 256 bytes, the last data
block is padded out to full size.

After the service is completed, CX should contain OOH, and ES:BX
should point just past the last memory byte that was written.

Curiously, no error signals are provided for this service, essentially
because a cassette tape recorder can't inform the computer of any
difficulties. This forces the ROM BIOS to write data in blind faith that all is

well. Needless to say, it would be a good idea to read back any data written,
just to check it.

Service 21H (decimal 33): Read or Write PS/2 POST Error L(^
Service 2IH (decimal 33) is used internally by the ROM BIOS power-on self-
test (POST) routines in PS/2s with the Micro Channel bus to keep track of
hardware initialization errors. You will rarely, if ever, find use for this ser
vice in your own applications.

Service 83H (decimal 131): Start or Cancel Interval Timer
This service lets a program set a specified time interval and lets the pro
gram check a flag to show when the interval expires. The program should
call this service with AL = OOH, with the address of a flag byte in registers
ES and BX, and with the time interval in microseconds in registers CX and
DX. The high-order 16 bits of the interval should be in CX; the low-order 16

bits in DX.

234

Chapter 12: Miscellaneous Services

Initially, the flag byte should be OOH. When the time interval elapses,
the ROM BIOS sets this byte to 80H. The program can thus inspect the flag

byte at its own convenience to determine when the time interval has elapsed:

Clear the flag byte

Call service 83H to start the Interval timer

WHILE if lag byte = OOH)

BEGIN

(do something useful)

END

The ROM BIOS interval timer uses the system time-of-day clock,

which ticks about 1024 times per second, so the timer's resolution is

approximately 976 microseconds.

Service 84H (decimal 132): Read Joystick Input
Service 84H (decimal 132) provides a consistent interface for programs that
use a joystick or a related input device connected to IBM's Game Control
Adapter. When you call this service with DX = OOH, the ROM BIOS reports
the adapter's four digital switch input values in bits 4 through 7 of register
AL. Calling service 84H with DX = OIH instructs the BIOS to return the
adapter's four resistive input values in registers AX, BX, CX, and DX.

Service 84H is not supported on the IBM PC or in the original PC/XT BIOS
(dated 11/08/82). Be sure to check the computer's model identification and

ROM BIOS revision date before you rely on this BIOS service in a program.

Service S6H (decimal 134): Wait During a Specified Interval
Like service 83H, service 86H (decimal 134) lets a program set a specified

time interval to wait. Unlike service 83H, however, service 86H suspends

operation of the program that calls it until the specified time interval has
elapsed. Control returns to the program only when the wait has completed
or if the hardware timer is unavailable.

Service 87H (decimal 135): Protected-Mode Data Move
A program running in real mode can use service 87H to transfer data to or
from extended (protected-mode) memory on a PC/AT or PS/2 Model 50, 60,
or 80. This service is designed to be used by a protected-mode operating
system. The IBM-supplied VDISK utility also uses this function to copy data
to and from a virtual disk in extended memory. See the IBM BIOS Interface
Technical Reference Manual for details.

235

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service 88H (decimal 136): Get Extended Memory Size
Service 88H (decimal 136) returns the amount of extended (protected-mode)
memory installed in a PC/AT or PS/2 Model 50, 60, or 80. The value, in

kilobytes, is returned in register AX.

The amount of extended memory is established by the ROM BIOS POST
routines. It includes extended memory installed beyond the first megabyte;
that is, memory starting at 10000:0000H. Lotus/Intel/Microsoft "expanded"
memory is not included in the value returned by service 88H.

Service 89H (decimal 137): Switch to Protected Mode
Service 89H (decimal 137) is provided by the ROM BIOS as an aid to con
figuring an 80286-based computer (PC/AT, PS/2 Model 50 or 60) or an 80386-
based computer (PS/2 Model 80) for protected-mode operation. This ROM
BIOS service is intended for operating systems that run in protected mode.
To use this service, you must be thoroughly acquainted with protected-
mode programming techniques. See the IBM BIOS Interface Technical Refer
ence Manual for details.

Service COH (decimal 192): Get System Configuration Parameters
Service COH (decimal 192) returns the address of a table of descriptive infor
mation pertaining to the hardware and BIOS configuration of a PC/AT (in
ROM BIOS versions dated 6/10/85 and later) or PS/2. Figure 12-8 shows the
structure of the table. You can find the meaning of the model and submodel
bytes in Chapter 3, page 64.

Offset Size Contents

0 2 bytes Size of configuration information table

2 1 byte Model byte

3 1 byte Submodel byte

4 1 byte ROM BIOS revision level

5 1 byte Feature information byte:

Bit? Fixed-disk BIOS uses DMA Channel 3

Bit 6 Cascaded interrupt level 2 (IRQ2)

Bit 5 Real-time clock present

Bit 4 BIOS keyboard intercept implemented

Bit 3 Wait for external event supported

Bit 2 Extended BIOS data area allocated

Bitl Micro Channel bus present

BitO (Reserved)

Figure 12-8. System configuration information returned by service COH.

236

Chapter 12: Miscellaneous Services

Service CIH (decimal 193):
Get ROM BIOS Extended Data Segment

Service CIH (decimal 193) returns the segment address of the ROM BIOS ex

tended data area. The ROM BIOS clears the carry flag and returns the seg

ment value in register ES if an extended BIOS data segment is in use.
Otherwise, service CIH returns with the carry flag set.

The ROM BIOS uses the extended data area for transient storage of data.
For example, when you pass the address of a pointing-device interface sub
routine to the BIOS, the BIOS stores this address in its extended data area.

Service C2H (decimal 194): Pointing-Device Interface
Service C2H (decimal 194) is the ROM BIOS interface to the built-in PS/2
pointing-device controller. This interface makes it easy to use an IBM PS/2
mouse.

To use the interface, you must write a short subroutine to which the
ROM BIOS can pass packets of status information about the pointing device.
Your subroutine should examine the data in each packet and respond appro

priately, for example by moving a cursor on the screen. The subroutine
must exit with a far return without changing the contents of the stack.

To use the ROM BIOS pointing-device interface, carry out the follow
ing sequence of steps:

1. Pass the address of your subroutine to the BIOS (subservice 07H).

2. Initialize the interface (subservice 05H).

3. Enable the pointing device (subservice OOH).

At this point, the BIOS begins sending packets of status information to
your subroutine. The BIOS places each packet on the stack and calls your
subroutine with a far CALL so that the stack is formatted when the subrou

tine gets control as in Figure 12-9. The low-order byte of the X and Y data
words contains the number of units the pointing device has moved since the
previous packet of data was sent. (The Z data byte is always 0.) The status
byte contains sign, overflow, and button information. (See Figure 12-10.)

237

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Status

X data

Ydata

Zdata

Return address

■SP+10

■SP + 8

-SP + 6

■SP + 4

•SP

Figure 12-9. Pointing-device data packet.

Bit Meaning

0 Set if left button pressed
1 Set if right button pressed
2-3 (Reserved)
4 Set if X data is negative
5 Set if Y data is negative
6 Set if X data overflows

7 Set if Y data overflows

Figure 12-10. Status byte in pointing-device data packet.

When you use service C2H, the value you pass in register AL selects
one of eight available subservices. (See Figure 12-11.) The actual register
contents for each subservice are in Chapter 13, page 284.

Subservice Description

OOH

OIH

02H

03H

Enable/disable pointing device.
Reset pointing device.
Set sample rate.
Set resolution.

Figure 12-11. Subservices available in the BIOS pointing-device interface
(interrupt 15H, service C2H).

(continued)

238

Chapter 12: Miscellaneous Services

Figure 12-11. continued

Subservice Description

04H Get pointing-device type.

05H Initialize pointing device.

06H Extended commands.

07H Pass device-driver address to ROM BIOS.

Service C3H (decimal 195): Enable/Disable Watchdog Timer
Service C3H (decimal 195) provides a consistent interface to the watchdog
timer in the PS/2 models 50,60, and 80. It lets an operating system enable the

watchdog timer with a specified timeout interval or disable the timer.
Because the watchdog timer is intended specifically for use in operating-
system software, this ROM BIOS service will rarely be useful in your
applications.

Service C4H (decimal 196): Programmable Option Select
Like many other interrupt 15H services, service C4H (decimal 196) is
intended for use by operating system software. This service provides a
consistent interface to the Programmable Option Select feature of the Micro
Channel architecture in the FS/2 models 50,60, and 80.

ROM BIOS Hooks

The ROM BIOS in the PC/AT and in the PS/2s provides a number of hooks.
These hooks are implemented as interrupt 15H "services," but to use them
you must write an interrupt 15H handler that processes only these services
and passes all other interrupt 15H service requests to the ROM BIOS. (See
Figure 12-12.) This arrangement lets different components of the BIOS
communicate with each other and with operating-system or user-written
programs in a consistent manner.

The ROM BIOS hooks are intended primarily for use in operating
systems and in programs written to augment operating-system or BIOS
functions. However, neither DOS nor OS/2 uses these BIOS hooks, and few

program applications have reason to. Still, you might find it worthwhile to
examine what the ROM BIOS hooks do, if only to get an idea of how the ROM
BIOS is put together and how an operating system can interact with it.

239

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

mov ah.ServiceNumber

int 15h
— Executed within ROM BIOS

UserHandler PROC far ; interrupt 15H vector

; points here

cmp ah,Serv1ceNumber

je Service

jmp (to previous INT 15H handler)

Service:

(do something useful)

— User-written interrupt 15H handler

1 ret

UserHandler ENDP

Figure 12-12. How the ROM BIOS hooks can be used.

Service 4FH (decimal 79): Keyboard Intercept
In the PC/AT ROM BIOS (dated 06/10/85 and later) and in the PS/2 ROM BIOS,
the keyboard interrupt handler (that is, the handler for hardware interrupt
09H) executes interrupt 15H with AH = 4FH and with AL equal to the key
board scan code. This action has little effect: The ROM BIOS interrupt 15H,
service 4FH (decimal 79) handler returns with the carry flag set, and the in
terrupt 09H handler continues processing the keystroke.

If you write an interrupt handler for interrupt 15H, however, you can
hook service 4FH and process keystrokes yourself. Install your handler by
storing its segmented address in the interrupt 15H vector. (Be sure to save
the previous contents of the interrupt 15H vector.) Your interrupt 15H han
dler would do the following:

IF (AH04FH)

jump to default interrupt 15H handler

ELSE

process keyboard scan code in AL

set or reset carry flag

exit from interrupt handler

240

Chapter 12; Miscellaneous Services

If your handler processes the scan code in AL, it must either set or
reset the carry flag before it returns control to the ROM BIOS interrupt 09H
handler. Setting the carry flag indicates that the BIOS interrupt 09H handler
should continue processing the scan code in AL: Clearing the carry flag
causes the BIOS handler to exit without processing the scan code.

The problem with using the ROM BIOS keyboard intercept is that other
programs, including DOS itself, can and do process keystrokes before the
ROM BIOS interrupt 09H handler ever has a chance to issue interrupt 15H.
(These programs do this by pointing the interrupt 09H vector to their own
handlers instead of to the default ROM BIOS handler.) Because your program

can't determine if this is happening, you cannot rely on the ROM BIOS
keyboard intercept to be called for every keystroke.

Service 80H (decimal 128): Device Open
This hook lets programs determine when a particular hardware device is
available for input or output. An installable device driver can issue interrupt
15H with AH = 80H to inform an operating system that the device was
opened. The operating system's interrupt 15H handler can inspect BX for an
identifying value for the device and CX for an ID value of the program that
opened the device.

Service 81H (decimal 129): Device Close
Like service 80H, this service is provided for programs that establish input/
output connections to hardware devices to communicate with an operating
system. Service 81H (decimal 129) is called by such a program with a device
ID value- in register BX and a program ID value in CX. An operating
system's interrupt 15H handler can inspect these values to determine that a
particular device was closed for input/output by a particular program.

Service 82H (decimal 130): Program Termination
Service 82H (decimal 130) is provided by the ROM BIOS so that a program
can signal its own termination to an operating system. When a program
executes interrupt 15H with AH = 82H and an ID value in BX, the operating
system can handle the interrupt and thus be informed that the program
terminated.

Service 85H (decimal 133): Sys Req Keystroke
When you press the Sys Req key on an 84-key keyboard or Alt-Sys Req on a
101/102-key keyboard, the ROM BIOS keyboard interrupt handler executes
interrupt 15H with AH = 85H. You can detect when this key is pressed by
hooking interrupt 15H and inspecting the value in AH.

241

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When the Sys Req key is first pressed, the ROM BIOS issues interrupt
15H with AH = 85H and AL = OOH. When the key is released, the BIOS
executes interrupt 15H with AH = 85H and AL = OIH. Thus the structure of
an interrupt 15H handler that detects Sys Req keystrokes would be as follows:

IF (AH085H)

jump to previous Interrupt 15H handler

ELSE IF (AL ° OOH)

process Sys Req keystroke

ELSE

process Sys Req key release

exit from Interrupt handler

Service 90H (declinal 144): Device Busy
This service lets a device driver alert an operating system to the beginning
of an input or output operation. An operating system's interrupt 15H handler
processes this information (for example) by preventing subsequent input/
output to the device until the device signals, with service 91H, that it is no
longer busy.

The ROM BIOS device drivers for disks, the keyboard, and the printer
all issue appropriate service 90H (decimal 144) interrupts. Each device is
identified by a value in register AL. (See Figure 12-13.) These ID values are
selected according to the following guidelines:

00H-7FH: Non-reentrant devices that can process only one I/O re
quest at a time sequentially.

80H-BFH: Reentrant devices that can handle multiple I/O requests
at once.

COH-FFH: Devices that expect the operating system to wait for a
predetermined period of time before returning control to the
device. The operating system's interrupt 15H handler must set the
carry flag to indicate that the wait has been carried out.

Value Meaning

OOH Fixed disk

OIH Diskette

02H Keyboard

Figure 12-13. Device identification values for interrupt 15H, (continued)
services 90H and 91H.

242

Chapter 12: Miscellaneous Services

Figure 12-13. continued

Value Meaning

03H Pointing device

80H Network

FCH PS/2 fixed-disk reset

FDH Diskette-drive motor start

FEH Printer

Service 91H (decimal 145): Interrupt Complete
Devices that use service 90H to notify an operating system that they are
busy can subsequently use service 91H (decimal 145) to signal that an input/
output operation has been completed. The identification value passed in AL
should be the same as the value passed in service 90H.

Printer Services
The ROM BIOS printer services support printer output through the parallel
printer adapter. The three ROM BIOS printer services are invoked with
interrupt I7H (decimal 23), requested through the AH register, and
numbered OOH through 02H. (See Figure 12-14.) The general PC-family
design allows more than one printer to be installed, so a printer number
must be specified in register DX for all these services.

Service Description

OOH Send One Byte to Printer.

OIH Initialize Printer.

02H Get Printer Status.

Figure 12-14. The three ROM BIOS printer services invoked through interrupt 17H
(decimal 23).

Service OOH (decimal 0): Send 1 Byte to Printer
Service OOH (decimal 0) sends the byte you specify to the printer. When the
service is completed, AH is then set to report the printer status (see service
02H), which can be used to determine the success or failure of the operation.
See the special notes on printer time-out under service 02H.

243

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Service OIH (decimal 1): Initialize Printer
Service OIH (decimal 1) initializes the printer. To do this, the service sim
ply sends two control codes (08H and OCH) to the printer control port. As
with the other two services, the printer status is reported in AH.

Service 02H (decimal 2): Get Printer Status
Service 02H (decimal 2) reports the printer status in the AH register. The in
dividual bit codes are shown in Figure 12-15.

The printer time-out has caused some difficulty in the IBM personal
computers. Any I/O driver needs to set a time limit for a response from the
device being controlled. Ideally, this time limit should be short enough to
ensure that an unresponsive device can be reported in a timely manner. Un
fortunately, one normal printer operation can take a surprisingly long time:
a page eject ("skip to the top of the next page"). The time allowed varies
from version to version of the ROM BIOS. Treat a time-out signal with care.

Bit

76543210 Meaning (when set to 1)

1 Printer not busy (0 = busy)

. 1 Acknowledgment from printer

. . 1 Out-of-paper signal

. . . 1 Printer selected

. . . . 1 . . . I/O error

1 . . Not used

1 . Not used

1 Time-out

Figure 12-15. The printer status bits reported in the AH register by services OOH, OIH,
and02H.

Other Services
We now come to the grab bag of all other ROM BIOS services. (See Figure
12-16.) Some of these services are intended for use in program applications;
others are more likely to be used in operating-system software. The follow
ing sections describe these six service interrupts.

244

Chapter 12: Miscellaneous Services

Interrupt
Hex Dec Description

05H 5 Print-Screen Service

IIH 17 Equipment-List Service

12H 18 Memory-Size Service

18H 24 ROM BASIC Loader Service

19H 25 Bootstrap Loader Service

lAH 26 Time-of-Day Services

Figure 12-16. Six miscellaneous ROM BIOS services supported by IBM, and their associ
ated interrupts.

Interrupt 05H (decimal 5): Print-Screen Service
Interrupt 05H (decimal 5) activates the print-screen service: The keyboard
support routines generate interrupt 05H in response to the Shift-PrtSc com
bination; any other programs that want to perform a print-screen operation
can safely and conveniently do so by generating interrupt 05H.

The print-screen service will maintain the current cursor position on
the screen and successfully print any printable characters from the screen in
either text or graphics mode. It uses both the standard video services (those
that waltz the cursor around the screen and read characters from the screen
buffer) and the standard printer services.

This service directs all its output to printer number 0, the default
printer. There are no input or output registers for this service. However, a
status code is available at low-memory location 0050:0000H. (See page 61.) If
the byte at that location has a value of FFH (decimal 255), then a previous
print-screen operation was not completed successfully. A value of OOH indi
cates that no error occurred, and that the print-screen operation is ready to
go. A value of OIH indicates that a print-screen operation is currently in
progress; any request for a second one will be ignored.

The ROM BIOS print-screen routine cannot print images drawn on the
screen in graphics modes. If you want to produce a printed screen snapshot
in CGA-compatible graphics modes, use the DOS utility program
GRAPHICS. This program installs a memory-resident, graphics-mode print-
screen routine that hooks interrupt 05H. Once you execute GRAPHICS,
pressing Shift-PrtSc or executing interrupt 05H while in a graphics mode
will cause the graphics-mode print-screen routine to run.

245

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Interrupt IIH (decimal 17): Equipment-List Service
Interrupt IIH (decimal 17) reports what equipment is installed in the com
puter. This report contains the same information stored at low-memory
location 0040:0010H. (See Chapter 3, page 55.) The report is coded as shown
in Figure 12-17, in the bits of a 16-bit word, which is placed in register AX.
See interrupt 12H for a related service.

The equipment information is gathered on an as-accurate-as-possible
basis and may not be exactly correct. Different methods are used for acquir
ing the information in the various models.

The equipment list is determined only once at power-up time and is
then left in memory. This means that you can change the equipment list
under software control. For example, you could take some equipment off
line so that it is not used. However, modifying the equipment list is risky
business—don't bet on its success. See interrupt 19H for comments on how
to modify the equipment list and get reliable results.

Bit Meaning
1514131211109 8 7 6 5 4 3 2 1 0

^ ̂ Number of printers installed
^ (Reserved)
^ • Game adapter: 1 = installed

Number of RSS-232 serial portsXXX

X (Not used)

XX Number of diskette drives--1

XX. . . . Initial video mode: 11= monochrome;
10 = 80-column color;
01 = 40-column color

XX. . PC with 64 KB motherboard: Amount of
system board RAM (11 = 64 KB;
10 = 48 KB; 01 = 32 KB; 00 = 16 KB
PC/AT: (Not used)
PS/2s: Bit 3 = (unused); bit 2: 1 = pointing
device installed

• • . . X . 1 if math co-processor installed

X 1 if any diskette drives exist (if so, see bits
7 and 6)

Figure 12-17. The bit coding for the equipment list reported in register AX and invoked by
interrupt IIH (decimal 17).

246

Chapter 12: Miscellaneous Services

The format of the equipment list was defined for the original IBM PC.
As a result, some parts of the list vary, depending on the PC model. For ex
ample, bits 2 and 3 originally indicated the amount of RAM installed on the
motherboard. (Yes, in those days you could indeed have purchased a PC
with as little as 16 KB of RAM.) In PS/2s, these bits have a different signifi
cance. (See Figure 12-17.)

Interrupt 12H (decimal 18): Memory-Size Service
Interrupt 12H (decimal 18) invokes the service that reports the available
memory size in kilobytes—the same information stored at low-memory
location 0040:0013H. (See page 55.) The value is reported in AX. The
memory-size value reflects only the amount of base memory available. In a
PC/AT or PS/2 with extended (protected-mode) memory, you must use inter
rupt 15H, service 88H (Get Extended Memory Size), to determine the
amount of extended memory installed.

In the standard models of the PC, this value is taken from the setting
of the physical switches inside the system unit. These switches are supposed
to reflect the actual memory installed, although under some circumstances
they are set to less memory than is actually present. In the PC/AT and PS/2s,
the ROM BIOS POST determines the amount of memory in the system by ex
ploring available RAM to see what is installed. If the BIOS is using an ex
tended data area, this data area is allocated at the highest memory address
available, so the value returned by this service excludes the amount of RAM
reserved for the extended data area.

Interrupt ISH (decimal 24): ROM BASIC Loader Service
Interrupt 18H (decimal 24) is normally used to activate ROM BASIC. Any
program can activate BASIC (or whatever has replaced it) by generating in
terrupt 18H. This can be done to intentionally bring up ROM BASIC or also
to abruptly shut down, or dead-end a program. However, see the next inter
rupt, number 19H, for a better way to dead-end a program.

Interrupt 19H (decimal 25): Bootstrap Loader Service
Interrupt 19H (decimal 25) activates the standard bootstrap routine for the
computer (which produces a similar result to powering on and nearly the
same net result as the Ctrl-Alt-Del key combination). However, this
bootstrap interrupt bypasses the lengthy memory check of the power-on
routines as well as the reset operations of Ctrl-Alt-Del.

The bootstrap loader works by reading the first sector of the first track
(the boot sector) from the diskette in drive A into memory at 0000:7C00H. If

247

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

the ROM BIOS cannot read from the diskette, it reads the boot sector from
the hard disk in drive C instead. If both attempts fail, the BIOS executes in
terrupt 18H to bring up ROM BASIC. If the BIOS reads a sector from the disk
but the sector doesn't contain an operating-system boot record, the BIOS
issues an error message and waits for you to reboot or replace the offending
diskette.

We know of two uses for this interrupt service. One is to immediately
shut down, or dead-end, the operation of the computer. This can be done by
a program when it encounters an "illegal" situation, for example, by a
copy-protected program that detects an apparent violation of copy
protection.

The other use for this service is to reboot the computer without going
through the reset and restart operations, which would, for example, recalcu
late the memory size and equipment list reported by interrupts IIH and 12H.
This interrupt is particularly useful for any program that modifies either of
these two items. The reasoning is simple: If you want to change the equip
ment list or the memory size (for example, to set aside some memory for a
RAM disk), you cannot reliably count on all programs—including DOS —
to check the actual memory or equipment specifications each time they are
used. But a program could set aside some memory, change the memory
specification, and then use this interrupt to reboot the system. When that is
done and DOS is activated, DOS would take its own record of the available
memory from the value set by your program. Neither DOS nor any civilized
DOS program would be aware of, or interfere with, the memory area that
was set aside.

To give you a brief example, here's a fragment of assembler code that
will change the ROM BIOS's record of the memory size and then use inter
rupt I9H to reboot the computer:

mov ax.40H ; get BIOS data segment of hex 40...

mov es.ax ; ...into ES segment register

mov word ptr es:[13h].256 ; set memory to 256 KB

int 19h ; reboot system

Interrupt lAH (decimal 26): Time-of-Day Services
Interrupt lAH (decimal 26) provides the time-of-day services. Unlike other
interrupts covered in this section but like all other ROM BIOS services,
several services can be activated by this interrupt. When you execute
interrupt lAH, you specify the service number, as usual, in register AH.
(See Figure 12-18.)

248

Chapter 12: Miscellaneous Services

Service Description

OOH Get Current Clock Count.

01H Set Current Clock Count.

02H Get Real-Time Clock Time.

03H Set Real-Time Clock Time.

04H Get Real-Time Clock Date.

05H Set Real-Time Clock Date.

06H Set Real-Time Clock Alarm.

07H Reset Real-Time Clock Alarm.

09H Get Real-Time Clock Alarm Time and Status.

Figure 12-18. The ROM-BIOS time-of-day services invoked by interrupt lAH.

The ROM BIOS maintains a time-of-day clock based on a count of sys
tem-clock ticks since midnight. The system clock "ticks" by generating in
terrupt 8 at specific intervals. On each clock tick, the ROM BIOS interrupt
08H service routine increments the clock count by 1. When the clock count

passes 24 hours' worth of ticks, the count is reset to 0 and a record is made
of the fact that midnight has been passed. This record is not in the form of a
count, so you can't detect if two midnights have passed.

The clock ticks at a rate that is almost exactly 1,193,180 ̂ 64 KB, or

roughly 18.2 times a second. The count is kept as a 4-byte integer at low-
memory location 0040:006CH. The midnight count value, used to compare
against the rising clock count, is 1800B0H, or 1,573,040; when the clock hits
the midnight count value, the byte at location 0040:0070H is set to OIH and
the count is reset. When DOS needs to know the time, it reads the clock

count through the time-of-day service and calculates the time from this raw
count. If it sees that midnight has passed, it also increments the date.

You can use the following BASIC formulas to calculate the current
time of day from the clock count:

HOURS = INTCCLOCK / 65543)

CLOCK = CLOCK - (HOURS * 65543)

MINUTES = INKCLOCK / 1092)

CLOCK = CLOCK - (MINUTES * 1092)

SECONDS = CLOCK / 18.2

In reverse, we use the following formula to calculate a nearly correct
clock count from the time:

COUNT = (HOURS * 65543) + (MINUTES * 1092)+ (SECONDS * 18.2)

249

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The ROM BIOS services in the PC/AT and PS/2s include time-of-day
and date services that perform some of these tasks automatically.

Service OOH (decimal 0): Get Current Clock Count
Service OOH (decimal 0) returns the current clock count in two registers: the
high-order portion in CX and the low-order portion in DX. AL = OOH if
midnight has not passed since the last clock value was read or set; and AL =
OIH if midnight has passed. The midnight signal is always reset when the
clock is read. Any program using this service must use the midnight signal
to keep track of date changes. DOS programs normally should not use this
service directly. If they do, they must calculate and set a new date.

□ NOTE: It's curious that version 2.0 of DOS did not consistently
update the date on the midnight signal. The next version of DOS
(2.1) and all other versions of DOS do.

Service OIH (decimal 1); Set Current Clock Count
Service OIH (decimal 1) sets the clock count in location 0040:006CH using
the values you pass in registers CX and DX. This service automatically
clears the midnight flag at 0040:0070H.

Service 02H (decimal 2): Get Real-Time Clock Time
The PC/AT and the PS/2s have a real-time clock that maintains the current
date and time in nonvolatile memory. This clock runs in parallel to the
system timer referenced by services OOH and OIH. When you boot a PC/AT or
PS/2, the ROM BIOS initializes the system timer count with the time
indicated by the real-time clock.

You can access the real-time clock directly using service 02H (decimal
2). This service returns the time in binary-coded decimal format (BCD) in
registers CH (hours), CL (minutes), and DH (seconds). If the real-time clock
is defective, the ROM BIOS sets the carry flag.

Service 03H (decimals): Set Real-Time Clock Time
This service complements service 02H. It lets you set the real-time clock on
a PC/AT or PS/2, using the same register assignments as service 02H. Again,
the hours, minutes, and seconds values are in BCD format.

Service 04H (decimal 4): Get Real-Time Clock Date
Service 04H (decimal 4) returns the current date as maintained by the real
time clock in a PC/AT or PS/2. The ROM BIOS returns century (19 or 20) in
register CH, the year in CL, the month in DH, and the day in DL. Again, the
values are returned in BCD format. As in service 02H, the ROM BIOS sets the
carry flag if the real-time clock is not operating.

250

Chapter 12: Miscellaneous Services

Service 05H (decimal 5): Set Real-Time Clock Date
Service 05H (decimal 5) complements service 04H. This service sets the
real-time clock date, using the same registers as service 04H.

Service 06H (decimal 6): Set Real-Time Clock Alarm
Service 06H (decimal 6) lets you create an "alarm" program that executes
at a specific time. This alarm program must be memory-resident at the time
the alarm occurs. To use this service, make your alarm program memory-
resident using the DOS Terminate-and-Stay-Resident service (see page 302),
and be sure that interrupt vector 4AH (0000:0128H) points to the start of your
program. Then call service 06H to set the time for the alarm to occur.

Service 06H uses the same register values as service 03H: CH contains
hours in BCD format, CL contains minutes, and DH contains seconds. The
ROM BIOS sets the carry flag when it returns from this service if the real
time clock is not operating or if the alarm is already in use.

When the real-time clock time matches the alarm time, the BIOS exe

cutes interrupt 4AH, which transfers control to your alarm program. Your
program can then take appropriate action (display a message, for example).
Because the ROM BIOS activates your alarm program by executing an
INT 4AH instruction, the program must exit with an IRET instruction.

Service 07H (decimal 7): Reset Real-Time Clock Alarm
Use service 07H (decimal 7) to disable the real-time clock alarm if it has
been set by a previous call to service 06H.

Service 09H (decimal 9); Get Real-Time Clock Alarm Time
and Status

On PS/2 models 25 and 30, you can determine the current status of the real
time alarm by executing interrupt lAH, service 09H. This service reports
the alarm status in register DL. If DL = OIH, the alarm is active, and the
alarm time is returned in CH, CL, and DH. If DL = OGH, the alarm isn't
enabled.

251

Chapter 13

ROM BIOS

Services Summary

Short Summary 254

Long Summary 258

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

This chapter summarizes the ROM BIOS service routines discussed in Chap
ters 8 through 12 in order to provide you with a quick reference guide.

You can use this chapter to locate the ROM BIOS functions you need
and to determine which registers they use. Where a particular service is
very detailed or tricky to use, we'll refer you to the discussions in the chap
ters and to the IBM technical reference manuals.

Short Summary
In this section, we briefly list all the ROM BIOS services so that they can be

seen together, at a glance.

Subject
Interrupt
Hex Dec Service Description Notes

Print screen 05H 5 N/A Send screen contents to printer.

Video lOH 16 OGH Set video mode.

Video lOH 16 OIH Set cursor size.

Video lOH 16 02H Set cursor position.

Video lOH 16 03H Read cursor position.

Video lOH 16 04H Read light-pen position.

Video lOH 16 05H Set active display page.

Video lOH 16 06H Scroll window up.

Video lOH 16 07H Scroll window down.

Video lOH 16 08H Read character and attribute.

Video lOH 16 09H Write character and attribute.

Video lOH 16 OAH Write character.

Video lOH 16 OBH Set 4-color palette.

Video lOH 16 OCH Write pixel.

Video lOH 16 ODH Read pixel.

Video lOH 16 GEH Write character in teletype mode.

Video lOH 16 GFH Get current video mode.

Video lOH 16 IGH EGA/VGA color palette interface.

Video lOH 16 IIH EGA/VGA character generator
interface.

Video lOH 16 12H EGA/VGA *'alternate select."

Video lOH 16 13H Write character string. PC/AT, PS/2, EGA,
VGA only

Video lOH 16 lAH Get/Set display combination code. PS/2 only

Video lOH 16 IBH Functionality/State information. PS/2 only

Figure 13-1. A short summary of the ROM BIOS services. (continued)

254

Chapter 13: ROM BIOS Services Summary

Figure 13-1. continued

Interrupt
Subject Hex Dec Service Description Notes

Video lOH 16 ICH Save/Restore video state. VGA only

Equipment IIH 17 N/A Get list of peripheral equipment.

Memory 12H 18 N/A Get base memory size (in KB).

Disk 13H 19 OOH Reset disk system.

Disk 13H 19 OIH Get disk status.

Disk 13H 19 02H Read disk sectors.

Disk 13H 19 03H Write disk sectors.

Disk 13H 19 04H Verify disk sectors.

Disk 13H 19 05H Format disk track.

Disk 13H 19 06H Format disk track and set bad sector

flags.

PC/XT fixed disk only

Disk 13H 19 07H Format drive starting at specified
cylinder.

PC/XT fixed disk only

Disk 13H 19 08H Get current drive parameters.

Disk 13H 19 09H Initialize fixed-disk parameter tables.

Disk 13H 19 OAH Read long.

Disk 13H 19 OBH Write long.

Disk l^H 19 OCH Seek to cylinder.

Disk 13H 19 ODH Alternate disk reset.

Disk 13H 19 lOH Test for drive ready.

Disk 13H 19 IIH Recalibrate drive.

Disk 13H 19 14H Controller diagnostics.

Disk 13H 19 15H Get disk type.

Disk 13H 19 16H Change of diskette status.

Disk 13H 19 17H Set diskette type for format.

Disk 13H 19 18H Set media type for diskette format.

Disk 13H 19 19H Park heads. PS/2s only

Disk 13H 19 lAH Format ESDI unit. PS/2 models 50, 60, 80

only

Serial port 14H 20 OOH Initialize serial port.

Serial port 14H 20 OIH Send out one character.

Serial port 14H 20 02H Receive one character.

Serial port 14H 20 03H Get serial port status.

Serial port 14H 20 04H Extended serial port initialize. PS/2s only

Serial port 14H 20 05H Extended serial port control. PS/2s only

(continued)

255

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-1. continued

Interrupt
Subject Hex Dec Service Description Notes

System 15H 21 OOH Turn on cassette motor.

System 15H 21 OIH Turn off cassette motor.

System 15H 21 02H Read data blocks.

System 15H 21 03H Write data blocks.

System 15H 21 21H Read/write POST error log. PS/2 models 50,60, 80
only

System 15H 21 4FH Keyboard intercept. PC/AT, PS/2s only

System 15H 21 80H Device open. PC/AT, PS/2s only

System 15H 21 81H Device close. PC/AT, PS/2s only

System 15H 21 82H Program termination. PC/AT, PS/2s only

System 15H 21 83H Start/stop interval timer. PC/AT, PS/2s only

System 15H 21 84H Joystick support. PC/AT, PS/2s only

System 15H 21 85H Sys Req keystroke. PC/AT, PS/2s only

System 15H 21 86H Wait. PC/AT, PS/2s only

System 15H 21 87H Protected-mode data move. PC/AT, PS/2 models

50,60, 80

System 15H 21 88H Get extended memory size. PC/AT, PS/2 models

50, 60, 80

System 15H 21 89H Switch to protected mode. PC/AT, PS/2 models

50, 60, 80

System 15H 21 90H Device busy. PC/AT, PS/2s only

System 15H 21 91H Interrupt complete. PC/AT, PS/2s only

System 15H 21 COM Get system configuration
parameters.

System 15H 21 CIH Get extended BIOS data segment. PS/2s only

System 15H 21 C2H Pointing-device interface. PS/2s only

System 15H 21 C3H Enable/disable watchdog timer. PS/2 models 50,60, 80

System 15H 21 C4H Programmable Option Select
interface.

PS/2 models 50,60, 80

Keyboard 16H 22 OOH Read next keystroke.

Keyboard 16H 22 OIH Report whether keystroke ready.

Keyboard 16H 22 02H Get shift status.

Keyboard 16H 22 03H Set typematic rate and delay. PC/AT, PS/2s only

Keyboard 16H 22 05H Write to keyboard buffer. PC/AT, PS/2s only

Keyboard 16H 22 lOH Extended keyboard read. PC/AT, PS/2s only

(continued)

256

Chapter 13: ROM BIOS Services Summary

Figure 13-1. continued

Subject
Interrupt
Hex Dec Service Description Notes

Keyboard 16H 22 IIH Extended keyboard status. PC/AT, PS/2s only

Keyboard 16H 22 12H Extended shift status. PC/AT, PS/2s only

Printer 17H 23 OOH Send 1 byte to printer.

Printer 17H 23 OIH Initialize printer.

Printer 17H 23 02H Get printer status.

BASIC 18H 24 N/A Switch control to ROM BASIC.

Bootstrap 19H 25 N/A Reboot computer.

Time lAH 26 OOH Read current clock count.

Time lAH 26 OIH Set current clock count.

Time lAH 26 02H Read real-time clock. PC/AT, PS/2s only

Time lAH 26 03H Set real-time clock. PC/AT, PS/2s only

Time lAH 26 04H Read date from real-time clock. PC/AT, PS/2s only

Time lAH 26 05H Set date in real-time clock. PC/AT, PS/2s only

Time lAH 26 06H Set alarm. PC/AT, PS/2s only

Time lAH 26 07H Reset alarm. PC/AT, PS/2s only

Time lAH 26 09H Get alarm time and status. PS/2 Model 30 only

257

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Long Summary
In this section, we expand the previous summary table to show the register
usage for input and output parameters. The preceding section is best used to
quickly find which service you need; this section is best used to quickly find
how to use each service.

Service Interrupt Input
Register

Output Notes

Print screen. 05H N/A N/A Send screen contents to

printer. Status and result byte
at0050:0000H.

Video Services

Set video mode. lOH AH = OOH None

AL = video mode

Video modes in AL:

OOH: 40 X 25 16-color text

(gray-scaled on composite
monitors).
OIH: 40 X 25 16-color text.

02H: 80 X 25 16-color text

(gray-scaled on composite
monitors).
03H: 80 X 25 16-color text.

04H: 320x2004-color

graphics.
05H: 320x2004-color

graphics (gray-scaled on
composite monitors).
06H: 640x200 2-color

graphics.
07H: 80 X 25 monochrome text

(MDA, EGA, VGA).
ODH: 320x200 16-color

graphics (EGA, VGA).
OEH: 640x200 16-color

graphics (EGA, VGA).
OFH: 640 x 350 monochrome

graphics (EGA, VGA).
lOH: 640x350 16-color

graphics (EGA, VGA).
IIH: 640x480 2-color

graphics (MCGA, VGA).
12H: 640x480 16-color

graphics (VGA).
13H: 320x200 256-color

graphics (MCGA, VGA).

Figure 13-2. A complete summary of the ROM BIOS services. (continued)

258

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Register
Service Interrupt Input Output Notes

Set cursor size. lOH AH = 01H

CH = starting
scan line

CL = ending
scan line

None Useful values for CH and CL

depend on video mode.

Set cursor lOH AH = 02H None

position. BH = display page
DH = row

DL = column

Read cursor lOH AH = 03H CH = starting scan line
position. BH = display page CL = ending scan line

DH = row

DL = column

Read light-pen lOH AH = 04H AH = pen trigger signal
position. BX = pixel column

CH = pixel row
(CGA and EGA video
modes 4, 5, and 6)
CX = pixel row
(EGA except modes 4,
5, and 6)
DH = character row

DL = character column

Set active lOH AH = 05H None

display page. AL = page number

Scroll

window up.
None

lOH AH = 06H

AL = lines to

scroll up
BH = fill attribute

CH = upper row
CL = left column

DH = lower row

DL = right column

(continued)

259

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Scroll window

down.

lOH AH = 07H

AL = lines to

scroll down

BH = fill attribute

CH = upper row
CL = left column

DH = lower row

DL = right column

None

Read character

and attribute.

lOH AH = 08H

BH = display
page

AH = attribute

AL = character

Write character lOH AH = 09H None

and attribute. AL = character

BH = display page
BL = attribute

CX = number of

characters to repeat

Write character. lOH AH = OAH None

AL = character

BH = page number
BL = color in

graphics mode
CX = number of

characters to repeat

Set color palette. 1 OH AH = OBH

BH = palette
color ID

BL = color to be

used with palette
ID

None

Write pixel. lOH AH = OCH None
AL = color

BH = display page
CX = pixel column
DX = pixel row

(continued)

260

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Read pixel. lOH AH = ODH AL = pixel value
BH = display page
CX = pixel column
DX = pixel row

Write character lOH

in teletype mode.
AH = OEH

AL = character

BH = display page
BL = color for

graphics mode

None Display page number required
only for IBM PC ROM BIOS
dated 10/19/81 and earlier.

Get current v ideo 1 OH

mode.

AH = OFH AH = width in

characters

AL = video mode

BH = display page

Set one palette lOH
register.

AH=10H

AL = OOH

BH = palette
register value
BL = palette
register number

None EGA, VGA.

Set border lOH AH=10H

register. AL = OIH
BH = border color

None EGA, VGA.

Set all palette lOH AH = lOH
registers. AL = 02H

ES:DX —> table of

palette values

None EGA, VGA.

Select

background
intensity or
blink attribute.

lOH AH=10H None

AL = 03H

To enable

background
intensity:
BL = OOH

To enable blinking:
BL = 01H

EGA, VGA.

(continued)

261

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Read one palette lOH AH = lOH BH = palette register VGA only.
register. AL = 07H value

BL = palette
register number

Read border lOH AH = lOH BH = border color VGA only.
register. AL = 08H value

Read all palette lOH AH = lOH ES:DX table of VGA only.
registers. AL = 09H palette register values

Update one lOH AH = lOH None MCGA, VGA,
video DAG AL = lOH

color register. BX = color

register number
DH = red value

CH = green value
CL = blue value

Update block lOH AH = lOH MCGA, VGA,
of video DAC AL = 12H

color registers. BX = first register
to update
CX = number of

registers to update
ES:DX table of

red-green-blue
values

Set video DAC lOH AH = lOH None VGA only.
color page. AL=13H

To select paging
mode:

BL = OOH

BH = OOH selects 4

pages of 64
registers, or
BH = OIH selects

16 pages of 16
registers

(continued)

262

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Set video DAG To select page:
color page. BL = 01H

continued. BH = page number

Read one video lOH AH=10H DH = red value

DAG color AL = 15H CH = green value
register. BX = color CL = blue value

register number

MCGA, VGA.

Read block of

video DAG color

registers.

lOH AH = lOH

AL=17H

BX = first

register number
GX = number

of registers
ES:DX —> table of

red-green-blue
values

Table at ES:DX

updated
MGGA, VGA.

Get video DAG

color page.
lOH AH = lOH

AL=1AH

BH = current page
BL = current

paging mode

None VGA only.

Sum video DAG lOH

color values to

gray shades.

AH = lOH

AL=1BH

BX = first color

register
GX = number of

color registers

None MGGA, VGA.

Load user-

specified
alphanumeric
character set.

lOH AH=11H

AL = OOH

BH = bytes per
character in table

BL = character

generator RAM
block

None EGA, MGGA, VGA.

(continued)

263

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Load user- CX = number of

specified characters

alphanumeric DX = first

character set, character

continued. ES:BP —> character

definition table

Load ROM BIOS lOH AH=11H None EGA, VGA.
8x14 AL = 01H

alphanumeric BL = character

character set. generator RAM
block

Load ROM BIOS lOH AH= IIH None EGA, MCGA, VGA.
8x8 AL = 02H

alphanumeric BL = character

character set. generator RAM
block

Select displayed lOH AH=11H None EGA, MCGA, VGA.
alphanumeric AL = 03H

character sets. BL = character

block generator
RAM

Load ROM BIOS lOH AH=11H None MCGA, VGA.
8x16 AL = 04H

alphanumeric BL = character

character set. generator RAM
block

Load user- lOH AH=11H None EGA, MCGA, VGA.
specified AL=10H

alphanumeric BH = bytes per
character set and character

adjust displayed definition

character height. BL = character

generator RAM
block

(continued)

264

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Service

Register

Interrupt Input Output Notes

Load user-

specified
alphanumeric
character set and

adjust displayed
character height.
(continued)

CX = number of

characters

DX = first

character

ES:BP —> character

definition table

Load ROM BIOS

8 X 14

alphanumeric
character set and

adjust displayed
character height.

lOH AH=11H

AL=11H

BL = character

generator RAM
block

None EGA, VGA.

Load ROM BIOS

8x8

alphanumeric
character set and

adjust displayed
character height.

lOH AH= IIH

AL= 12H

BL = character

generator RAM
block

None EGA, VGA.

Load ROM BIOS

8x16

alphanumeric
character set and

adjust displayed
character height.

lOH AH=11H

AL=14H

BL = character

generator RAM
block

None VGA only.

Load user-

specified 8x8
graphics character
set.

lOH AH=11H None

AL = 20H

ES:BP —> character

definition table

EGA, MCGA, VGA.
Copies ESiBP into the
interrupt IFH vector. Only
characters 80H through FFH
should be defined.

(continued)

265

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Load user- lOH

specified graphics
character set.

AH=11H None

AL = 21H

CX = bytes per
character

definition

ES:BP character

definition table

User-specified
number of
character rows:

BL = OOH

DL = number of

character rows

14 character rows:

BL = 01H

25 character rows:

BL = 02H

43 character rows:

BL = 03H

EGA, MCGA, VGA.

Load ROM BIOS lOH

8 X 14 graphics
character set.

AH=11H

AL = 22H

BL = (as for
AL = 21H)
DL = (as for
AL = 21H)

None EGA, VGA.

Load ROM BIOS lOH

8x8 graphics
character set.

AH=11H

AL = 23H

BL = (as for
AL = 21H)
DL = (as for
AL = 21H)

None EGA, MCGA, VGA.

Load ROM BIOS lOH

8 X 16 graphics
character set.

AH=11H

AL = 24H

BL = (as for
AL = 21H)
DL = (as for
AL = 21H)

None MCGA, VGA.

(continued)

266

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Register
Service Interrupt Input Output Notes

Get character

generator

information.

lOH AH=11H

AL = BOH

Contents of
interrupt IFH
vector:

BH = OGH

Contents of
interrupt 43H
vector:

BH = 01H

Address of ROM
8x14 characters:

BH = 02H

Address of ROM
8x8 characters:

1BH = 03H

Address of second
half of ROM 8x8
table:

BH = 04H

Address of ROM
9x14 alternate

characters:

BH = 05H

Address of ROM
8x16 characters:

BH = 06H

Address of ROM
9x16 alternate

characters:

BH = 07H

CX = points
DL = displayed
character rows -1

ES:BP —> character

table

EGA, MCGA, VGA.

Return video

configuration
information.

lOH AH = 12H

BL = lOH

BH = default BIOS

video mode

(OGH = color,
GIH = monochrome)
BL = amount of video

RAM (GGH = 64 KB,
GIH =128 KB,
G2H = 192 KB,

G3H = 256 KB)

EGA, VGA.

(continued)

267

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service

Register

Interrupt Input Output Notes

Return video

configuration
information.

(continued)

CH = feature bits

CL = configuration
switches

Select alternate

print screen
routine.

lOH AH=12H

BL = 20H

None EGA, MCGA, VGA.
Updates INT 05H vector.

Select scan lines lOH

for alphanumeric
modes.

AH=12H

BL = BOH

200 scan lines:

AL = OOH

350 scan lines:

AL = 01H

400 scan lines:

AL = 02H

AL=12H VGA only.

Select default lOH

palette loading.
AH=12H

BL = 31H

Enable default
palette loading:
AL = OOH

Disable default
palette loading:
AL = 01H

AL=12H MCGA, VGA.

Enable/disable lOH

video addressing.
AH=12H

BL = 32H

Enable video

addressing:
AL = OOH

Disable video

addressing:
AL = 01H

AL=12H MCGA, VGA.

(continued)

268

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Service

Register

Interrupt Input Output Notes

Enable/disable

gray-scale
summing.

lOH AH = 12H

BL = 33H

Enable gray
scale summing:
AL = OOH

Disable gray
scale summing:
AL = 01H

AL=12H MCGA, VGA.

Enable/disable

BIOS cursor

emulation.

lOH AH=12H

BL = 34H

Enable cursor

emulation:

AL = OOH

Disable cursor

emulation:

AL = 01H

AL= 12H VGA only.

Display switch lOH AH=12H AL=12H
interface. BL = 3^H

Initial adapter
video off:

AL = OOH

Initial planar video
on: AL = OIH

Switch active video

off: AL = 02H

Switch inactive

video on :

AL = 03H

ES:DX^128-byte
save area

MCGA, VGA.

Enable/disable

video refresh.

lOH AH = 12H

BL = 36H

Enable refresh:
AL = OOH

Disable refresh:
AL = 01H

AL=12H VGA only.

(continued)

269

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Write string;
don't move

cursor.

lOH AH=13H

AL = OOH

BL = attribute

BH = display page
DX = starting
cursor position
CX = length of
string
ES:BP —> start of

string

None PC/AT, EGA, MCGA, VGA.

Write string; lOH AH = 13H
move cursor AL = 01H

after string. BL = attribute
BH = display page
DX = starting
cursor position
CX = length of
string
ES:BP —> start of

string

None PC/AT, EGA, MCGA, VGA.

Write string of
alternating
characters and

attributes; don't
move cursor.

lOH AH=13H

AL = 02H

BH = display page
DX = starting
cursor position
CX = length of
string
ES:BP —> start of

string

None PC/AT, EGA, MCGA, VGA.

Write string of
alternating
characters and

attributes;
move cursor.

lOH AH=13H

AL = 03H

BH = display page
DX = starting
cursor position
CX = length of
string
ES:BP -» start of

string

None PC/AT, EGA, MCGA, VGA.

(continued)

270

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Service

Register

Interrupt Input Output Notes

Get display lOH AH=1AH AL=1AH MCGA,VGA.
combination AL = OOH BL = active display Values returned in
code. BH = inactive display BL and BH:

OOH: no display.
01H: MDA or compatible.
02H: CGA or compatible.
04H: EGA with color display.
05H: EGA with monochrome

display.
06H: Professional Graphics
Controller.

07H: VGA with monochrome

display.
08H: VGA with color display.
OBH: MCGA with

monochrome display.
OCR: MCGA with color

display.
FFH: unknown.

Set display lOH AH = lAH AL = 1 AH
combination AL = 01H

code. BL = active display
BH = inactive

display

MCGA, VGA. See table above
for values in BL and BH.

BIOS lOH

functionality/state
information.

AH=1BH AL=1BH

BX = OOH Buffer at ES:DI

ES:DI -> 64-byte updated
buffer

MCGA, VGA. See the IBM
BIOS Interface Technical
Reference Manual for table
format.

Return save/ lOH AH = ICH
restore buffer AL = OOH

size. CX = requested
states

(bit 0 = video
hardware state;

bit 1 = video BIOS

data area;

bit 2 = video DAC

and color registers)

AL = ICH VGA only. Use this service
(if function supported) before saving the current video
BX = save/restore state,
buffer size in 64-byte
blocks

(continued)

271

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Save current

video state.

lOH AH=1CH

AL = 01H

CX = requested
states

ESrBX save/

restore buffer

VGA only. May disrupt
current video state, so follow a
call to this service with a call

to the "Restore Current Video

State" service.

Restore current

video state.

lOH AH=1CH

AL = 02H

CX = requested
states

ES:BX —> save/

restore buffer

None VGA only.

Equipment-List Service

Get list of

peripheral
attached

IIH None AX = equipment list,
bit-coded

Bit settings in AX:
00 = diskette drive installed.

01 = math coprocessor
iequipment. nstalled.

02,03 = system board RAM in
16 KB blocks (PCs with 64 KB
motherboard only).
02 = pointing device installed
(PS/2s only).
04,05 = initial video mode:

00 = unused;
01 = 40 X 25 color;
10 = 80 X 25 color;
11 = 80 X 25 monochrome.

06,07 = number of diskette
drives - 1.

08 = (not used).
09,10,11 = number of
RS-232 cards in system.
12 = game I/O attached
(PC and PC/XT only).
13 = internal modem installed.

14,15 = number of parallel
printers attached.

(continued)

212

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Memory Service

Get base

memory size.
12H None AX = memory size

(KB)
See also "Get extended

memory size" (INT 15H,
AH = 88H).

Disk Services

Reset disk

system.

13H AH = OOH

DL = drive

number

CF = success/

failure flag
AH = status code

See INT 13H, service OIH, for
status code values.

Get disk status. 13H AH = 01H

DL = drive

number

AH = status code

Status values (hex):
AH = OOH: no error

AH = 01H: bad

command

AH = 02H: address

mark not found

AH = 03H: write

attempted on write-
protected disk (D)
AH = 04H: sector not

found

AH = 05H: reset

failed (F)
AH = 06H: diskette

removed (D)
AH = 07H: bad

parameter table (F)
AH = 08H: DMA

overrun

AH = 09H: DMA across

64 KB boundary
AH = OAH: bad sector

flag(F)
AH = OBH: bad

cylinder (F)
AH = OCH: bad media

type (D)
AH = ODH: invalid

number of sectors on

format (F)

(F) = fixed disk only.
(D) = diskette only.

(continued)

273

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output

Get disk status,
continued.

Notes

AH = OEH: control data

address mark

detected (F)
AH = OFH: DMA

arbitration level out of

range(F)
AH = lOH: bad CRC or

EGG

AH=11H: EGG

corrected data error (F)
AH = 20H: controller

failed

AH = 40H: seek failed

AH = 80H: time out (F)
or drive not ready (D)
AH = AAH: drive not

ready (F)
AH = BBH: undefined

error (F)
AH = GGH: write

fault (F)
AH = EOH: status

error (F)
AH = FFH: sense

operation failed (F)

Read disk

sectors.

13H AH = 02H GF = success/
AL = number failure flag
of sectors AH = status code

GH = track AL = number of

number sectors read

GL = sector

number

DH = head

number

DL = drive

number

ES:BX = pointer
to buffer

Status codes in AH:

See INT 13H, service OIH.

(continued)

274

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Register

Service Interrupt Input Output Notes

Write disk

sectors.

13H AH = 03H CF = success/

AL = number of failure flag
sectors

CH = track

number

CL = sector

number

DH = head

number

DL = drive

number

ES:BX = pointer
to buffer

AH = status code

AL = number of

sectors written

Status codes in AH:

See INT13H, service 01H.

Verify disk 13H AH = 04H
sectors. AL = number

of sectors

CH = track

number

CL = sector

number

DH = head number

DL = drive number

Format disk 13H

track (cylinder).

CF = success/

failure flag
AH = status code

AL = number of sectors

verified

Status codes in AH:

See INT13H, service OIH.

AH = 05H

AL = interleave

value (PC/XT
only)
CH = cylinder
number (bits 0-7)
CL = cylinder
number (bits 8-9)
DH = head number

DL = drive number

ES:BX table of

sector format

information

CF = success/

failure flag
AH = status code

Status codes in AH:

See 1NT13H, service OIH.
See Chapter 10 for contents
of table.

(continued)

275

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Format disk 13H AH = 06H CP = success/
track and set AL = interleave failure flag
bad sector flags. value AH = status code

CH = cylinder
number (bits 0-7)
CL = cylinder
number (bits 8-9)
DH = head number

DL = drive number

PC/XT fixed disk only.

Format drive

starting at
specified cylinder.

13H AH = 07H CF = success/
AL = interleave failure flag
value AH = status code

CH = cylinder
number (bits 0-7)
CL = cylinder
number (bits 8-9)
DH = head number

DL = drive number

PC/XT fixed disk only.

Get current drive 13H

parameters.
AH = 08H CF = success/

failure flag
AH = status code

DL = number of drives

DH = max. read/write
head number

CL (bits 6-7) = max.
cylinder number
(bits 8-9)
CL (bits 0-5) = max.
sector number

CH = max. number of

cylinders (bits 0-7)

Status codes in AH:

See INT 13H, service OIH.

Initialize 13H AH = 09H CF = success/ Interrupt 41H points to table
fixed-disk DL = drive failure flag for drive 0.
base tables. number AH = status code Interrupt 46H points to table

for drive 1.

Status codes in AH: See INT

13H, service OIH.

(continued)

276

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Service

Register
Interrupt Input Output Notes

Read long. 13H AH = OAH

DL = drive

number

DH = head

number

CH = cylinder
number

CL = sector

number

ES:BX ̂ buffer

CP = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Write long. 13H AH = OBH

DL = drive

number

DH = head

number

CH = cylinder
number

CL = sector

number

ES:BX ̂ buffer

CP = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Seek to cylinder. 13H AH = OCH

DL = drive

number

DH = head

number

CH = cylinder
number

CP = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Alternate

disk reset.

13H AH = ODH

DL = drive

number

CP = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Test for

drive ready.
13H AH = lOH

DL = drive

number

CP = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Recalibrate

drive.

13H AH=11H

DL = drive

number

CP = success/

failure flag
AH = status code

Status^codes in AH: See INT

13H, service OIH.

(continued)

111

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Controller

diagnostics.
13H AH = 14H CF = success/

failure flag
AH = status code

Status codes in AH: See INT

13H, service OIH.

Get disk type. 13H AH=15H

DL = drive

number

CF = success/
failure flag
AH = disk type
CX, DX = number of

512-byte sectors
(fixed-disk only)

Disk types:
AH = OOH: disk not there.

AH = OIH: diskette, no change
detection present.
AH = 02H: diskette, change
detection present.
AH = 03H: fixed disk.

Change of
diskette status.

13H AH=16H

DL = drive

number

AH = diskette change
status:

OOH = no diskette

change
OIH = invalid parameter
06H = diskette changed
80H = drive not ready

Set diskette type
for format.

13H AH = 17H

AL = diskette

type

DL = drive

number

CF = success/

failure flag
AH = status code

Diskette type set in AL:
AL = OIH: 360 KB diskette in

360 KB drive.

AL = 02H: 360 KB diskette in

1.2 MB drive.

AL = 03H: 1.2 MB diskette in

1.2 MB drive.

AL = 04H: 720 KB diskette in

720 KB drive.

Set media type
for diskette format.

13H

a

AH=18H

CH = number of

tracks (bits 0-7)
CL (bits 6-7) =
number of tracks

(bits 8-9)
CL (bits 0-5) =
sectors per track
DL = drive

number

CF = success/
failure flag
AH = status code

ES:DI^ 11-byte
parameter table
(disk-base table)

Only in PC/AT BIOS dated
11/15/85 and later, PC/XT
BIOS dated 1/10/86 and later,
and PS/2s.

(continued)

278

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Park heads. 13H AH = 19H

DL = drive

number

CF = success/

failure flag
AH = status code

PS/2s only.

Format Unit. 13H AH=1AH None For PS/2 fixed disks used with

IBM Enhanced Small Device

Interface (ESDI) adapter. See
the IBM BIOS Interface
Technical Reference Manual.

Serial Port Services

Initialize

serial port.
14H AH = OOH

AL = serial port
parameters

DX = serial port
number

AX = serial port status Serial port parameter
bit settings:
bits 0-1 = word length:
10 = 7 bits; 11 = 8 bits,
bit 2 = stop bits: 0 = 1; 1 = 2.
bits 3-4 = parity:
00,10 = none; 01 = odd;
11= even.

bits 5-7 = baud rate:

000=110;

001 = 150;
010 = 300;

011=600;
100=1200;
101=2400;

110 = 4800;

111=9600.

For PC/XT/AT family only.
For PS/2s, use subservice 04H,
** Extended serial port
initialize." See page 280.

Send one

character to

serial port.

14H AH = 01H

AL = character

DX = serial port
number

AH = status code Status bit settings: See INT
14H, service 03H.

(continued)

279

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Receive one I4H AH = 02H AH = status code Status bit settings: See INT
character from DX = serial port AL = character 14H, service 03H.
serial port. number

Get serial port 14H AH = 03H AX = status code
status. DX = serial port

number

Status code bit settings:

AH bit settings:
bit 0 = data ready.
bit 1 = overrun error.

bit 2 = parity error.
bit 3 = framing error.
bit 4 = break detected.

bit 5 = transmission buffer

register empty.
bit 6 = transmission shift

register empty.
bit 7 = time out.

AL bit settings:
bit 0 = delta clear-to-send.

bit 1 = delta data-set-ready.
bit 2 = trailing-edge ring
detected.

bit 3 = change, receive line
signal detected,
bit 4 = clear-to-send.

bit 5 = data-set-ready,
bit 6 = ring detected,
bit 7 = receive line signal
detected.

Extended serial

port initialize.
14H AH = 04H

AL = break

BH = parity
BL = stop bit
CH = word length
CL = baud rate

DX = serial port
number (0-3)

AH = line status

AL = modem status

PS/2s only. See Chapter 12
for details.

(continued)

280

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Service

Register
Interrupt Input Output Notes

Extended serial 14H

port control.
AH = 05H AH = line status

DX = serial port AL = modem status
For PS/2s only. See Chapter
12 for details.

number

(0,1,2,3)

To read modem

control register:
AL = OOH

To write modem

control register:
AL = 01H

BL = value for

modem control

register

If called with
AL = OOH:

BL = modem control

register value

System Services *

Turn on cassette

motor.

15H AH = OOH AH = OOH

CF = 0

IBM PC only.

Turn off cassette

motor.

15H AH = 01H AH = OOH

CF = 0

IBM PC only.

Read cassette

data blocks.

15H AH = 02H

CX = number

of bytes
ES:BX data

area

ES:BX last byte
read + 1

DX = number of

bytes read
CF = 0 (no error)
or 1 (error)

IBM PC only.

Write cassette

data blocks.

15H AH = 03H

CX = number of

bytes
ES:BX data

area

CF = success/

failure flag
ESiBX —> last byte
written + 1

CX = OOH

IBM PC only.

Read/Write

power-on self-test
error log.

15H AH = 21H AH = OOH PS/2 models 50, 60, 80.

* For interrupt 15H service numbers not supported in the ROM BIOS, the PC/XT BIOS
returns AH = 80H and CF = 1; the AT or PS/2 BIOS returns AH = 86H and CP = 1. (continued)

281

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Read/Write To read error log: If called with
power-on self-test AL = OOH AL = OOH:

error log. To write error log: BX = number of POST
continued. AL = 01H error codes logged

BH = device code ES:DI -» POST

BL = error code error log

If called with
AL = OIH:

CF = status (0: no error;
1: log full)

Keyboard 15H AH = 4FH See Chapter 12 for details.
intercept.

Device open. 15H AH = 80H See Chapter 12 for details.

Device close. 15H

X

00
II

X
<

See Chapter 12 for details.

Program 15H AH = 82H See Chapter 12 for details.
termination.

Start/stop
interval timer

(event wait).

15H AH = 83H

To start interval

timer:

AL = OOH

CX,DX = time in

microseconds

ES:BX ̂ 1-byte
flag

To stop interval
timer:

AL = 01H

If called with
AL = OOH:

CF = 0 (if timer
started) or
CF = 1 (if timer
already running or
function not

supported)

If called with
AL = OIH:

CF = 0 (if timer
canceled)
CF = 1 (if function
not supported)

PC/AT and PS/2 models 50,
60, 80. At completion of
specified interval, the high-
order bit of the byte at ES:BX
is set to 1.

Joystick support. 15H AH = 84H If called with

To read switches:

DX = OOH

To read resistive

inputs:
DX = OOH

AL = switch settings
(bits 4-7)

Not supported by PC or XT
BIOS prior to 01/10/86.

282

(continued)

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Joystick support,
continued.

CF = 0 (if switches
successfully read)
^>rCF=l

(if unsuccessful)

If called with
DX = OIH:

AX = stick A jc-value

BX = stick A y-value
CX = stick B jc-value

DX = stick B y-value

Sys Req
keystroke.

15H AH = 85H

AL = key status
See Chapter 12 for details.

Wait during
a specified
interval.

15H AH = 86H

CX,DX = time in

microseconds

CF = 0(if
successful)
CF = 1 (timer
already running or
function not

supported)

PC/AT and PS/2s only.

Protected-mode

data move.

15H AH = 87H PC/AT and PS/2 models 50,
60, 80. See xht IBM BIOS
Technical Reference Manual
for details.

Get extended

memory size.
15H AH = 88H AX = memory size

(KB)
PC/AT and PS/2 models 50,

60, 80.

Switch to

protected mode.
15H AH = 89H PC/AT and PS/2 models 50,

60, 80. SQQXhe IBM BIOS
Technical Reference Manual
for details.

Device busy. 15H AH = 90H See Chapter 12 for details.

Interrupt complete. 15H AH = 91H See Chapter 12 for details.

(continued)

283

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Get system 15H AH = COH AH = 0 See Chapter 12 for details. Not
configuration CF = 0 supported in PC, XT BIOS
parameters. ES:BX ROM BIOS prior to 01/10/86, or AT prior

system configuration to 06/10/85.
parameters

Get extended

BIOS data

segment.

15H AH = C1H CF = 0

ES = extended BIOS

data segment address

PS/2s only.

Enable/disable

pointing device.
15H AH = C2H

AL = OOH

To enable:

BH = OOH

To disable:

BH = 01H

CF = Oif

successful;
1 if error

AH = status:

OOH: no error

OIH: invalid

function call

02H: invalid input
03H: interface error

04H: resend

05H: no device

driver installed

PS/2s only.

Reset pointing 15H AH = C2H CF = Oif PS/2sonly.
device. AL = 01H successful;

1 if error

AH = status

(as above)
BH = OOH (device ID)
BL = undefined

Set pointing-
device sample
rate.

15H AH = C2H CF = Oif

AL = 02H successful;

BH = sample rate: ^
OOH: lO/second AH = status

(

PS/2s only.

OIH: 20/second

02H: 40/second

03H: 60/second

04H: 80/second

05H: 100/second

06H: 200/second

as above)

(continued)

284

Chapter 13: ROM BIOS Services Summary

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Set pointing- 15H AH = C2H

o

II

o

PS/2s only.
device AL = 03H successful;
resolution. BH = resolution: 1 if error

OOH: 1 count/ AH = status

millimeter (as above)

OIH: 2 count/

millimeter

02H: 4 count/

millimeter

03H: 8 count/

millimeter

Get pointing- 15H AH = C2H

O

II

o
PS/2s only.

device type. AL = 04H successful; 1 if
error

AH = status (as
above)
BH = device ID

Initialize 15H AH = C2H CF = Oif PS/2s only.
pointing device. AL = 05H successful; 1 if

BH = data packet error

size (1-8 bytes) AH = status (as
above)

Extended

pointing-device
commands.

15H AH = C2H

AL = 06H

To get status:
BH = OOH

To set scaling to
1:1:

BH = 01H

To set scaling to
2:1:

BH = 02H

CF = Oif

successful;

1 if error

AH = status (as above)

If called with
BH = OOH:

BL = status byte 1
CL = status byte 2
DL = status byte 3

PS/2s only. See Chapter 12 for
contents of status bytes.

Pass pointing- 15H AH = C2H CF = Oif PS/2sonly.
device driver AL = 07H successful;
address to BIOS. ES:BX —> device 1 if error

driver AH = status (as above)

(continued)

285

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Enable/disable 15H AH = C3H CF = 0 PS/2 models 50,60, 80 only.

watchdog timer. BX = timer count if successful

(OIH-FFH)

To enable:

AL = 01H

To disable:

AL = OOH

Programmable
Option Select
(POS) interface.

15H AH = C4H

To get POS
register base
address:

AL = OOH

To enable slot for
POS setup:
AL = 01H

To enable an

adapter:
AL = 02H

If called with
AL = OOH:

AL = OOH

DX = base POS

register address

If called with
AL = OIH:

AL = 01H

BL = slot number

If called with
AL = 02H:

AL = 02H

PS/2 models 50,60, 80 only.

Keyboard Services

Read next 16H AH = OOH AH = scan code

keystroke. AL = ASCII character

code

Report whether 16H
keystroke ready.

AH = OIH ZF = 0 if keystroke
available

AH = scan code

(ifZF = 0)
AL = ASCII character

code (ifZF = 0)

Get shift status. 16H AH = 02H AL = shift status bits Shift status bits:
bit 7 = 1: Insert state active

bit 6 = 1: Caps Lock active
bit 5 = 1: Num Lock active

bit 4 = 1: Scroll Lock active

bit 3 = 1: Alt pressed
bit 2 = 1: Ctrl pressed
bit 1 = 1: left Shift pressed
bit 0 = 1: right Shift pressed

(continued)

286

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Register
Service Interrupt Input Output Notes

Set typematic
rate and delay.

16H AH = 03H

AL = 05H

BL = typematic
rate

BH = delay value

None PC/AT (BIOS dated 11/15/85
and later) and PS/2s only. See
Chapter 11 for rate and values.

Write to 16H

keyboard buffer.
AH = 05H

CH = scan code

CL = ASCII

character code

AL = OOH (success);
AL = OIH (keyboard
buffer full)

PC/XT (BIOS dated 01/10/86
and later), PC/AT (BIOS dated
11/15/85 and later), and PS/2s
only.

Extended

keyboard read.
16H AH = lOH AH = scan code

AL = ASCII

character code

PC/XT (BIOS dated 01/10/86
and later), PC/AT (BIOS dated
11/15/85 and later), and PS/2s
only.

Extended

keyboard status.
16H AH = 11H If no keystroke

available:

ZF=1

If keystroke available:
ZF = 0

AH = scan code

AL = ASCII

character code

PC/XT (BIOS dated 01/10/86
and later), PC/AT (BIOS dated
11/15/85 and later), and PS/2s
only.

Extended shift

status.

16H AH = 12H AL = shift status

(as above)

AH = extended shift

status:

bit?: SysReq
is pressed
bit 6: CapsLock
is pressed
bit 5: NumLock

is pressed
bit 4: ScrollLock

is pressed
bit 3: right Alt
is pressed
bit 2: right Ctrl
is pressed

PC/XT (BIOS dated 01/10/86
and later), PC/AT (BIOS dated
11/15/85 and later), and PS/2s
only.

(continued)

287

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Service Interrupt
Register

Input Output Notes

Extended

shift status,

continued.

bit 1: left Alt

is pressed
bit 0: left Ctrl

is pressed

Printer Services

Send 1 byte to
printer.

17H AH = OOH

AL = character

DX = printer
number

AH = success/

failure status flags
Status bit settings:
bit 7 = 1: not busy
bit 6 = 1: acknowledge
bit 5 = 1: oiit of paper
bit 4 = 1: selected

bits = 1: I/O error

bit 2 = unused

bit 1 = unused

bit 0 = time out

Initialize printer. 17H AH = 01H

DX = printer
number

AH = status code Status code bit settings as
above.

Get printer status. 17H AH = 02H

DX = printer
number

AH = status code Status code bit settings as
above.

Miscellaneous Services

Switch control to

ROM BASIC.

18H None N/A No return, so no possible
output.

Reboot computer. 19H None N/A No return, so no possible
output.

Time-of'Day Services

Read current

clock count.

lAH AH = OOH AL > OOH if time

of day has passed
midnight
CX = tick count,

high word
DX = tick count,

low word

Timer-tick frequency is about
18.2 ticks/second, or about
65,543 ticks/hour.

(continued)

288

Figure 13-2. continued

Chapter 13: ROM BIOS Services Summary

Register
Service Interrupt Input Output Notes

Set current

clock count.

lAH AH = 01H

CX = tick count,
high word
DX = tick count,

low word

None

Read real-time

clock.

lAH AH = 02H CH = hours

(in BCD)
CL = minutes

(in BCD)
DH = seconds

(in BCD)
CF = 1 if clock not

operating
DL = OIH if daylight
savings time option set

PC/AT and PS/2s only.
Daylight savings option not
available in PC/AT BIOS

dated 01/10/84.

Set real-time

clock.

lAH AH = 03H

CH = hours

CL = minutes

DH = seconds

DL = OIH for

automatic

adjustment for
daylight savings
time

Input values in BCD.
PC/AT and PS/2s only.
Daylight savings option not
available in PC/AT BIOS

dated 01/10/84.

Read date from 1 AH AH = 04H DL = day (in BCD) PC/AT and PS/2s only,
real-time clock. DH = month (in BCD)

CL = year (in BCD)
CH = century (19 or 20
in BCD)
CF = 1 if clock not

operating

Set date in

real-time clock.

lAH AH = 05H

DL = day
(in BCD)
DH = month

(in BCD)
CL = year
(in BCD)
CH = century (19
or 20, in BCD)

PC/AT and PS/2s only.

(continued)

289

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 13-2. continued

Register
Service Interrupt Input Output Notes

Set alarm. lAH AH = 06H

CH = hours

(in BCD)
CL = minutes

(in BCD)
DH = seconds

(in BCD)

CF = lif clock not

operating or alarm
already set

Place address for alarm

routine in interrupt 4AH
vector before using this
service.

Reset alarm. lAH AH = 07H None Disables alarm previously set
with INT 1 AH, service 06H.

Get alarm time lAH AH = 09H CH = hours (in BCD) PS/2 models 25,30 only,
and status. CL = minutes (in BCD)

DH = seconds (in BCD)

DL = alarm status:

OGH: alarm not enabled

01H: alarm enabled

290

Chapter 14

DOS Basics

The Pros and Cons of Using the DOS Services 292

DOS; A Disk-Service Cornucopia 292

DOS and Video: A Difficult Match 293

DOS Version Differences 294

Diskette Format Considerations 296

Comments 296

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Chapters 15 through 18 focus on the program support services provided by
DOS. These DOS services are the entire set of operations that DOS provides to
programs. The last chapter in the series, Chapter 18, summarizes their
technical details. In this chapter, we introduce some of the main concerns a
programmer often faces when working with the DOS services.

Programs access DOS services through a set of interrupts. Interrupt
numbers 20H through 3FH (decimal 32 through 63) are reserved for use by
DOS. Although 10 of these interrupts can be used in programs, most DOS
services are invoked in much the same way as the ROM BIOS services:
through one umbrella interrupt, interrupt 21H (decimal 33). You can access
a variety of DOS functions by specifying a function number in register AH
at the time you call interrupt 21H.

The Pros and Cons of Using the DOS Services
The question of whether or not to use the DOS services arises naturally dur
ing the design and development of sophisticated programs. Our general ad
vice, echoed throughout this book, is for you to use the highest available
services that will accomplish what you need. This means that, whenever
possible, you should use the built-in services of your programming lan
guage first, resorting only when necessary to direct use of the DOS services
or the ROM BIOS services, and resorting only in extreme circumstances to
direct programming of the computer's hardware.

In practical terms, either a program can be written entirely within the
confines of the programming language's facilities or nearly all of its I/O
work must be done outside the programming language, at a lower level.
When a lower level of programming is needed, with very few exceptions
the DOS services are best suited for disk operations. When you are working
with the keyboard or other I/O devices, either the DOS routines or the ROM
BIOS routines will be adequate, depending on the application. But for low-
level video-display programming, the situation is more complex. Satisfac
tory screen output almost always seems to call for the ROM BIOS services
and direct hardware programming, even though in some cases screen output
is best left in the hands of DOS. We'll see why in a moment.

DOS: A Disk-Service Cornucopia
When you inspect the full range of tools and services placed in your hands
by programming languages, by DOS, by the ROM BIOS, and by the com
puter's hardware, it becomes quite clear that the richest concentration of

292

Chapter 14: DOS Basics

disk-oriented services exists at the DOS level. This almost goes without say
ing, because DOS, as a disk operating system, is inherently strongest in its

support of disk operations.

As discussed in Chapters 16 and 17, the majority of services that DOS

performs are directly connected to the manipulation of disk files. Even
some services that are nominally controlled by a program, such as loading

and executing another program (interrupt 21H, function 4BH), involve disk-

file operations. From this perspective, DOS is not so much a disk operating
system as it is a system of disk services designed for use by your programs.
When you are developing programs for the IBM personal computer family,

you should approach DOS from this standpoint: Think of DOS as a cornu
copia of disk operations placed at your service.

DOS and Video: A Difficult Match

Unfortunately, DOS does not provide much in the way of video output ser
vices. In fact, the available DOS services are limited to a character-only,

"glass teletype" interface that is rapidly becoming an anachronism in these
days of high-resolution color graphics.

To achieve attractive, high-performance video output, you must rely
on the ROM BIOS or on direct programming of the video hardware. As we
have seen, IBM has maintained a fairly consistent programming interface to

its video hardware, so many programmers make a practice of bypassing

DOS and using lower-level video programming techniques.
But when you bypass DOS, you encounter a problem: Two different

programs can't reliably share the video hardware. Consider what can hap
pen, for example, if you write a program that configures the video hardware
in a way that conflicts with the configuration used by a memory-resident
"pop-up" program like SideKick. If your program runs in a video mode
that the pop-up program doesn't recognize, the pop-up program's output
may appear incomprehensible on the screen. Worse, the pop-up program

may reconfigure the video subsystem for its own purposes and leave your

program's video output in limbo.
The problem is amplified in multitasking operating environments,

such as Microsoft Windows or OS/2, where programs generally share access

to the screen. In these environments, a program can bypass the operating

system and gain complete control of the screen only if the operating system

suspends video output from all other concurrently executing programs.

Thus a program that ties up the video hardware can delay the multitasking
execution of background programs.

293

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The designers of OS/2 and Microsoft Windows attacked this problem
by providing a sophisticated gamut of video output services. These video
output services not only resolve conflicts between programs that want to ac

cess the video display, but they also provide very good performance. To get
the best video performance in the world of DOS, however, you must either

resort to ROM BIOS calls and direct hardware programming or else rely on

the video output services provided by your programming language (which
themselves bypass DOS).

When trying to decide which method to use, you should consider the

probable lifetime of your programs and the range of machines they might
be used on. For a PC-specific game program with an expected life of a few
months (common for games), you have little reason to worry about these
issues. This is not the case for a generalized business or professional appli

cation, which should be usable for many years and in many environments.

Make your choice and place your bets.

DOS Version Differences

DOS has evolved since the release of version 1.0 in 1981. Even though each
new release has contained both improvements and bug-fixes, the driving

force behind each release has been a hardware change, and a hardware

change has usually involved a disk-drive change. (See Figure 14-1.)
In all but versions 2.1 and 3.1, changes to DOS involved significant

modifications to disk support (including new disk-storage formats). The
main change to 2.1 was relatively minor, but was disk-related: The diskette

Version Release Date Hardware Change

1.0 August 1981 Original IBM PC (single-sided diskette drive)

1.1 May 1982 Double-sided diskette drive

2.0 March 1983 PC/XT

2.1 October 1983 PCjr and Portable PC

3.0 August 1984 PC/AT

3.1 March 1985 PC Network

3.2 January 1986 Support for 3V2-inch diskette drives

3.3 April 1987 PS/2s

Figure 14-1. DOS releases and associated changes to hardware.

294

Chapter 14: DOS Basics

control head-settle time was adjusted to allow for differences in the perfor
mance of the half-height drives used in the PCjr and Portable PC. Version 2.1
also corrected a few of the known bugs in 2.0. Version 3.1 incorporated net

working functions that were designed for version 3.0, but not ready when 3.0
was released. The following list summarizes the main differences between

these versions:

Version 1.0 supported the single-sided, 8-sector diskette format. All
basic DOS services were included in this release.

Version I.I added support for double-sided diskettes. The DOS ser
vices remained the same.

Version 2.0 added support for 9-sector diskettes (both single- and
double-sided) and for the PC/XT fixed disk. The DOS services were en

hanced extensively in this version. (See Chapter 17.)
Version 2.1 added neither new disk formats nor new DOS services; it

did, however, adjust its disk operation timing to benefit the PCjr and the
Portable PC.

Version 3.0 added support for the PC/AT's 1.2 MB diskette drive and ad

ditional fixed-disk formats. It also laid the groundwork for network disks.

Version 3.1 added network disks, which include a file-sharing

capability.
Version 3.2 introduced support for 3V2-inch diskette drives.

Version 3.3 was announced concurrently with IBM's introduction of

the PS/2S. Several new commands and functions were included specifically
to support the PS/2 hardware.

□ NOTE: Each version of DOS is compatible with prior versions,
except in some very detailed respects (these sorts of details always
seem to be unavoidable).

With each release of DOS, there has been a question among software
developers about which version of DOS to target.

In particular, DOS versions 2.0 and later supported a much wider
variety of disk hardware and provided significantly more programming ser
vices than did versions 1.0 and 1.1, so programs that used the more advanced
features of the later DOS versions wouldn't run at all on versions 1.0 and 1.1.
Fortunately, the number of people still using version 1.0 or 1.1 is very small,
so most software developers target their applications toward versions 2.0
and later. The differences between these later DOS versions are relatively
minor and can usually be accommodated in software that verifies which
version of DOS is running.

295

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Far-sighted software developers must also tackle the question of com
patibility with future versions of DOS. Both IBM and Microsoft are looking
toward OS/2 as the logical successor to DOS. In this view, DOS is considered
a "mature" product; that is, enhancements to future versions aren't likely to
affect existing DOS programs.

Microsoft has published guidelines to help DOS software developers
write programs that can later be converted for use under OS/2. In our discus

sions of DOS services in the next few chapters, we'll point out several tech
niques that can help ensure the future compatibility of your DOS programs.

In any case, a program can detect which version of DOS it is running
under by using DOS function 30H (decimal 48). Unless you can be sure of
your audience, you should include this safeguard in your programs and al
ways check to be certain that the correct DOS version is installed.

Diskette Format Considerations
If you're planning to share or sell your programs, you must decide which
diskette format you'll use to distribute your software. Initially, most soft
ware vendors used single-sided S'A-inch diskettes with eight sectors per
track, because this format was the lowest common denominator that could

be read by all versions of DOS. Later, as single-sided diskette drives became
virtually extinct, software publishers adopted the double-sided S'A-inch dis
kette format as an acceptable medium.

If you sell software for both PCs and PS/2s, however, you must contend
with 3'/2-inch as well as S'A-inch diskette formats. In this case, you should
probably stick to the 720 KB format for 3'A-inch disks. You should also offer
a choice of diskette sizes, because both S'A-inch and 3'/2-inch formats are in

widespread use and will be for some time to come.

Comments

Technical information about DOS has become much easier to find since the

early days, when the only reliable sources of information were the DOS

technical reference manuals. Nowadays, many PC programming magazines
discuss DOS programming techniques. Several good reference books on
various detailed aspects of DOS programming, including memory-resident
programs, installable device drivers, and exception handlers, are also
available.

□ NOTE: Two '*officiar' sources of detailed information about
DOS are the DOS technical reference manuals distributed by IBM
and The MS-DOS Encyclopedia (published by Microsoft Press).

296

Chapter 15

DOS Interrupts

The Five Main DOS Interrupts 299

Interrupt 20H (decimal 32): Program Terminate 299

Interrupt 21H (decimal 33): General DOS Services 299

Interrupts 25H and 26H (decimal 37 and 38):
Absolute Disk Read and Write 300

Interrupt 27H (decimal 39): Terminate and Stay Resident 302

The Multiplex Interrupt 303

The Three DOS Address Interrupts 306

Interrupt 22H (decimal 34): Terminate Address 307

Interrupt 23H (decimal 35): Ctrl-C Handler Address 307

Interrupt 24H (decimal 36): Critical Error-Handler Address 308

The DOS Idle Interrupt 312

The Program Segment Prefix (PSP) 313

The Internal Structure of the PSP 313

An Example 317

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

In this chapter we'll describe how to communicate with DOS through inter
rupts. (See Figure 15-1.) DOS reserves all 32 interrupt numbers from 20H
through 3FH (decimal 32 through decimal 63) for its own use. DOS provides
system services through five of these interrupts (20H, 21H, 25H, 26H, and
27H). These interrupts can be called directly from a program with the INT
instruction. DOS uses the interrupt vectors for four others (22H, 23H, 24H,
and 28H) to contain the addresses of routines called by DOS itself; you can
substitute your own routines for the default DOS routines by updating one of
these interrupt vectors. Interrupt 2FH is reserved for communication be
tween memory-resident programs. The other 22 interrupts reserved by DOS
are not intended for use in your programs.

Interrupt Number
Hex Dec Description

20H 32 Program Terminate

21H 33 General DOS Services

22H 34 Terminate Address

23H 35 Ctrl-C Handler Address

24H 36 Critical Error-Handler Address

25H 37 Absolute Disk Read

26H 38 Absolute Disk Write

27H 39 Terminate and Stay Resident

28H 40 DOS Idle Interrupt

2FH 47 Multiplex Interrupt

Figure 15-1. DOS interrupts.

□ NOTE: You can use any of the 10 interrupts described in this
chapter in your programs. Nevertheless, there is some overlap be
tween the services provided through the separate interrupts
described in this chapter and the functions available through inter
rupt 21H. When you have a choice, use the interrupt 21H functions
described in Chapters 16 and 17. We'll point out why as we describe
each DOS interrupt.

298

Chapter 15: DOS Interrupts

The Five Main DOS Interrupts
Of the DOS interrupts described in this chapter, five have built-in interrupt-
handling programs, each of which performs a particular task.

Interrupt 20H (decimal 32): Program Terminate
Interrupt 20H (decimal 32) is used to exit from a program and pass control
back to DOS. It is similar to interrupt 21H, function OOH. (See page 325.)
These services can be used interchangeably with any version of DOS to end
a program.

Interrupt 20H does not automatically close files opened with interrupt
21H, functions OFH or 16H when it terminates a program, so you should al
ways use interrupt 21H, function lOH to close such files before exiting. If a
modified file is not formally closed, its new length will not be recorded in
the file directory.

A program can set three operational addresses through DOS interrupts
22H, 23H, and 24H, as we will see shortly. As part of the clean-up operations
performed by DOS for interrupt 20H, these addresses are restored to the
values they had before the program was executed. Resetting these addresses
is essential if the program that invoked interrupt 20H was executed as the
"child" of another program. It serves to protect the "parent" program
from using routines intended for the "child." (See DOS function 4BH [deci
mal 75] in Chapter 17.)

□ NOTE: When DOS executes a program, it constructs a program
segment prefix (PSP), a 256-byte block of memory that contains
control information that, among other things, is referenced by DOS
when a program is terminated. (We discuss the PSP in detail at the
end of this chapter.) DOS depends on the CS register to point to the
PSP when the interrupt 20H terminate service is invoked. If the CS
register points elsewhere, DOS may crash.

In practice, we recommend that you terminate your programs
with interrupt 21H, function 4CH, which is more flexible and less
restrictive than interrupt 20H. The only reason to use interrupt 20H
is to maintain compatibility with DOS version 1.0.

Interrupt 21H (decimal 33): Greneral DOS Services
You can take advantage of a wide range of DOS functions through interrupt
21H (decimal 33). Each function has a unique number you specify when you
execute interrupt 21H. Chapters 16 and 17 cover the gamut of interrupt 21H
services in detail.

299

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Interrupts 25H and 26H (decimal 37 and 38):
Absolute Disk Read and Write

Interrupt 25H (decimal 37) and its companion, interrupt 26H (decimal 38),
are used to read and write specific disk sectors. They are the only DOS ser
vices that ignore the logical structure of a disk and work only with individ
ual sectors, paying no attention to the locations of files, file directories, or
the File Allocation Table.

Interrupts 25H and 26H are similar to the corresponding ROM BIOS
disk services, except that the sectors are located by a different numbering
method. With the ROM BIOS services, the sectors are selected by their three-
dimensional coordinate locations (cylinder, head, and sector), whereas with

interrupts 25H and 26H, the sectors are selected by their sequential logical
sector numbers. (DOS's sector-numbering system is discussed on page 109.)

The following BASIC formula converts three-dimensional coordinates
used by the ROM BIOS to logical sector numbers used by DOS:

LOGICAL.SECTOR = (SECTOR - 1) + (HEAD * SECTORS.PER.TRACK) +

(CYLINDER * SECTORS.PER.TRACK * NUMBER.OF.HEADS)

And here are the formulas for converting logical sector numbers to
three-dimensional coordinates:

SECTOR = 1 + LOGICAL.SECTOR MOD SECTORS.PER.TRACK

HEAD = (LOGICAL.SECTOR \ SECTORS.PER.TRACK) MOD NUMBER.OF.HEADS

CYLINDER = LOGICAL.SECTOR \ (SECTORS.PER.TRACK * NUMBER.OF.HEADS)

□ NOTE: Don't forget that the ROM BIOS counts heads and
cylinders from 0 but counts sectors from 1; DOS logical sectors are
numberedfrom 0.

To use interrupt 25H or 26H to read or write a block of logical sectors,
load the necessary parameters into the CPU registers and execute the
interrupt. The number of sectors is specified in the CX register, the starting
sector number is specified in DX, and the memory address for data transfer
is specified in DS:BX. The disk drive is selected by placing a number in the
AL register: Drive A is 0, drive B is 1, and so on.

Although ROM BIOS services work with true physical drives, DOS
services work with logical drive numbers. DOS assumes every computer
has at least two logical drives. If no physical drive B exists, DOS will
simulate it by using the one physical drive as either A or B, whichever is

300

Chapter 15: DOS Interrupts

needed. You can then remap these logical drives by using the DOS ASSIGN
command.

The results of interrupts 25H and 26H are reported in the carry flag
(CF) and the AL and AH registers. If no error occurred, CF = 0. If an error
did occur (CF = 1), AL and AH contain the error codes in two somewhat

redundant groups. The AL codes in Figure 15-2 are based on those used by
the DOS critical-error handler through interrupt 24H (see page 308), and the
AH codes in Figure 15-3 are based on the error codes reported by the ROM
BIOS (see page 201).

Error Code

Hex Dec Meaning

OOH 0 Write-protect error: attempt to write on protected diskette

OIH 1 Unknown unit: invalid drive number

02H 2 Drive not ready (e.g. no disk, or door open)

04H 4 CRC (cyclical redundancy check) error: parity error

06H 6 Seek error: move to requested cylinder failed

07H 7 Unknown media: disk format not recognized

08H 8 Sector not found

OAH 10 Write error

OBH 11 Read error

OCH 12 General, nonspecific error

OFH 15 Invalid disk change

Figure 15-2. The error-code values and meanings returned in the AL register following an
error in a disk read or write through DOS interrupt 25H or 26H.

Error Code

Hex Dec Meaning

02H 2 Bad address mark: sector ID marking invalid or not found

03H 3 Write-protect error: attempt to write on protected disk

04H 4 Bad sector: requested sector not on disk

08H 8 DMA (direct memory access) failure

lOH 16 Bad CRC: read found invalid parity check of data

20H 32 Controller failed: disk drive controller malfunction

40H 64 Bad seek: move to requested track failed

80H 128 Time out: drive did not respond

Figure 15-3. The error-code values and meanings returned in the AH register following
an error in a disk read or write through DOS interrupt 25H or 26H.

301

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Normally, interrupt handlers and other service routines leave the
stack clean when they exit, returning it to its original size and contents. DOS
interrupts 25H and 26H deliberately do not clean up the stack. Instead, they
finish and return to the program with one word left on the stack. This word
holds the contents of the flag register, showing how the flags were set when
the program invoked the service. This is purportedly done to preserve the
program's flag status before the service was used, because interrupts 25H
and 26H use the flags for their return codes. We think this is a silly precau
tion because any program that needs to preserve the flags can simply do
what programs normally do when they need something saved: PUSH them
onto the stack themselves. Any program that uses interrupts 25H and 26H
should POP the two extra flag-status bytes off the stack after the interrupt
returns. These bytes can either be placed in the flags register with a POPE
command (which should be done after testing CP for an error) or be dis
carded by incrementing the stack pointer register by 2 (ADD SP,2).

Interrupt 27H (decimal 39): Terminate and Stay Resident
Interrupt 27H (decimal 39) invokes one of the most interesting of all the ser
vices provided by DOS.

Like interrupt 20H, interrupt 27H ends a program, but does not erase it
from memory. Instead, it leaves a specified portion of the program in
memory (the program stays resident). The program and data that are made
resident using interrupt 27H become, in effect, an extension of DOS and will
not be overwritten by other programs.

□ NOTE: As with interrupt 20H, DOS versions 2.0 and later provide
a more flexible alternative to interrupt 27H. This is interrupt 21H,
function 3IH, which we recommend instead of interrupt 27H unless
you are concerned about compatibility with DOS version 1.0. See
Chapter 17 for more about interrupt 21H, function 3IH.

Interrupt 27H (or its function-call equivalent) is used by a number of
sophisticated "pop-up" programs like SideKick. Terminate-and-stay-resi-
dent (TSR) programs typically use this service to establish new interrupt-
handling routines that are meant to stay in effect indefinitely. Most often,
these interrupt-handling routines replace existing DOS or ROM BIOS inter
rupt handlers in order to change or extend their operation. But the resident
item is not limited to interrupt handlers and program instructions; it could
just as easily be data. For example, the same programming technique could
be used to load status information into a common area that various pro
grams would share, allowing them to communicate indirectly.

302

Chapter 15: DOS Interrupts

Normally, a TSR program is designed in two parts: a resident portion
that remains in memory and a transient portion that installs the resident por
tion by updating interrupt vectors, initializing data, and calling the Termi-
nate-and-Stay-Resident service. The transient portion does not remain in
memory after interrupt 27H is executed.

To accommodate this process, TSR programs are designed with the
resident portion first (that is, at lower addresses). The transient portion
computes the size of the resident portion and places this value in register DX
when it executes interrupt 27H. DOS then leaves the resident portion in
memory but reclaims the memory occupied by the transient portion for exe
cuting other programs.

Anything left resident by this service normally remains resident as
long as DOS is also resident. It is not unusual for several different programs
to leave part of themselves resident. Programs that use this technique are
usually sophisticated and complicated, so it is also not unusual for them to
interfere with each other. To operate such a group of resident programs suc
cessfully, you must sometimes load them in a particular order—an order
you may have to discover through experimentation (an unfair trick to play
on an unsuspecting user).

As with interrupt 20H, the ordinary terminate service, DOS resets the
address vectors for interrupts 22H through 24H when it performs this termi-
nate-and-stay-resident service. Therefore, you can't use this service to
create resident interrupt handlers for the address interrupts. Although
seemingly a limitation, this is actually fairly reasonable: The address inter
rupts are not meant to be used globally; they are meant to be used only by
individual programs. (See the DOS address interrupts section that follows
for further discussion.)

The Multiplex Interrupt
The multiplex interrupt^ interrupt 2FH (decimal 47), is used to communicate
with memory-resident programs. This interrupt wasn't used in DOS version
1, but in version 2 the RAM-resident print spooler PRINT used it. In DOS ver
sions 3.0 and later, the protocol for using interrupt 2FH was standardized to
allow multiple memory-resident programs to share the interrupt. (That's
why this interrupt is called the multiplex interrupt.)

□ NOTE: Most of the material in this chapter applies to all versions
of DOS; however, interrupt 2FH is available only with DOS versions
3,0 and later.

303

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

To use the multiplex interrupt, you must write a memory-resident TSR
program that contains an interrupt handler for interrupt 2FH. (Use the DOS
Terminate-and-Stay-Resident service to do this.) The transient portion of
the TSR program must copy the address of the previous interrupt 2FH han
dler from the interrupt 2FH vector (0000:00BCH) to a variable in the resident
portion. The transient portion then updates the interrupt 2FH vector with the
address of the resident portion's interrupt 2FH handler so that when inter
rupt 2FH is subsequently executed, the TSR's handler gets control.

When interrupt 2FH is executed, the resident interrupt 2FH handler
does the following;

IF kH^IDnumber

THEN process the value in AL

return from the Interrupt (IRET)

ELSE jump to the previous interrupt 2FH handler

This simple logic lets several memory-resident programs use the
multiplex interrupt to communicate. The key is that every memory-resident
program must have a unique ID number. Your program's interrupt 2FH
handler should recognize one of the 64 values between COH and FFH. (There
are 256 possible ID numbers, of course, but Microsoft and IBM reserve

numbers OOH through BFH for use by DOS utilities.)
When your program's interrupt 2FH handler gains control, it must

first check the value in register AH. If the value in AH matches the
program's ID number, the handler looks in AL to decide what to do next. If
the values don't match, the handler simply jumps to the address of the
previous interrupt 2FH handler.

The interrupt 2FH handler considers the value in AL to be a function
number and processes it accordingly, as described in the following
paragraphs:

Function OOH has a special meaning. It instructs the interrupt handler
to return one of two values in AL:

• A value of FFH indicates that an interrupt 2FH handler is resident
in memory and available to process other function numbers.

• A value of OIH indicates that the ID number in AH is in use.

So, to detect whether a particular TSR program is installed in
memory, a program executes interrupt 2FH with the TSR's ID number in AH
and with AL = OOH. If the TSR is present in memory, it returns AL = FFH. If
another TSR is using the ID number for its own purposes, that TSR returns

304

Chapter 15: DOS Interrupts

AL = OIH. Otherwise, any interrupt 2FH handlers in memory simply ignore
the interrupt, causing the interrupt to return AL = OOH.

The best-documented example of how to use the multiplex interrupt is
the PRINT program supplied with DOS versions 3.0 and later. By examining
how PRINT uses the multiplex interrupt, you can make better use of this in
terrupt in your own memory-resident programs.

print's multiplex ID number is 1. Any time interrupt 2FH is executed
with this ID number in AH, PRINT'S memory-resident interrupt handler pro
cesses the interrupt. Because six different functions are defined by PRINT
(see Figure 15-4), a call to PRINT consists of executing interrupt 2FH with
AH = OIH and a function number in AL.

Each time you run PRINT, the program executes interrupt 2FH with
AH = OIH and AL = OOH. The first time you run the program, the value
returned in AL by the interrupt is OOH, so the program installs itself in
memory. When you invoke PRINT a second time, the value returned in AL
as a result of executing the multiplex interrupt with AH = OIH is FFH. This
value is placed there by the memory-resident copy of PRINT, so the second
invocation of the program knows not to install itself in memory.

The second and subsequent invocations of PRINT can request any of
five different functions by passing a function number to the first, memory-
resident copy of the program. You could also use these functions in your
own programs by placing the value OIH (PRINT'S multiplex ID) in register
AH, the function number in register AL, and then issuing interrupt 2FH.

Function Number Description .

OOH Get installed status.

OIH Submit file to print.

02H Remove file from print queue.

03H Cancel all files in print queue.

04H Hold print queue.

05H Release print queue.

Figure 15-4. PRINT functions defined through the multiplex interrupt.

Function OIH submits a file to the print spooler for printing. To tell
PRINT what is to be printed, you set the register pair DS:DX to point to a
5-byte area called a submit packet. The first byte of the submit packet is a
level code (which should be 0). The remaining 4 bytes of the submit packet
are the segmented address of an ASCIIZ string (see page 350) that defines
the pathname of the file to be printed. The pathname must be a single file.
The global filename characters * and ? are not allowed.

305

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When a file is submitted using this function, it is added to the end of
the queue, or list, of files to be printed. The files are printed in turn and are
dropped from the queue after they're printed.

Function 02H cancels individual files queued for printing. The regis
ter pair DS:DX points to the ASCIIZ string that defines which file is to be
removed from the queue. In this case, the global filename characters * and ?
can be used. In function 02H, DS:DX points directly to the filename string,
rather than to a submit packet that points to the string.

Function 03H cancels all files queued for printing. For both functions
02H and 03H, if the file currently being printed is canceled, PRINT stops
printing the file and prints a short message to that effect.

Function 04H gives programs access to the print queue so they can in
spect it. The queue is frozen when this function is requested, so you don't
have to worry about the list changing while you inspect it. Issuing any other
PRINT function call will unfreeze the queue. Function 04H returns a pointer
in the register pair DS:SI that points to a list of filenames queued for print
ing. Entries in the list are strings with a fixed length of 64 bytes. The end of
the list is indicated by an entry that begins with a zero byte.

The queue freeze imposed by function 04H doesn't need to halt the
printing operation. But function 04H will suspend the removal from the
queue of a file that is finished printing.

Function 05H is essentially a null function that does nothing but
unfreeze the queue of filenames frozen by function 04H. (The other four
functions can do this, too.)

The Three DOS Address Interrupts
DOS uses three interrupts, 22H through 24H (decimal 34 through 36), to
handle three exceptional circumstances: the end of a program, a "break"
keyboard action (Ctrl-Break or Ctrl-C on the standard PC keyboard), and
any "critical error" (usually a disk error of some kind). Your programs can
affect the action taken in each of these three circumstances by changing the
corresponding interrupt vector to point to any operation you choose. This is
why we call these interrupts the address interrupts.

DOS maintains a default address setting for each of these interrupts,
which is preserved at the beginning of a program's operation and restored
after the program is finished. This allows your programs to freely change
these vectors according to their needs without disturbing the operation of
subsequent programs or the operation of DOS itself.

306

Chapter 15: DOS Interrupts

Interrupt 22H (decimal 34): Terminate Address
The address associated with interrupt 22H (decimal 34) specifies where con
trol of the computer will be passed when a program's execution ends with a
call to DOS interrupt 20H or 27H, or with interrupt 21H, function OOH, 31H, or
4CH. Interrupt 22H isn't designed to be executed directly by a program
using the INT instruction. Instead, DOS uses the interrupt 22H vector to store
the address of its own program termination routine.

It's not a good idea to manipulate the DOS terminate address. The in
ner workings of the default DOS program termination routine are not docu
mented, so writing a substitute routine that terminates a program cleanly
without confounding DOS is difficult. If you are qualified to use this fea
ture, then you probably understand it better than we can explain it.

Interrupt 23H (decimal 35): Ctrl-C Handler Address
The address associated with interrupt 23H (decimal 35) points to the inter-
rupt-handling routine that DOS invokes in response to the Ctrl-C key com
bination. Thus interrupt 23H is intended to be executed only by DOS, not by
an application program. A few old-fashioned programs, such as the DOS
editor EDLIN, use Ctrl-C as a command keystroke, but in most applications
the Ctrl-C combination signals that the user wants to interrupt an ongoing
process.

DOS is a bit quirky about when it will respond to a Ctrl-C keystroke.
Normally, DOS acts on a break only when it is reading from or writing to a
character I/O device (the screen, keyboard, printer, or communications
port). However, the BREAK ON command allows DOS versions 2.0 and later
to act on Ctrl-C at the time of most other DOS system calls.

DOS's default Ctrl-C handler terminates the program or batch file you
are executing. However, if your program provides its own interrupt 23H
handler, it can have DOS take any action you want.

In general, a Ctrl-C handler can take three different courses of action:

• It can perform some useful action, such as setting a flag, and then
return to DOS with an interrupt return (IRET) instruction. In this
case, DOS picks up where it left off, without terminating your pro
gram's execution.

• It can set or clear the carry flag and then return to DOS with a far
return instruction (RET 2) that discards the flags pushed on the
stack when the interrupt 23H handler was called by DOS. If the
carry flag is set, DOS terminates the interrupted program. If the
carry flag is clear, DOS continues execution.

307

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

• It can keep control without returning to DOS. This option is tricky,
however, because you don't usually know what was on the stack at
the moment DOS detected the Ctrl-C keystroke. An interrupt 23H
handler that doesn't return to DOS should generally restore the
stack pointer register (SP) to a predetermined value. It should also
execute interrupt 21H, function ODH, to flush DOS file buffers so
that the DOS disk I/O system will be in a known state.

The usual reason to write your own Ctrl-C handler is to let your pro
gram handle a keyboard break itself. Even if you want your program to ter
minate immediately after Ctrl-C is pressed, you may still need to clean up
before your program terminates. For example, if you use interrupt 21H,
functions OFH or 16H, to open a file, you should write your own Ctrl-C han
dler to close it because the default DOS Ctrl-C handler won't do so. Also, if
you installed your own interrupt handlers for ROM BIOS or hardware inter
rupts, the DOS Ctrl-C handler won't restore them before it terminates your
program. Again, your Ctrl-C handler should do this if necessary.

If you do write your own Ctrl-C handler, don't forget the relationship
between Ctrl-C and the keyboard Ctrl-Break combination. When you press
Ctrl-Break, the ROM BIOS keyboard interrupt handler generates interrupt
IBH. DOS's interrupt IBM handler inserts a Ctrl-C key code into the key
board input buffer. The next time DOS checks the keyboard buffer, it finds
Ctrl-C and executes interrupt 23H. Thus, in effect, pressing Ctrl-Break has
the same effect as pressing Ctrl-C, except that DOS detects the break gener
ated by Ctrl-Break without first processing the intervening characters in the
keyboard buffer.

Interrupt 24H (decimal 36): Critical Error-Handler Address
The address associated with interrupt 24H (decimal 36) points to the inter-
rupt-handling routine invoked whenever DOS detects a "critical error" —
an emergency situation that prevents DOS from continuing with normal
processing. Typically, the critical error is a disk error, but other errors are
also reported, as we'll see.

Like interrupt 23H, interrupt 24H is intended to be invoked only by
DOS, not by an application program. However, an application can substitute
its own interrupt 24H handler for the default DOS handler. The DOS default
handler produces a familiar message (shown on the following page).

308

Chapter 15: DOS Interrupts

Abort. Retry, Ignore? (in DOS versions prior to 3.3)

or

Abort, Retry. Fail? (in DOS versions 3.3 and later)

If you substitute a customized interrupt 24H handler for the one DOS
provides, you can tailor critical-error handling to the needs of your
program.

When DOS transfers control to a critical-error handler, it provides

several sources of information about the error itself, and about the state of

the system before the error occurred. These sources include the register pair
BP:SI, the stack, the AH register, and the DI register. We will cover them one
by one because this process is quite complicated.

If you are operating under DOS version 2.0 or later, the register pair
BP:SI is set to point to a device-header control block. Your critical-error
handler can inspect the device header to learn more about the device (disk
drive, printer, and so forth) that experienced the error. (See the DOS
technical reference manuals for more about the device header.)

When the critical-error handler gains control, the stack contains the
complete register set of the program that issued the DOS function call that
ended in the critical error. This information can be quite useful to an error
handler that is intimately integrated with the active program. The usual
method of accessing the information on the stack is to address the stack
through register BP. You can access the stack as shown in Figure 15-5 on the
following page if the first two instructions in your critical-error handler are

PUSH BP

MOV BP.SP

DOS indicates the nature of a critical error primarily through a
combination of the high-order bit of the AH register and the low-order byte
of the DI register (a curious choice, for sure). If the high-order bit of AH is 0,
the error is related to a disk operation. If the same bit (bit 7 of AH) is 1, the
error is something other than a disk error, as we shall discuss shortly.

When the error is a disk-device error (high-order bit of AH is 0),
register AL identifies the drive number (0 is drive A, 1 is drive B, and so on).
Bits 0 through 5 of AH indicate further information about the error, as
shown in Figure 15-6.

309

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

[BP+ 30] Flags

[BP + 28] cs — Flags and CS:IP pushed by the
[BP+ 26] IP interrupt 21H call that generated
[BP+ 24] ES the error

[BP+ 22] DS

[BP+ 20] BP

[BP+18] DI

[BP+16] SI — Registers at point of interrupt 21H call
[BP+14] DX

[BP+12] CX

[BP + 10] BX

[BP+ 8] AX

[BP+ 6] Flags

[BP+ 4] CS — Flags and CS:IP pushed by DOS when it
[BP+ 2] IP called the critical-error handler

[BP] Previous BP

Figure 15-5. Information passed on the stack to an interrupt 24H (critical-error) handler.

Bit

5 432 1 0 Value Meaning

0 0 Read error

1 1 Write error

. . . 00 0 Error involved DOS system files

. . . 01 1 Error involved file allocation table

. . . 10 2 Error involved root directory

. . . 1 1 3 Error involved files area of disk

1 Fail response allowed

. 1 . . . 1 Retry response allowed

1 1 Ignore response allowed

Figure 15-6. The bit values and associated errors indicated in bits 0 through 5 of the AH
register when DOS invokes interrupt 24H.

DOS returns additional information about the error in the low-order
byte of register DI (Figure 15-7). The error codes in DI cover a variety of in
put/output devices, so you must rely on a combination of the information in
AH and in DI to determine the exact nature of the critical error.

310

Chapter 15: DOS Interrupts

If bit 7 of AH is set, the error is probably not a disk error, though it
may be disk related. One disk-related error normally reported when bit 7 of
AH is set is an error in the disk's FAT. In DOS version 1, this is always the
case. For versions 2.0 and later, the error handler should inspect bit 15 of the
word that is offset 4 bytes into the device header (BP: [SI + 4]). If this bit is
clear, the device is a block device (disk) and the error is a FAT error. If this
bit is set, the device is a character device, in which case the low-order byte
of DI defines the exact problem (the high-order byte should be ignored). Dl
error-code values shown in Figure 15-7 are essentially the same as those
reported in AL for interrupts 25H and 26H (decimal 37 and 38).

You can use the following interrupt 21H functions in your critical-
error handler to report what's going on to the program's user:

• Functions OIH through OCH, which provide simple keyboard and
display services

• Function 30H, which returns the DOS version number

• Function 59H, which returns extended error information in DOS
versions 3.0 and later

Error Code

Hex Dec Description

OOH 0 Write-protect error; attempt to write on protected diskette

OIH 1 Unknown unit (invalid drive number)

02H 2 Drive not ready (no diskette or drive door open)

03H 3 Unknown command requested

04H 4 Data error (CRC)

05H 5 Bad request structure length

06H 6 Seek error; move to requested cylinder failed

07H 7 Unknown disk format

08H 8 Sector not found

09H 9 Printer out of paper

OAH 10 Write fault

OBH 11 Read fault

OCH 12 General, nonspecific error

OFH 15 Invalid disk change (DOS version 3.0 or later)

Figure 15-7. Errors indicated in the low-order byte of register DI when DOS invokes in
terrupt 24H.

311

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Don't call other DOS services within your critical-error handler, how
ever, because other services may overwrite internal buffers or stacks that
DOS will need when the error handler returns.

Normally, an error-handler routine returns to DOS after doing what
ever it chooses to do. DOS can then take one of four courses of action; It can

ignore the error, try the operation again, terminate the program, or fail the
requested operation and return to the program (DOS versions 3.1 and later).
You tell DOS which course you want it to take by loading a value from
Figure 15-8 into the AL register before executing an IRET to return to DOS.

If you use a custom critical-error handler, it will remain in effect only
as long as the program that installs it is running. When the program termi
nates, DOS replaces the contents of the interrupt 24H vector with the address
of the default critical-error handler.

AL Description

OOH Ignore the error and press onward.

01H Retry the operation.

02H Terminate the program.

03H Fail the operation (DOS versions 3.1 and later).

Figure 15-8. Values that can be returned to DOS in register AL by an interrupt 24H
(critical-error) handler.

The DOS Idle Interrupt
DOS executes interrupt 28H (decimal 40) within interrupt 21H services that
loop while waiting for an expected event, such as a keystroke. For example,
if you execute the DOS keyboard-input service (interrupt 21H, service OIH),
DOS executes interrupt 28H within an idle loop that waits for the next
keystroke.

The default DOS handler for interrupt 28H is merely an IRET instruc
tion; that is, executing interrupt 28H normally does nothing at all. You can
substitute your own interrupt 28H handler, however, that does something
useful while DOS is otherwise idle. In particular, a memory-resident pro
gram can contain an interrupt 28H handler that is executed repeatedly
whenever DOS is waiting for keyboard output.

The biggest problem with installing your own interrupt 28H handler is
that the handler can execute interrupt 21H to access DOS services only under
very specific circumstances. Unfortunately, you must know many details
about the way DOS internally processes interrupt 21H requests in order to
use these safely within an interrupt 28H handler.

312

Chapter 15: DOS Interrupts

The Program Segment Prefix (PSP)
When DOS loads a program, it sets aside a 256-byte block of memory for the
program: program segment pr^ix (PSP). The PSP contains a hodgepodge
of information that DOS uses to help run the program. A PSP is associated
with every DOS program, no matter what language the program is written
in. However, for programming purposes, the information stored in the PSP
is more relevant to programs written in assembly language than to programs
written in high-level languages. This is because with high-level languages,
the language is normally in charge of the program's working environment,
memory usage, and file control—all the information that the PSP is con
cerned with. Therefore, you can normally make good use of the PSP only if
your program is assembly-language based.

Before we describe the different elements of the PSP, we need to look

at the relationship between the PSP and the program it supports.
DOS always builds a program's PSP in memory just below the memory

area allocated to the program itself. When the program receives control
from DOS, segment registers DS and ES point to the beginning of the PSP.
Because it sometimes needs to locate PSP information, DOS keeps a copy of
the PSP segment value internally.

The best way to explain how the PSP and the program work together is
to jump right into the PSP's internal structure. We will reveal the purpose
and potential use of each element as we explain it.

The Internal Structure of the PSP

As you will soon discover, the PSP contains a rather confusing mixture of
items. (See Figure 15-9.) The background and history of DOS pull it in dif
ferent directions—backward to the earlier CP/M system and forward to
UNLX-type operating environments. As a result, the PSP contains elements
that serve different purposes and are oriented to different programming
methods. We'll discuss the elements in the order in which they appear.

The field at offset OOH (2 bytes) contains bytes CDH and 20H, the inter
rupt 20H instruction. As we saw in the discussion of interrupt 20H in this
chapter, this interrupt is only one of several standard ways for a program to
terminate. This instruction is placed at the beginning of the PSP (at offset
OOH) so that a program can end itself simply by jumping to this location
when the CS points to the PSP. As you might guess, this is not the most sen
sible thing for a program to do; it's always best to go through the appropri
ate interrupt or function call. This odd method of terminating a program is
a relic of the days when CP/M compatibility was important.

313

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Offset Length
Hex Dec (hytes) Description

OOH 0 2 INT 20H instruction

02H 2 2 Size of memory (in paragraphs)

04H 4 1 (Reserved; normally 0)

05H 5 5 Call to DOS function dispatcher

OAH 10 4 Interrupt 22H (Terminate) address

OEH 14 4 Interrupt 23H (Ctrl-C) address

12H 18 4 Interrupt 24H (Critical Error) address

16H 22 22 (Reserved)

2CH 44 2 Environment segment address

2EH 46 34 Reserved

50H 80 3 INT 21H, RETF instructions

53H 83 9 (Reserved)

5CH 92 16 FCB #1

6CH 108 20 FCB#2

80H 128 128 Command-line parameters and default
Disk Transfer Area (DTA)

Figure 15-9. The parts of the program segment prefix (PSP).

The field at offset 02H (2 bytes) contains the segment address of the
last paragraph of memory allocated to the program. DOS normally loads a
program in the first free area of memory large enough to contain the pro
gram. A program can use this field to determine the actual size of the
memory area allocated to it.

In practice, there's a better way to determine the amount of memory
allocated to a program. Interrupt 21H, function 4AH can return the size of
any block of memory, not just the block into which a program is loaded.
(See Chapter 17 for more on this DOS service.)

The field at offset 05H (5 bytes) contains a long call to the DOS function
dispatcher, the internal DOS routine that examines the function number you
pass to DOS and executes the corresponding service routine. This field, too,
is a remnant of the days when CP/M compatibility was important to DOS
programmers. A program can make a near CALL to offset 05H in the PSP
with a function number in register CL and get the same result as if it had
loaded AH with the function number and executed interrupt 21H.

Needless to say, this technique is not very useful in real-world DOS
programs.

314

Chapter 15: DOS Interrupts

The fields at offsets OAH, OEH, and 12H (4 bytes each) contain the seg

mented addresses of the default handlers for interrupt 22H (Terminate), 23H
(Ctrl-C), and 24H (Critical Error). These addresses are stored in the PSP for
your convenience. If you substitute a customized interrupt handler for one
of the DOS handlers, you can restore the default handler by copying its ad
dress from the PSP into the corresponding interrupt vector.

In DOS versions 2.0 and later, the field at offset 2CH (2 bytes) contains
the paragraph address of the program's environment block. The environment
block contains a list of ASCIIZ strings (strings of ASCII characters, each ter
minated with a zero byte) that define various kinds of information. The end
of the environment block is marked by a zero-length string (a single zero

byte) where you would expect to find the first byte of the next string. Envi
ronment blocks that begin with a zero-length string contain no strings.

Each environment string is of the form NAME = value, where NAME is
capitalized and of any reasonable length and value can be almost anything.
The environment thus consists of a list of global variables, each of which
contains information that your program may be able to use. For example, if
the environment block contains the PATH environment variable (that is, a

string that starts with PATH=), any program—including DOS itself—can
examine its environment block to determine which directories to search for

executable files (and in what order). In this way the environment block pro

vides a simple means of passing information to any program that examines
it. (You can change the contents of the environment block with the DOS SET
command.)

DOS makes a copy of the environment block whenever it loads a pro
gram to be executed, and places the copy's paragraph address (segment) in
the program's PSP. To obtain information from the environment block, a
program must first obtain its segment from the PSP and then examine each
of the zero-terminated strings. Some high-level languages contain functions
that do this for you. For example, in C, the getenv() library function does all
the work.

Many sophisticated DOS programs rely on information in the environ
ment block. Also, the concept of the environment is found in other powerful
operating systems, including UNIX and OS/2. Whenever you need to pass
user-configurable information to a program, we highly recommend the use
of the environment block.

The field at offset 50H contains two executable 8086 instructions: INT

21H and RETF (far return).

This is another kludge that lets you invoke DOS functions somewhat
indirectly. To use this feature, set up everything necessary to invoke a DOS

315

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

interrupt 21H function (selecting the function in AH, and so forth). Then, in
stead of bravely performing an interrupt 21H (a 2-byte instruction), do a far
call to offset 50H in the PSP (a 5-byte instruction).

You might expect that this feature is another flash from the past, a bit
of CP/M compatibility, but actually it was introduced with DOS version 2.0
and will not work with previous versions of DOS. You might find that mak
ing a far call to offset 50H in the PSP is handy if you intend to patch the ad
dress of a different function dispatcher into your code, but in most cases, a
simple INT 21H will suffice.

The fields at offsets 5CH and 6CH support old-fashioned file process
ing, using file control blocks, or FCBs. FCBs can be used for file I/O with
any version of DOS, but their use is discouraged with DOS versions 2.0 and
later, where more modern file I/O is available through the use of file
handles. See page 341 for more on file control blocks, and see page 350 for
more on file handles.

This area of the PSP was designed to make life easier for programs
that receive one or two filenames as parameters. The basic idea, and a good
one we think, is to let DOS construct the necessary FCBs out of the first two
command-line parameters (the parameters given on the command line, fol
lowing the program name). If a program needs either or both FCBs, it can
open and use them without having to decode the command-line parameters
and construct the FCBs itself.

If you use this feature of the PSP, you should be aware of three poten
tial complications: First, the two FCBs overlap where they are placed. If
your program needs only the first, fine; but if it needs the second FCB as
well, one or both of them should be moved elsewhere before they are used.
Second, these FCBs can involve FCB extensions, a fact overlooked in most

DOS documentation for the PSP. Finally, if you use a DOS function that re
quires an extended FCB, you should be careful to copy the default FCBs to
another area of memory where the FCB extensions won't overlap other data
in the PSP.

Keep in mind that the use of FCBs is considered obsolete, but if you
want to use them, this information should help.

The field at offset 80H serves two purposes: When DOS first builds the
PSP, it fills this field with the command-line parameters typed by the user
when the program was invoked. The length of the command line is in the
byte at offset 80H. A string containing the command-line parameters fol
lows at offset 81H.

This string has some peculiarities: It does not contain the name of the
program that was invoked. Instead, it begins with the character that

316

Chapter 15: DOS Interrupts

immediately follows the program name, which is usually a blank. Sepa
rators, such as blanks or commas, are not stripped out or compressed. If
you use the command line, you have to be prepared to scan through it,
recognizing standard separators. Fortunately, high-level languages often
provide functions that parse the command parameter string for you. In C,
for example, the values argc and argv are passed to the main startup routine
in every C program. These two values contain the number of command-line
parameters and the address of a list of individual parameters. It's usually
easier to rely on your high-level language to extract command-line parame

ters from the PS? than it is to do it yourself in assembly language.
Starting with DOS version 2.0, the command line is modified in a par

ticular way: DOS strips any redirection parameters (such as < or >) and
reconstructs the parameter line as if these items were not there. As a result
of these two operations on the command string, a program can neither find
out if its standard 1/0 is being redirected nor find out its own name.

The other purpose served by the field at offset 80H in the PS? is that of
the default Disk Transfer Area. This default buffer area is established by

DOS just in case you use a DOS service that calls for a DTA and haven't yet
set up your own DTA buffer. See Chapters 16 and 17 for descriptions of the
services that use or manipulate the DTA.

An Example
This chapter's interface example shows how you can use an interrupt han
dler to process Ctrl-C keystrokes. The example consists of two assembly-
language routines.

The first routine, INTlSHandler, gains control when DOS executes INT

23H in response to a Ctrl-C keystroke. This handler simply increments the
value in a flag and then returns to DOS with an IRET instruction.

Note how the flag _INT23Flag is addressed through the segment group

DGROUP. In many languages, segments with different names are grouped
together in one logical group so that they can all be addressed with the same
segment register. In the case of Microsoft C, this group of segments is
named DGROUP, and it includes the data segment {_DATA) used by the com

piled C program.

The second assembly-language routine, _Install() is designed to be
called by a C program. This short routine calls a DOS interrupt 21H function
that updates the interrupt 23H vector with the address of the interrupt han
dler. (The next few chapters contain more about this DOS function and
about interrupt 21H services in general.)

317

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

DGROUP

-TEXT

GROUP -DATA

SEGMENT byte public 'CODE'

ASSUME OS:_TEXT,ds:DGROUP

; the interrupt 23H handler:

INT23Handler PROC far

push ds

push ax

mov ax.seg DGROUP

mov ds.ax

inc word ptr _INT23flag

pop

pop

i ret

ax

ds

; preserve all registers used

; ... in this interrupt handler

set DS to the segment where

... the flag is located

increment the flag

; restore regs and return

INT23Handler ENDP

; the C-callable installation routine:

-Instal1

PUBLIC -Install

PROC near

push

mov

push

push

pop

mov

mov

int

pop

pop

ret

bp

bp.sp

ds

cs

ds

dx,offset INT23Handler

ax,2523h

21h

ds

bp

the usual C prologue

preserve DS

set DS:DX to point to ...

... the interrupt handler

AH = DOS function number

AL = interrupt number

call DOS to update the ...

... interrupt vector

restore regs and return

-Instal1

-TEXT

ENDP

ENDS

318

Chapter 15: DOS Interrupts

; the flag set by the interrupt 23H handler when Ctrl-C is pressed;

-DATA SEGMENT word public 'DATA*

_INT23flag

-DATA

PUBLIC -INT23flag

DW 0

ENDS

; flag (initial value = 0)

The snippet of C code that follows shows how you could use this
interrupt 23H handler in a program. This C program does nothing but wait
for you to press Ctrl-C. When you do, the assembly-language interrupt 23H
handler increments the flag. When the loop in the C program sees that the

flag is nonzero, it displays a message and decrements the flag.

extern int INT23flag;

ma i n()

{

int KeyCode;

/* flag set when Ctrl-C is pressed */

Install();

do

{

/* install the interrupt 23H handler */

whileC INT23flag > 0)

{

printfC "\nCtrl-C was pressed"); /* ... show a message ... */

--INT23flag;

}

/* ... and decrement the flag */

if(kbhitO)

KeyCode •= getchO;

el se

KeyCode = 0;

}

whileC KeyCode != OxOD);

/* look for a keypress */

/* loop until Enter is pressed */

Although the C code is short, it suggests two important points. One is

that you must give DOS the chance to detect a Ctrl-C keystroke each time
you test your interrupt 23H flag. (Remember that DOS is guaranteed to

check for Ctrl-C only when it reads or writes to a character input/output

319

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

device.) In this program, C's kbhitQ function calls DOS to check for
keyboard activity and, at the same time, lets DOS check for Ctrl-C as well.

Also, note how the interrupt handler increments the flag instead of
merely setting it to "true" or "false." This lets the loop in the C program
process rapid, successive interrupts without losing track of how many
interrupts have occurred.

320

Chapter 16

DOS Functions:

Version 1

Interrupt 21H Functions: DOS Version 1 323

Function OOH (decimal 0): Terminate 325

Function OIH (decimal 1): Character Input with Echo 326

Function 02H (decimal 2): Character Output 327

Function 03H (decimal 3): Auxiliary Input 327

Function 04H (decimal 4): Auxiliary Output 327

Function 05H (decimal 5): Printer Output 327

Function 06H (decimal 6): Direct Console

Input/Output 327

Function 07H (decimal 7): Direct Console Input
Without Echo 328

Function 08H (decimal 8): Console Input
Without Echo 328

Function 09H (decimal 9): String Output 329

Function OAH (decimal 10): Buffered Keyboard
Input 329

Function OBH (decimal 11): Check Keyboard Status 330

Function OCH (decimal 12): Flush Keyboard Buffer,
Read Keyboard 330

Function ODH (decimal 13): Flush Disk Buffers 330

Function OEH (decimal 14): Select Disk Drive 330

Function OFH (decimal 15): Open File 331

Function lOH (decimal 16): Close File 331

Function IIH (decimal 17): Find First Matching Directory
Entry 332

Function 12H (decimal 18): Find Next Matching Directory
Entry 332

Function 13H (decimal 19): Delete File 333

Function 14H (decimal 20): Sequential Read 333

Function 15H (decimal 21): Sequential Write 333

Function 16H (decimal 22): Create File 334

Function 17H (decimal 23): Rename File 334

Function 19H (decimal 25): Get Current Disk 334

Function lAH (decimal 26): Set Disk Transfer Area 335

Function IBH (decimal 27): Get Default Drive

Information 335

Function ICH (decimal 28): Get Specified Drive
Information 336

Function 21H (decimal 33): Read Random Record 336

Function 22H (decimal 34): Write Random Record 336

Function 23H (decimal 35): Get File Size 336

Function 24H (decimal 36): Set FCB Random Record

Field 337

Function 25H (decimal 37): Set Interrupt Vector 337

Function 26H (decimal 38): Create New Program
Segment Prefix 337

Function 27H (decimal 39): Read Random Records 337

Function 28H (decimal 40): Write Random Records 338

Function 29H (decimal 41): Parse Filename 338

Function 2AH (decimal 42): Get Date 339

Function 2BH (decimal 43): Set Date 340

Function 2CH (decimal 44): Get Time 340

Function 2DH (decimal 45): Set Time 340

Function 2EH (decimal 46): Set Verify Flag 340

The File Control Block 341

FCB Fields 342

Extended FCB Fields 344

An Example 345

322

Chapter 16: DOS Functions: Version 1

The next three chapters describe the DOS functions accessed through inter
rupt 21H. DOS version 1 had 42 interrupt 21H functions. This variety of func
tions was strongly rooted in the 8-bit microcomputer tradition typified by
the CP/M operating system, whose services many of the DOS functions
resembled.

DOS version 1 was adequate for diskette-based microcomputers with
keyboards and video displays, but the advent of high-capacity fixed disks
and a wider variety of diskette formats called for a new set of sophisticated
disk file-management functions. These were supplied in DOS version 2, and
roughly patterned after the disk file-management services used in the UNIX
operating system. In version 3, DOS continued to evolve, but offered only a
few new functions, primarily in support of new hardware such as the PC/AT,
networks, and the PS/2s.

Although some interrupt 21H functions introduced in later versions of

DOS provide services similar to those in earlier versions, all version 1 func

tions continue to be supported in later versions. When you have a choice
between two similar functions, you should, in general, use the higher-num
bered, more recent function. We'll point out why as we go along.

Interrupt 21H Functions: DOS Version 1
All DOS function calls are invoked by interrupt 21H (decimal 33). Individ

ual functions are selected by placing the appropriate function number in the
AH register.

The interrupt 21H function calls in DOS version 1 are organized into
the logical groups shown in Figure 16-1. In an effort to make this figure as
clear as possible, we have organized and described these function calls in a

slightly different manner than does the DOS technical reference manual.

Figure 16-2 lists the individual function calls.

Function

Hex Dec Group

OOH 0 Nondevice function

OIH-OCH 1-12 Character device I/O

0DH-24H 13-36 File management

25H-26H 37-38 More nondevice functions

27H-29H, 2EH 39-41,46 More file management

2AH-2DH 42-45 More nondevice functions

Figure 16-1. The logical groups of DOS version 1 function calls.

323

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function

Hex Dec Description

OOH 0 Terminate

02H 1 Character Input with Echo

02H 2 Character Output

03H 3 Auxiliary Input

04H 4 Auxiliary Output

05H 5 Printer Output

06H 6 Direct Character Input/Output

07H 7 Direct Character Input Without Echo

08H 8 Character Input Without Echo

09H 9 String Output

OAK 10 Buffered Keyboard Input

OBH 11 Check Keyboard Status

OCR 12 Flush Keyboard Buffer, Read Keyboard

ODH 13 Flush Disk Buffers

OEH 14 Select Disk Drive

OFH 15 Open File

lOH 16 Close File

IIH 17 Find First Matching Directory Entry

12H 18 Find Next Matching Directory Entry

13H 19 Delete File

14H 20 Sequential Read

15H 21 Sequential Write

16H 22 Create File

17H 23 Rename File

19H 25 Get Current Disk

lAH 26 Set Disk Transfer Area

IBH 27 Get Default Drive Information

ICR 28 Get Specified Drive Information

21R 33 Read Random Record

22R 34 Write Random Record

23R 35 Get File Size

24R 36 Set FCB Random Record Field

25R 37 Set Interrupt Vector

26R 38 Create New Program Segment Prefix

27R 39 Read Random Records

Figure 16-2. DOS version 1 functions available through interrupt 21H. (continued)

324

Chapter 16: DOS Functions: Version 1

Figure 16-2. continued

Function

Hex Dec Description

28H 40 Write Random Records

29H 41 Parse Filename

2AH 42 Get Date

2BH 43 Set Date

2CH 44 Get Time

2DH 45 Set Time

2EH 46 Set Verify Flag

The design and organization of a few of these functions, particularly
numbers OIH through OCH, are screwball—to put it mildly. They are this
way for historical reasons. Many details of DOS, and especially the details
of DOS function calls, were designed to closely mimic the services provided
by CP/M. This was an important and deliberate choice, made to make it

much easier for 8-bit CP/M software to be converted to the 16-bit IBM PC and

DOS. Although the creation of DOS provided a timely opportunity to break
with and clean up the mistakes of the past, the real departure from the 8-bit
tradition came with DOS version 2, as you will see in Chapter 17. ^

The following pages describe the 42 original DOS function calls,
universally used in all versions of DOS.

Function OOH (decimal 0): Terminate
Function OOH (decimal 0) ends a program and passes control back to DOS. It
is functionally identical to DOS interrupt 20H, discussed on page 299. Either
can be used interchangeably to exit a program.

DOS versions 2.0 and later provide an enhanced terminate service
through function 4CH, which leaves a return code (an error code) in register
AL when a program ends. DOS batch files can act on the return codes with

the DOS subcommand ERRORLEVEL. Use function 4CH instead of function

OOH if you want to use a return code to record errors that occur when a

program ends. (See page 377.)

Like DOS interrupt 20H, function OOH does not close files opened with
functions OFH or 16H. To ensure that the proper length of such files is
recorded in the file directory, use function lOH to close them before calling
function OOH. Also, as with interrupt 20H, you must be sure the PSP segment
address is in the CS register before exiting.

325

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function OIH (decimal 1): Character Input with Echo
Function OIH (decimal 1) waits for character input from the standard input
device and returns it in the AL register when available. This function should
be compared with the other keyboard function calls, particularly functions
06H, 07H, and 08H.

□ NOTE: In DOS version 7, the standard input device is always the
keyboard; the standard output device is always the video screen. In
later DOS versions^ howevery standard input and output can be redi
rected to other devices such as files. DOS processes characters from
the standard input device without distinguishing whether the actual
input source is the keyboard or a stream of characters redirected
from a file.

Here is how function OIH works: Keystrokes that result in an ASCII
character are returned as 1 byte in AL and immediately reported by this
function. The keystrokes that result in something other than an ASCII char
acter (see page 135) generate 2 bytes, which must be obtained through two
consecutive calls to this function.

The usual way to use this function is to test whether it returns OOH in
AL. If AL is not OOH, you have an ASCII character. If AL = OOH, you have a
non-ASCII keystroke (which should be recorded), and this function should
be repeated immediately to get the pseudo-scan code that represents the
special key action. (See page 135 for a list of the actions, codes, and their
meanings.) As with all the DOS keyboard input services, the scan code for
ASCII characters is not available, even if the corresponding ROM BIOS key
board services make it available. (See page 135.)

The various DOS keyboard service functions are distinguished pri
marily by three criteria: whether they wait for input (or report no input
when none is available); whether they echo input onto the display screen;
and whether the standard break-key operation is active for that service.
Function OIH performs all three operations: It waits for input, echoes input
to the screen, and lets DOS execute interrupt 23H if Ctrl-C is pressed.

Remember, function OIH always waits for the user to press a key
before it returns to a program. If you don't want to wait, either use function
OBH—before you call function OIH—to test whether a key was pressed, or
use function 06H. Also, see functions 08H and OCH for related services.

326

Chapter 16: DOS Functions: Version 1

Function 02H (decimal 2): Character Output
Function 02H (decimal 2) copies a single ASCII character from register DL to
the standard output device. In DOS version 1, the standard output device is
always the video screen; in later DOS versions, output can also be redirected
to a file.

In general, this function treats the ASCII control characters, such as

backspace or carriage return, as commands. In the case of the backspace
character, the display screen cursor is moved backward one column without
erasing the previous character.

Function 03H (decimal 3): Auxiliary Input
Function 03H (decimal 3) reads one character into AL from AUX the stan

dard auxiliary device. The default auxiliary device is COMl, the first RS-232
serial communications port. You can, however, use the DOS MODE com
mand to assign other devices, such as COM2, to the auxiliary device.

□ NOTE: This function waits for input. It does not report status in
formation about the many miseries that a serial port can suffer. If
you want to know the status of the serial port, use the ROM BIOS
communications-port services.

Function 04H (decimal 4): Auxiliary Output
Function 04H (decimal 4) writes one character from register DL to the stan
dard auxiliary device. See the remarks under function 03H.

Function 05H (decimal 5): Printer Output
Function 05H (decimal 5) writes 1 byte from DL to the standard printer
device, which is normally known as PRN: or LPTl: (although printer output
can be redirected with the DOS MODE command to other devices). The
default standard printer is always the first parallel printer, even if a serial
port is used for printer output.

Function 06H (decimal 6): Direct Console Input/Output
Function 06H (decimal 6) is a complex function that combines the opera
tions of keyboard input and display output into one untidy package. As with
everything else in DOS versions 2.0 and later, the I/O is not connected to the
keyboard and display, but rather to the standard input and output devices
(which default to the keyboard and display).

327

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Here is how this function works: The AL register is used for input and
the DL register for output. If you call function 06H with DL = FFH (decimal
255), the function performs input:

• If a key was pressed, function 06H returns the corresponding ASCII
code in AL and clears the zero flag.

• If no key was pressed, function 06H sets the zero flag.

If you call function 06H with any other value in DL, the function per
forms output: The character in DL is copied to the standard output device.

Function 06H does not wait for keyboard input, and it does not echo
input to the display screen. In addition, function 06H does not interpret
Ctrl-C as a keyboard break; instead, it returns the value 03H (the ASCII

value of Ctrl-C) in AL.

Compare this function with functions OIH, 07H, and 08H. See function
OCH for a variation of this service.

Function 07H (decimal 7): Direct Console Input Without Echo
Function 07H (decimal 7) waits for character input from the standard input
device and returns it in the AL register when available. It does not echo in

put to the display screen, and it does not recognize Ctrl-C as a keyboard
break character.

Function 07H works in the same way as function OIH: ASCII character

key actions are returned as single bytes in AL and are immediately reported
by this function. The non-ASCII function keystrokes (see page 135) generate
2 bytes, which must be obtained through two consecutive calls to function

07H.

Compare this function with functions OIH, 06H, and 08H. If you want
to use this function but don't want to wait when input is not ready, see func
tion OBH, which reports whether or not input is ready. See function OCH for
a variation of this function.

Function OSH (decimal 8): Console Input Without Echo
Function 08H (decimal 8) waits for input, does not echo, and breaks on a

Ctrl-C. It is identical to function OIH, except it does not echo the input to the
display screen (or standard output device).

See the discussion under function OIH for a description of this func
tion. Compare this function with functions OIH, 06H, and 07H. If you want to
use this function but don't want to wait when input is not ready, see func

tion OBH, which reports whether or not input is ready. See function OCH for
a variation of this function.

328

Chapter 16: DOS Functions: Version 1

Function 09H (decimal 9): String Output
Function 09H (decimal 9) sends a string of characters to the standard output
device (which defaults to the display screen). The register pair DS:DX pro
vides the address of the string. A $ character, ASCII 24H (decimal 36), marks
the end of the string.

Although this function can be far more convenient than the byte-by-
byte display services (functions 02H and 06H), it is flawed by the use of a
real, displayable character, $, as its string delimiter. This is not a recent
mistake; it's another by-product of CP/M compatibility. You should never
use this function with programs that output dollar signs.

Function OAH (decimal 10): Buffered Keyboard Input
Function OAH (decimal 10) puts the power of the DOS editing keys to work
in your programs. The function gets a complete string of input, which is
presented to your programs whole, rather than character by character. If you
assume that the input is actually from live keyboard action and is not redi
rected elsewhere, the full use of the DOS editing keys is available to the per
son who is typing the input string. When the Enter key is pressed (or a
carriage return, ASCII ODH (decimal 13), is encountered in the input file),
the input operation is complete and the entire string is presented to your
program.

This function provides many advantages, particularly to those pro
grams needing complete, coherent strings of keyboard input, rather than
byte-by-byte input. The two foremost benefits are that you are spared the
effort of writing detailed input-handling code, and your programs' users
are given a familiar set of input editing tools: the DOS editing conventions.

To use this function, you must provide DOS with an input buffer area
where the input string will be built. The register pair DS:DX points to this
buffer when you call the function. The first 3 bytes of this buffer have
specific purposes:

• The first byte indicates the working size of the buffer (the number
of bytes that DOS can use for input).

• The second byte is updated by DOS to indicate the actual number

of bytes input.

• The third byte is the beginning of the input string, which consists
entirely of ASCII characters. The end of the input string is signaled
by the carriage-return character, ASCII ODH. Although the carriage
return is placed in the buffer, it is not included in the character

count that DOS returns in the second byte.

329

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

By these rules, the longest buffer you can give DOS is 255 working
bytes, and the longest string that DOS can return is 1 byte less than the
working length. Because the first 2 bytes of the buffer are used for status in
formation, the actual working size of the buffer is 2 bytes less than the
buffer's overall size. This may explain some of the mysteries of the input
conventions in both DOS and BASIC.

If input continues beyond what DOS can place in the buffer (which is 1
byte short of its working length), then DOS will discard any further input,
beeping all the while, until a carriage return is encountered.

See function OCH for a variation of this function.

Function OBH (decimal 11): Check Keyboard Status
Function OBH (decimal 11) reports whether input is ready from the keyboard
(or standard input device). If a character is ready, AL = FFH (decimal 255).
If no input is ready, AL = OCH.

DOS checks for Ctrl-C when you execute function OBH, so a loop that
contains a call to this function can be interrupted by a keyboard break.

Function OCH (decimal 12):
Flush Keyboard Buffer, Read Keyboard

Function OCH (decimal 12) clears the keyboard buffer in RAM and then in
vokes one of five DOS functions: function OIH, 06H, 07H, 08H, or OAH. The

AL register is used to select which of these functions will be performed
after the keyboard buffer is flushed. With the keyboard buffer clear of ex
traneous characters, function OCH forces the system to wait for new input
before it acts on the invoked function.

Because function 06H is supported, the follow-up service need not be
keyboard input: It can be display output.

Function ODH (decimal 13): Flush Disk Buffers
Function ODH (decimal 13) flushes (writes to disk) all internal DOS file
buffers. However, this function does not update directory entries or close
any open files. To ensure that the proper length of a changed file is recorded
in the file directory, use the close-file functions lOH or 3EH.

Function OEH (decimal 14): Select Disk Drive
Function OEH (decimal 14) selects a new current default drive. It also

reports the number of drives installed. The drive is specified in DL, with
OGH indicating drive A, OIH drive B, and so on. The number of drives is

reported in AL.

330

Chapter 16: DOS Functions: Version 1

Keep a few things in mind when using this function:

• The drive IDs used by DOS are consecutively numbered.

• If only one physical diskette drive exists, DOS will simulate a sec
ond drive, drive number 1 (drive B). Thus the first fixed-disk drive

is always drive number 2, corresponding to drive letter C.

• If you use the value in AL to determine the number of drives in
your system, beware: In DOS versions 3.0 and later, the minimum

value returned by this function is 05H.

Function OFH (decimal 15): Open File
Function OFH (decimal 15) opens a file using a file control block (FOB). An

FCB is a data structure used by DOS to track input and output for a particular
file. Among other things, an FCB contains a file's name and disk drive num

ber. (See page 341 in this chapter for details on the contents of FCBs.)

□ NOTE: Function OFH is one of 15 DOS functions that use an FCB
to track file input and output. You should avoid the DOS functions
that use FCBs. These functions were made obsolete by the more
powerful handle-based file functions introduced in DOS version 2.0.
Furthermorey unlike handle-based functionsy FCB-based functions
are not supported in 0SI2 protected mode. Use the FCB-based func
tions only if compatibility with DOS version 1 is important.

To use an FCB to open a file, you must reserve memory for the FCB
and place the file's name and disk drive number in the proper fields in the
data structure. Then call function OFH with the segmented address of
the FCB in the register pair DS:DX. DOS attempts to open the file, using the
drive and filename you specified in the FCB. If the file is opened, AL = OOH;
if the file cannot be opened, AL = FFH.

If the file is opened successfully, DOS initializes several fields in the
FCB, including the drive number field (with a value of 1 for drive A, 2 for
drive B, and so on), the date and time fields, and the logical record-size field
(which is set to 128). You can either use this record size or change it,
depending on your application.

Function lOH (decimal 16): Close File
Function lOH (decimal 16) closes a file and updates the file's directory
entry. Call this function with the segmented address of the file's FCB in
DS:DX. DOS returns AL = OOH if the function successfully closed the file or
AL = FFH if an error occurred.

331

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

It is good practice to use function lOH to explicitly close all files you
opened with function OFH or 16H. This ensures that the file contents are up
dated from DOS internal file buffers and that the corresponding directory
entries are current.

Function IIH (decimal 17): Find First Matchii^ Directory Entry
Function IIH (decimal 17) searches the current directory for a specified
directory entry. The name you specify to function IIH can contain the wild
card characters ? and *. The ? character matches any single ASCII character
(as a wild card in a poker game matches any other card) and the * matches
any string of characters, so DOS can match a name that contains one or

more wildcard characters with several different directory entries. If more
than one directory entry matches, DOS reports only the first match. You
must then use function 12H to continue the search for subsequent matching
directory entries.

Before you call function IIH, store the address of an FCB in DS:DX.

The filename field of this FCB must contain the name you want DOS to
search for. DOS reports a successful match by returning AL = OOH; if no
directory entries match the specified name, DOS returns AL = FFH. When
DOS finds a matching directory entry, it creates a new FCB in the current
disk transfer area (DTA) and copies the matching name from the directory
entry into the new FCB's filename field.

If the FCB has an FCB extension (see page 344), then you can specify
the attributes of the file that you wish to search for. If you specify any com
bination of the hidden, system, or directory attribute bits, the search
matches normal files and also any files with those attributes. If you specify
the volume-label attribute, this function searches only for a directory entry
with that attribute. With DOS versions prior to 2.0, neither the directory nor
the volume-label attributes can be used in the file search operation. The
archive and read-only attributes cannot be used as search criteria in any
DOS release.

Function 12H (decimal 18): Find Next Matching Directory Entry
Function 12H (decimal 18) finds the next of a series of files, following the
set-up preparation performed by function IIH. As with function IIH, you
must call function 12H with the address of an FCB in DS:DX. For function

12H, the FCB should be the same as the one you used for a successful call to
function 11H.

332

Chapter 16: DOS Functions: Version 1

DOS reports a successful match by returning AL = OOH; if no match ex
ists, DOS returns AL = FFH. This lets you combine functions IIH and 12H to
perform a complete directory search by using the following logic:

initialize FCB

call function IIH

WHILE AL = 0

use current contents of DTA

call function 12H

Function 13H (decimal 19): Delete File
Function 13H (decimal 19) deletes all files that match the name specified in
the FCB pointed to by the register pair DS:DX. The filename in the FCB can
contain wildcard characters so that multiple files can be deleted with a
single call to function 13H. The function returns AL = OOH if the operation is
a success and all matching file directory entries are deleted. AL = FFH if the
operation is a failure, meaning that no directory entries matched.

Function 14H (decimal 20): Sequential Read
Function 14H (decimal 20) reads records sequentially from a file. To use
this function, open a file using function OFH. Then initialize the current-
record and record-size fields of the FCB. For example, to read the first 256-
byte record from a file, set the record-size field to lOOH (decimal 256) and
the currenL-record field to OOH before you call function 14H.

After the FCB is initialized, you can call function 14H once for each
record you want to read. Each time you call function 14H, pass the address
of the file's FCB in DS:DX. DOS reads the next record from the file and

stores the data in the current disk transfer area (DTA). At the same time,
DOS tracks its current position in the file by updating the current-block and
current-record fields in the FCB.

AL reports the results of the read. Complete success is signaled when
AL = OOH; AL = OIH signals an end-of-file, indicating that no data was read;
AL = 02H signals that data could have been read, but wasn't, because
insufficient memory remained in the DTA segment; AL = 03H signals an
end-of-file with a partial record read (the record is padded with zero bytes).

Function 15H (decimal 21): Sequential Write
Function 15H (decimal 21) writes a sequential record and is the companion
to function 14H. As with function 14H, DOS tracks its current position in
the file by updating the FCB whose address you pass in DS:DX. DOS copies

333

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

the data from the current DTA to the file and reports the status of the write
operation in AL.

If AL = OOH, the write operation was a success. If AL = OIH, the disk
was full and the record was not written. If AL = 02H, the amount of memory
remaining in the DTA's segment was less than the record size, so DOS
aborted the write operation.

It's important to note that data is logically written by this function, but
not necessarily physically written. DOS buffers output data until it has a
complete disk sector to write—only then does DOS actually transfer the
data to the disk.

Function 16H (decimal 22): Create File
Function 16H (decimal 22) opens an empty file with a specified name. If the
file exists in the current directory, function 16H truncates it to zero length.
If the file does not exist, function 16H creates a directory entry for the new
file. As with the other FCB-based file functions, you call function 16H with
DS:DX pointing to an FCB containing the name of the file. The function
returns AL = OOH to indicate successful operation. If AL = FFH, the function
failed, possibly because the filename you specified in the FCB is not valid.

If you want to avoid inadvertently losing the contents of an existing
file, you should determine if the file already exists by calling function IIH
before you use function 16H.

Function 17H (decimal 23): Rename File
Function I7H (decimal 23) renames files or subdirectories in a modified
FCB pointed to by DS:DX. For the rename operation, the FCB has a special
format. The drive and original name are located in their usual positions,
but the new name and extension are placed at offsets IIH through IBH in
the FCB.

AL = OOH signals complete success, and AL = FFH signals that the
original name wasn't found or the new name is already in use.

If the new name contains wildcard characters (?), they are interpreted
as ditto-from-old-name, and the characters in the original name that cor
respond to the positions of the wildcard characters are not changed.

Function 19H (decimal 25): Get Current Disk
Function 19H (decimal 25) reports the current drive number in AL, using the
standard numeric code of drive A = OOH, drive B = OIH, and so forth.

334

Chapter 16: DOS Functions: Version 1

Function lAH (decimal 26): Set Disk Transfer Area
Function lAH (decimal 26) establishes the disk transfer area that DOS will
use for file I/O. The location of the DTA is specified by the register pair
DS:DX. Normally, you should specify a DTA address before you use any of
the interrupt 21H functions that access a DTA. If you do not, DOS uses the
default 128-byte DTA at offset 80H in the program segment prefix.

Function IBH (decimal 27): Get Default Drive Information
Function IBH (decimal 27) returns important information about the disk in
the current drive. Function ICH performs the identical service for any drive.
Function 36H performs a nearly identical service. (See Chapter 17.)

The following information is returned through this function call:

• AL contains the number of sectors per cluster.

• CX contains the size, in bytes, of the disk sectors (512 bytes for all
standard PC formats).

• DX contains the total number of clusters on the disk.

• DS:BX points to a byte in DOS's work area containing the DOS
media descriptor. Prior to DOS version 2.0, the DS:BX register pair
pointed to the complete disk FAT (which could be guaranteed to be
in memory, complete), whose first byte would be the ID byte. In
later DOS versions, DS:BX points only to the single ID byte.

Beware: Function IBH uses the DS register to return the address of the
media descriptor byte. If your program relies on the DS register to point to
data—and most high-level and assembly-language programs do—then you
should be careful to preserve the contents of the DS register while you call
function IBH.

The following example shows how to do this:

push ds ; preserve DS

mov ah.lBh

int 21h ; call function IBH; DS:BX -> media descriptor

mov ah,[bx] ; get a copy of the media descriptor byte

pop ds ; restore DS

335

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function ICH (decimal 28): Get Specified Drive Information
Function ICH works in the same way as function IBH except that it reports
on any drive, not only the current drive. Before calling this function, set DL
to the drive ID number, where 0 = the current drive, 1 = drive A, 2 = drive B,
and so forth.

Function 21H (decimal 33): Read Random Record
Function 21H (decimal 33) reads one record from a random location in a
file. To use this function, open a file with an FCB. Then store the record
number of the record you want to read in the random-record field of the
FCB. When you call function 21H with DS:DX pointing to the FCB, DOS
reads the specified record into the DTA.

.AL is set with the same codes as it is for a sequential read: AL = OOH
indicates a successful read; AL = OIH indicates end-of-file, with no more
data available; AL = 02H means that insufficient space exists in the DTA
segment; and AL = 03H indicates an end-of-file, with a partial data record
available.

Contrast this function with function 27H, which can read more than
one random record at a time, or with function 14H, which reads sequential
records. See function 24H for more on setting the random-record field.

Function 22H (decimal 34): Write Random Record
Function 22H (decimal 34) writes one record to a random location in a file.
As with function 21H, you must initialize the random-record field in the
file's FCB and then call this function with DS:DX pointing to the FCB. DOS
then writes data from the DTA to the file at the position specified in the FCB.

AL is set with the same codes used for a sequential write: AL = OOH in
dicates a successful write; AL = OIH means the disk is full; AL = 02H indi
cates insufficient space in the DTA segment.

Contrast this function with function 28H, which can write more than
one random record, or with function 15H, which writes sequential records.
See function 24H for more on setting the random-record field.

Function 23H (decimal 35): Get File Size
Function 23H (decimal 35) reports the size of a file in terms of the number
of records in the file. DS;DX points to the FCB of the file you want to know
about. Before calling the function, the FCB should be left unopened and the
record-size field in the FCB filled in. If you set the record size to 1, the file
size is reported in bytes, which is most likely what you want.

336

Chapter 16: DOS Functions: Version 1

If the operation is successful, AL = OOH and the file size is inserted
into the FCB. If the file is not found, AL = FFH.

Function 24H (decimal 36): Set FCB Random Record Field
Function 24H (decimal 36) sets the random-record field to correspond to the
current sequential block and record fields in an FCB. This facilitates switch
ing from sequential to random I/O. The DS:DX registers point to the FCB of
an open file.

Function 25H (decimal 37): Set Interrupt Vector
Function 25H (decimal 37) sets an interrupt vector. Before you call function
25H, place the segmented address of an interrupt handler in DS:DX and an
interrupt number in AL. DOS stores the segment and offset of your interrupt
handler in the proper interrupt vector.

When updating an interrupt vector, you should use function 25H in
stead of simply computing the address of the vector and updating it directly.
Not only is it simpler to call this function than to do the work yourself, but
this function gives the operating system the chance to detect when an im
portant interrupt vector is modified.

To examine the contents of an interrupt vector, see function 35H in the
next chapter.

Function 26H (decimal 38): Create New Prt^ram S^ment Prefix
Function 26H is used within a program to prepare for loading and executing
another subprogram, or overlay. When you call function 26H, DX must con
tain the paragraph address of the start of the memory area where you want
DOS to build the new PSP. DOS builds a new PSP at the location you specify.

You can then load an executable program from a file into the memory above

the new PSP and transfer control to it.

□ NOTE: Function 26H is obsolete. You should use function 4BH
(Chapter 17) to load and execute a new program from within
another executing program.

Function 27H (decimal 39): Read Random Records
Unlike function 21H, function 27H reads one or more records, starting at a
random file location. DS:DX points to the FCB for the file to be read and the
random-record number is then taken from this FCB. CX contains the number
of records desired, which should be more than 0.

337

PRCX]RAMMER'S GUIDE TO THE IBM PC AND PS/2

The return codes are the same as they are for function 21H: AL = OOH
means the read was successful; AL = OIH indicates end-of-file, with no more
data (if the records were read, the last record is complete); AL = 02H indi
cates that the DTA segment was too small; and AL = 03H indicates the end-
of-file, where the last record read is incomplete and padded with zeros.

No matter what the result, CX is set to the number of records read, in
cluding any partial record, and the random-record field in the FCB is set to
the next sequential record.

Contrast this with function 21H, which reads only one record.

Function 28H (decimal 40): Write Random Records
Unlike function 22H, function 28H (decimal 40) writes one or more records,
starting at a specified random file location. DS:DX points to the FCB for the
file to be written, and the random record number is then taken from this
FCB. CX contains the number of records desired and in this case, CX can be
OOH. CX = OOH signals DOS to adjust the file's length to the position of the
specified random record. This adjustment makes it easier for a program to
manage random files: If you have logically deleted records at the end of a
file, this service allows you to truncate the file at that point by setting the
file's length in CX, thereby freeing disk space.

The return codes are the same as they are for function 22H: AL = OOH
indicates a successful write; AL = OIH means that no more disk space is
available; and AL = 02H indicates that the DTA segment was too small. No
matter what the result, CX is always set to the number of records written.

Contrast this function with function 22H, which writes only one
random record.

Function 29H (decimal 41): Parse Filename
Function 29H (decimal 41) parses a string for a filename with the form
DRIVE:FILENAME.EXT. Call this function with DS:SI pointing to a text
string and ES:DI pointing to the drive-identifier byte in an unopened FCB.
Function 29H attempts to extract the drive and filename information from
the string, and to use it to initialize the drive and name fields of the FCB. If
the function executes successfully, it returns AL = OOH if the string contains
no wildcard characters or AL = OIH if the string contains at least one * or ?
wildcard character. If the drive letter specifies an invalid drive, the function
returns AL = FFH.

Function 29H also updates DS:SI to point to the byte after the end of
the filename in the string. This facilitates processing a string that contains

338

Chapter 16: DOS Functions: Version 1

multiple filenames. Also, if the parsing was unsuccessful, the FCB contains
a blank filename.

Function 29H lets you control four different aspects of the filename
parsing. When you call the function, the 4 low-order bits of the value in AL
specify how function 29H parses the string:

• If bit 0 is set, the function scans past separator characters (for ex
ample, leading blank spaces) to find the file specification. If bit 0
is 0, the scan operation is not performed, and the file specification
is expected to start in the first byte of the string.

• If bit 1 is set, then the drive byte in the FCB will be set only if it is
specified in the file specification being scanned. This allows the
FCB to specify a default drive.

• If bit 2 is set, the filename in the FCB is changed only if a valid
filename is found in the string. This lets the FCB specify a default
filename, which can be overridden by the filename in the string.

• If bit 3 is set, the filename extension in the FCB is changed only if a
valid extension is found in the file specification. This allows the
FCB to specify a default extension.

□ NOTE: Although this service can be handy, it is intended for use
only with FCB-based file functions. You don't need this function if
you rely on the handle-based file functions described in Chapter 17.

Function 2AH (decimal 42): Get Date
Function 2AH (decimal 42) reports DOS's record of the current date. The
date is reported in CX and DX. DH contains the month number (1 through
12); DL contains the day of the month (1 through 28, 29, 30, or 31, as appro
priate); and CX contains the year (1980 through 2099).

This function reports the day of the week by returning a value from 0
through 6, which signifies Sunday through Saturday, in register AL. This
day-of-the-week feature is somewhat of an orphan. It has been present in
DOS since version 1.1, but was not even mentioned until DOS version 2.0. In
both the 2.0 and 2.1 manuals, it is incorrectly described as a part of the get-
time function and not as part of the get-date function. Starting with DOS 3.0,
the manual tells it as it is. Turn to the example on page 345 to see how this
function can be used.

339

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function 2BH (decimal 43): Set Date
Function 2BH (decimal 43) sets DOS's record of the current date, using the
same registers as function 2AH. The date is set in CX and DX. DH contains
the month number (I through 12); DL contains the day of the month (I
through 28, 29, 30, or 31, as appropriate); CX contains the year (1980 through
2099). This function returns AL = OOH if the date is successfully updated, or
AL = FFH if you specified an invalid date.

Starting in DOS version 3.3, this function also updates the real-time
clock/calendar in the PC/AT and PS/2. In earlier versions, you must still use
ROM BIOS interrupt lAH services to change the real-time clock date.

Function 2CH (decimal 44): Get Time
Function 2CH (decimal 44) reports the time of day. The time is calculated
from the ROM BIOS timer-tick count. (See page 59.) DOS responds to the
ROM BlOS's midnight-passed signal and updates the date every 24 hours.

The timer-tick count is converted into a meaningful time and placed
in registers CX and DX. CH contains the hour (0 through 23, on a 24-hour
clock); CL contains the minutes (0 through 59); DH contains the seconds (0
through 59); and DL contains hundredths of seconds (0 through 99). This
function returns AL = OOH if the time is successfully updated, or AL = FFH
if you specified an invalid time.

The IBM PC timer ticks 18.2 times per second, so the time of day
reported by DOS is only as accurate as the timer tick—roughly 5.4 hun
dredths of a second. Nevertheless, even with this relatively low accuracy,
you can use DOS function 2CH to measure time intervals in many
applications.

Function 2DH (decimal 45): Set Time
Function 2DH (decimal 45) sets the time of day. The time is specified in
registers CX and DX. CH contains the hour (0 through 23, on a 24-hour
clock); CL contains the minutes (0 through 59); DH contains the seconds (0
through 59); DL contains hundredths of seconds (0 through 99).

Starting in DOS version 3.3, this function also updates the real-time
clock in the PC/AT and PS/2. In earlier versions, you must still use ROM BIOS
interrupt lAH services to change the real-time clock time.

Function 2EH (decimal 46): Set Verify Flag
Function 2EH (decimal 46) controls verification of disk-write operations.
Call this function with AL = OIH to set DOS's internal verify flag and enable
verification; call it with AL = OOH to turn off the flag and verification. Also,
in DOS versions 1 and 2, you must zero DL before you call function 2EH.

340

Chapter 16: DOS Functions: Version 1

The disk-verify operation requires the disk controller to perform a
cyclical redundancy check (CRC) each time it writes data to the disk. This
process involves reading the data just written, which significantly decreases
the speed of disk writes.

With DOS versions 2.0 and later, function 54H can be used to report the

current setting of the verify flag. (See page 379.)

The File Control Block

As mentioned several times in this chapter, file control blocks and the DOS
functions that use them are obsolete. We recommend that you use the
handle-based file I/O functions introduced in DOS version 2,0 and described

in the next chapter. Usually, the only reason to concern yourself with FCBs
is when compatibility with DOS version 1 is an issue.

With that in mind, let's take a look at the structure of the FCB. The

usual FCB is a 37-byte data structure that contains a variety of information
DOS can use to control file input/output. (See Figure 16-3.) A 44-byte, ex
tended FCB is also used in some DOS functions: 7 extra bytes are tacked

onto the beginning of the usual FCB data structure. (See Figure 16-4.)
The situation with the FCB extension is more than a little peculiar.

The extension is used only when you work with the attribute field in a di
rectory entry in which read-only files, hidden files, system files, volume

Offset Field Width Description

OOH 1 Drive identifier

OIH 8 Filename

09H 3 File extension

OCH 2 Current-block number

OEH 2 Record size in bytes

lOH 4 File size in bytes

14H 2 Date

16H 2 Time

18H 8 (Reserved)

20H 1* Current-record number

21H 4 Random-record number

*Only the low-order 7 bits are used.

Figure 16-3. Structure of a file control block.

341

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Offset Field Width Description

OOH 1 Extended FCB flag (always FFH)

OIH 5 (Reserved)

06H 1 Attribute

07H 1 Drive identifier

08H 8 Filename

lOH 3 File extension

13H 2 Current-block number

15H 2 Record size in bytes

17H 4 File size in bytes

IBH 2 Date

IDH 2 Time

IFH 8 (Reserved)

27H 1* Current-record number

28H 4 Random-record number

*Only the low-order 7 bits are used.

Figure 16-4. Structure of an extendedfile control block. The first three fields distinguish
this data structure from a normal FCB.

labels, and subdirectories are identified. In general, you need to use ex
tended FCBs only if you are performing directory searches or otherwise
working with directory entries rather than the contents of files. However,
all FCB-based functions recognize the extended FCB format if you should
choose to use it.

With two exceptions, all fields in an extended FCB are identical to
those in a normal FCB. Only the offsets are different: In an extended FCB,
the offset of a particular field is 7 bytes greater than the offset of the same
field in a normal FCB.

The following sections describe the fields in normal extended FCBs.

FCB Fields

Offset OOH. The first field in a normal (nonextended) FCB is the disk drive
identifier. Values for the drive identifier start at 1; a value of 1 indicates

drive A, 2 indicates drive B, and so on. If this field contains 0 at the time an

FCB is opened, DOS uses the current default drive and updates this field with
the corresponding drive identifier.

342

Chapter 16: DOS Functions: Version 1

Offsets OIH and 09H. The two fields at offsets OIH and 09H contain an

8-byte name and a 3-byte extension. These fields are left-justified and pad
ded on the right with blanks. Following DOS convention, either upper- or
lowercase letters may be used. If the filename is a device name that DOS
recognizes, such as CON, AUX, COMl, COM2, LPTl, LPT2, PRN, or NUL, DOS

will use that device rather than a disk file.

□ NOTE: This is a reasonably good place to point out that the FCB
mechanism has no provision for working with pathnames. When
ever you use FCBs, they always apply to the current directory in any
drive. For flexible use of paths and subdirectories, see the new,
extended functions in Chapter 17.

Offsets OCH and 20H. For sequential file operations, the current-block
and current-record fields keep track of the location in the file. The use of
these fields is rather odd. Instead of using one integrated record number, the
record number is divided into a high and low portion, referred to as the
block number and record number. The record number is a 7-bit value, so
record numbers range from 0 through 127. Thus the first record in a file is
block 0, record 0; the 128th record is block 1, record 0.

Before you use the sequential read and write functions 14H and 15H,
be sure to initialize the current block and record fields to the desired start
ing location in the file.

Offset OEH. The record-size field contains a 2-byte value that speci
fies the size, in bytes, of the logical records in the file. When DOS reads or
writes a record, the logical size of the record is the number of bytes trans
ferred between DOS's disk buffers and the DTA.

The same file data can be worked on using a variety of record sizes.
When a file is opened through functions OFH or 16H, DOS sets the record
size to 128 bytes by default. If you want another size, such as 1 for single-
byte operations, you must change the record-size field after the file is
opened.

Offset lOH. The file-size field at offset lOH indicates the file size in
bytes. The value is taken from a file's directory entry and is placed in the
FCB when DOS opens the file. For an output file, this field is changed by
DOS as the file grows. When the file is closed, the value is copied from the
FCB to the file's directory entry.

By changing this field, you can gain some last-minute control over the
size of an output file, but be careful when doing this. You can, for example,
truncate a file you have updated by decreasing the file-size value in this

343

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

field. Also, be careful not to use function 17H to rename an open file: This
function requires that you specify the file's new name in the same part of
the FCB used for the file size.

Offsets I4H and 16H. The 2-byte fields at offset 14H (date) and offset
16H (time) record when a file was last updated. These fields use the same
format as the corresponding fields in a directory entry. (See Chapter 5.) The
initial values in these fields are copied from a file's directory entry when
the file is opened. They are subsequently updated each time you write to the
file. If the file was updated, DOS copies the values from the FCB to the
directory entry when the file is closed.

Offset 21H. The random-record field is used during random read and
write operations, just as the current record and block numbers are used dur
ing sequential operations. This field is in the form of a 4-byte, 32-bit integer.
Records are numbered from 0, which makes it easy to calculate the file off
set to any record by multiplying the random-record number by the record
size. You must set this field before any random file operation. DOS leaves it
undisturbed.

Extended FCB Fields

An extended FCB has two additional fields not found in a normal FCB:

• The first field of an extended FCB is a flag byte whose contents
must be FFH. DOS distinguishes between normal and extended

FCBs by examining this byte. (In a normal FCB, the first field is

the disk-drive specifier, which should never be FFH.)

• Offset 06H in an extended FCB is a 1-byte field that consists of an
attribute byte whose bits signify file, volume label, and subdirec
tory attributes. This byte's format is identical to the attribute byte
in a directory entry. (See Chapter 5.)

□ NOTE: One rare situation in which you would use FCB-based
functions instead of handle-based functions is when you work with
a disk's volume label. DOS versions 2.0 and later do not provide any
special services for manipulating a volume label. You must use
function I6H with an extended FCB to create a volume label, func
tion 17H to rename it, and function 13H to rename it.

344

Chapter 16: DOS Functions: Version 1

An Example
For our assembly-language example in this section, we've chosen some

thing rather interesting. It's a routine used within the Norton Utility pro
grams, so you'll be seeing some actual production code.

The purpose of this routine is to calculate the day of the week for any
day within DOS's working range, which is stated to be from Tuesday, Janu
ary 1, 1980, through Thursday, December 31, 2099. Occasionally, it's valu

able for a program to be able to report the day of the week, either for the

current date or for any other date that may be in question. For example, DOS
keeps track of the date and time each file was last changed. Because people
often use this information to find out when they last worked with a file, it

can be handy to know the day of the week as well. In fact, the day of the
week is often more immediately meaningful than the actual date.

Although several interesting and clever algorithms let you calculate
the day of the week, the actual work of writing a day-of-the-week program
is usually rather tedious. Beginning with version 1.10, DOS incorporated a
day-of-the-week calculation, which spared us the chore of writing our own.
DOS's routine is available only in a form that reports the current day of the
week, but that is no obstacle: We can temporarily change DOS's date to the
date we're interested in and then have DOS report the day of the week. That
is what the following assembly-language routine does for us.

Besides being slightly foxy, this routine is interesting because it illus
trates how three DOS function calls operate together to produce one result. It
also illustrates the minor intricacies involved in saving and restoring things
on the stack. As we will see here, stack use occasionally has to be carefully

orchestrated so that different values don't get in each others' way.
This particular subroutine, named Weekday, is set up in the form

needed for use with the Microsoft C compiler. The routine is called with
three integer variables, which specify the month, day, and year we are in

terested in. The routine returns the day of the week in the form of an integer
in the range of 0 through 6 (signifying Sunday through Saturday). This con

forms to the C language convention for arrays, providing an index to an
array of strings that give the names of the days. Therefore, we could use this

subroutine in this way:

DayNameC Weekday(month, day, year)]

345

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

It is important to note that this routine works blindly with the date,
checking neither for a valid date nor for the range of dates accepted by DOS.
Here is the subroutine:

-TEXT SEGMENT

ASSUME

byte public

OS:-TEXT

'CODE'

-Weekday

PUBLIC

PROC

-Weekday

near

346

push

mov

bp

bp.sp

establish stack addressing ..

.. through BP

mov

Int

ah,2Ah

21h

get current date

push

push

cx

dx

save current date on the stack

mov

mov

mov

cx,[bp+8]

dl.[bp+6]

dh,[bp+4]

CX = year

DL = day

DH = month

mov

Int

ah,2Bh

21h

set the date specified

mov

1 nt

ah.2Ah

21h

get the date back from DOS

(AL = day of the week)

pop

pop

push

dx

cx

ax

restore the current date ..

.. In CX and DX

save day of week on the stack

mov

1 nt

ah,2Bh

21h

set the current date

pop

mov

ax

ah.O

AL = day of week

AX = day of week

pop

ret

bp restore BP and return

-Weekday

-TEXT

ENDP

ENDS

Chapter 17

DOS Functions:

Versions 2.0

and Later

Enhancements in DOS Versions 2 and 3 349

Consistent Error Codes 349

ASCIIZ Strings 350

File Handles 350

Installable Device Drivers 351

Interrupt 21H Functions: DOS Versions 2.0 and Later 352

Function 2FH (decimal 47): Get DTA Address 355

Function 30H (decimal 48): Get DOS Version Number 355

Function 31H (decimal 49): Terminate and Stay Resident 355

Function 33H (decimal 51): Get/Set Ctrl-C Flag 356

Function 35H (decimal 53): Get Interrupt Vector 357

Function 36H (decimal 54): Get Disk Free Space 357

Function 38H (decimal 56): Get/Set Country-Dependent Information 357

Function 39H (decimal 57): Create Directory 360

Function 3AH (decimal 58): Remove Directory 360

Function 3BH (decimal 59): Change Current Directory 361

Function 3CH (decimal 60): Create File 361

Function 3DH (decimal 61): Open Handle 361

Function 3EH (decimal 62): Close Handle 363

Function 3FH (decimal 63): Read from File or Device 363

Function 40H (decimal 64): Write to File or Device 363

Function 41H (decimal 65): Delete File 364

Function 42H (decimal 66): Move File Pointer 364

Function 43H (decimal 67): Get/Set File Attributes 365

Function 44H (decimal 68): lOCTL—I/O Control for Devices 366

Function 45H (decimal 69): Duplicate Handle 372

Function 46H (decimal 70): Force Duplicate Handle 372

Function 47H (decimal 71): Get Current Directory 373

Function 48H (decimal 72): Allocate Memory Block 374

Function 49H (decimal 73): Free Memory Block 374

Function 4AH (decimal 74): Resize Memory Block 374

Function 4BH (decimal 75): EXEC—Load and Execute a Program 375

Function 4CH (decimal 76): Terminate with Return Code 377

Function 4DH (decimal 77): Get Return Code 377

Function 4EH (decimal 78): Find First Matching Directory Entry 378

Function 4FH (decimal 79): Find Next Matching Directory Entry 379

Function 54H (decimal 84): Get Verify Flag 379

Function 56H (decimal 86): Rename File 379

Function 57H (decimal 87): Get/Set File Date and Time 380

Function 58H (decimal 88): Get/Set Memory Allocation Strategy 380

Function 59H (decimal 89): Get Extended Error Information 381

Function 5AH (decimal 90): Create Temporary File 386

Function 5BH (decimal 91): Create New File 386

Function 5CH (decimal 92): Lock/Unlock File Region 387

Function 5EH (decimal 94): Network Machine Name and Printer Setup 388

Function 5FH (decimal 95): Network Redirection 388

Function 62H (decimal 98): Get PSP Address 390

Function 65H (decimal 101): Get Extended Country Information 390

Function 66H (decimal 102): Get/Set Global Code Page 392

Function 67H (decimal 103): Set Handle Count 392

Function 68H (decimal 104): Commit File 393

348

Chapter 17: DOS Functions: Versions 2.0 and Later

In this chapter we'll discuss the interrupt 21H functions introduced in DOS
versions 2.0 and later. These functions provide a wide range of operating
system services within a more sophisticated and flexible framework than

the original 42 functions we described in Chapter 16.

Almost every DOS upgrade has increased the number of services

provided to programmers. DOS 2.0 initiated the most dramatic changes: It
added 33 new functions to the existing 42; it changed the way you access file
information as a result of these new functions; and it made it possible to
adapt DOS to work with almost any hardware device through the use of

programs called installable device drivers. Before discussing the newer DOS
functions in detail, we'll briefly cover how some of these enhancements can
affect your programming practices.

Enhancements in DOS Versions 2 and 3

The services introduced with DOS versions 2 and 3 have three important
new features that directly affect the way you use the services:

• Most of the functions return a set of consistent error codes in the

AX register.

• All functions that use string input require a special string format
known as the ASCIIZ format—a string of ASCII characters termi

nated by a single zero byte.

• The newer DOS functions use a 16-bit number called a handle, in

stead of an FCB, to identify the files and I/O devices that a program
communicates with.

We'll discuss each of these enhancements on the next few pages.

Consistent Error Codes

When you call an interrupt 21H function in DOS versions 2.0 and later, the

function returns an error status code in the AX register. These functions
also set the carry flag to signal that an error has occurred. You should gen
erally follow each call to these interrupt 21H functions with a test of the

carry flag; if the flag is set, the value in AX describes what caused the error.

In DOS versions 3.0 and later, you can also use interrupt 21H, function
59H, to obtain extended error information from DOS. You can call function

59H after any interrupt 21H function reports an error; you can also use it

inside a critical-error (interrupt 24H) handler to determine the nature of a

DOS critical error. In both situations, function 59H returns an extended error

code and also suggests possible actions to alleviate the problem.

349

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

For a complete list of extended error codes and how to use them, see
the discussion of function 59H on page 381.

ASCIIZ Strings
Many interrupt 21H functions introduced in DOS versions 2 and 3 require
you to pass file and directory names in the form of ASCIIZ strings. An
ASCIIZ string is simply a string of ASCII characters terminated by a single
zero byte that marks the end of the string. For example, the ASCIIZ repre
sentation of the pathname C:\COMMAND.COM would consist of the follow
ing 15 hexadecimal bytes:

Characters c \ 0 M M N D Q 0 M
null

*
byte

ASCII values (hex) ► 43 3A 5C 43 4F 4D 4D 41 4E 44 2E 43 4F 4D 00

The ASCIIZ string format is commonly used within the UNIX operating sys
tem and the C programming language; it is only one of many new elements
with a C/UNIX flavor introduced in DOS version 2.0.

File Handles
The newer interrupt 21H functions in DOS versions 2.0 and later rely on the
notion of handles. Handles are 16-bit numbers that DOS uses to identify open
files. Handles can also identify other sources of input and output for a pro
gram, including the keyboard and the video display. (They're also another
example of the UNIX influence: In UNIX, file handles are called 'Tile
descriptors" but are used in essentially the same way as they are in DOS.)

The use of handles allows DOS to be more flexible in its file manage
ment services than it was with FCB-based file services. In particular, capa
bilities such as file redirection and support for hierarchical directories
would have been very difficult to graft onto the fixed-format FCB data
structure. Furthermore, the use of handles actually simplifies file manage
ment by making the mechanics of file input/output—^parsing filenames,
keeping track of the current file position, and so on—the responsibility of
DOS instead of your programs.

DOS assigns a new handle number whenever you create or open a file.
Five standard handles, numbered 0 through 4, are automatically available to
every program. (See Figure 17-1.) Other handles, with higher handle num
bers, are issued by DOS as needed.

350

Chapter 17: DOS Functions: Versions 2.0 and Later

Handle Use Default Device

0 Standard input (normally keyboard input) CON

1 Standard output (normally screen output) CON

2 Standard error output (always to the screen) CON

3 Standard auxiliary device (AUX device) AUX

4 Standard printer (LPTl or PRN device) PRN

Figure 17-1. The five standard DOS handles.

□ NOTE: Of the five standard DOS handles, only the first three are
supported in 0S12 protected mode. If you are programming with up
ward compatibility in mind, you should avoid using handles 3 and 4
by default. Instead, open the serial port and printer devices ex
plicitly, as you would any other file or input! output device.

DOS limits the use of handles in regard to how many files or devices
your program can open at one time:

• DOS maintains an internal data structure that controls I/O for each
file or other input/output device associated with a handle. The
default size of this data structure allows for only 8 handles. For
tunately, the FILES command in the CONFIG.SYS file lets you
increase the number of possible handles (99 in DOS versions prior
to 3.0; 255 in versions 3.0 and later).

• DOS uses a reserved area in each program's PSP to maintain a table
of handles associated with the program. This table has room for a
maximum of 20 handles. Thus, even if you specify FILES = 30 in
your CONFIG.SYS file, your programs will still be able to use only
20 handles at a time. (DOS 3.3 provides a way around this through
interrupt 21H, function 67H. See page 392 for details.) Fortunately,
few applications require more than 20 different files to be open at
once, so these limitations are not usually important.

Installable Device Drivers
In DOS versions 2.0 and later, you can write a routine that provides a consis
tent interface between DOS's handle-based 1/0 functions and almost any I/O
device that can input or output a stream of data. Such a routine is called a
device driver. DOS comes with several built-in device drivers for the key
board, video display, printer, communications port, and disks. You can also

351

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

install device drivers for other devices by including their names in DEVICE
commands in the CONFIG.SYS file.

DOS I/O device drivers allow handles to be associated not only with
disk files but with any input/output device. When you use a handle-based

DOS function to open a device, DOS searches its list of device drivers before
it searches for a disk filename. Familiar names like "CON", "LPTl", and

"NUL" are all part of the default list of device drivers. Opening a device
for input/output thus consists only of passing a name to a DOS function and
receiving a handle from DOS in return, regardless of whether the device is a

disk file or is associated with some other type of hardware.

□ NOTE: Incidentallyy this explains why you can't open a file
named ''CON" or "PRN": DOS searches for device names before it
searches for filenamesy so it always finds a named device before
it finds a file with the same name.

You don't have to know much about the implementation of device
drivers to use the handle-based DOS functions, so we will save a more
detailed discussion of device drivers for Appendix A. Keep in mind that by
placing the discussion of device drivers at the end of the book, we in no way
mean to diminish their importance. All programmers concerned with the
range and longevity of their programs should at least be familiar with the
use and operation of DOS device drivers.

Interrupt 21H Functions: DOS Versions 2.0 and Later
All DOS function calls described in this chapter are invoked through inter
rupt 21H (decimal 33). The individual functions are selected by placing the
function number in the AH register. Any program that uses these functions
should test the DOS version number first to be sure the functions are sup
ported. (Function 30H provides this service.)

The functions can be organized into the groups shown in Figure 17-2.
In an effort to make the logical groupings of the function calls as clear as
possible, we organized and described them in a slightly different manner
than that in IBM's DOS technical reference manuals. You may want to com
pare this organization with IBM's, to be sure you understand. Figure 17-3
lists the individual function calls.

352

Chapter 17: DOS Functions: Versions 2.0 and Later

Function

Hex Dec Group

2FH-38H 47-56 Miscellaneous functions

39H-3BH 57-59 Directory functions

3CH-46H 60-70 File-management functions

47H 71 Directory function

48H-4BH 72-75 Memory-management functions

4CH-5BH 76-91 Miscellaneous functions

5CH-5FH 92-95 Network support

62H-68H 98-104 Miscellaneous functions

Figure 17-2. The logical groups of extended DOS function calls.

Function DOS

Hex Dec Description Version

2FH 47 Get DTA Address 2.0

30H 48 Get DOS Version Number 2.0

31H 49 Terminate and Stay Resident 2.0

33H 51 Get/Set Ctrl-C Flag 2.0

35H 53 Get Interrupt Vector 2.0

36H 54 Get Disk Free Space 2.0

38H 56 Get/Set Country-Dependent Information 2.0

39H 57 Create Directory 2.0

3AH 58 Remove Directory 2.0

3BH 59 Change Current Directory 2.0

3CH 60 Create File 2.0

3DH 61 Open Handle 2.0

3EH 62 Close Handle 2.0

3FH 63 Read from File or Device 2.0

40H 64 Write to File or Device 2.0

41H 65 Delete File 2.0

42H 66 Move File Pointer 2.0

43H 67 Get/Set File Attributes 2.0

44H 68 lOCTL—I/O Control for Devices 2.0

45H 69 Duplicate File Handle 2.0

46H 70 Force Duplicate File Handle 2.0

47H 71 Get Current Directory 2.0

Figure 17-3. Interrupt 21Hfunctions available in DOS versions 2.0 and later, (continued)

353

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 17-3. continued

Function DOS

Hex Dec Description Version

48H 12 Allocate Memory Block 2.0

49H 73 Free Memory Block 2.0

4AH 74 Resize Memory Block 2.0

4BH 75 EXEC—Load and Execute a Program 2.0

4CH 76 Terminate with Return Code 2.0

4DH 77 Get Return Code 2.0

4EH 78 Find First Matching Directory Entry 2.0

4FH 79 Find Next Matching Directory Entry 2.0

54H 84 Get Verify Flag 2.0

56H 86 Rename File 2.0

57H 87 Get/Set File Date and Time 2.0

58H 88 Get/Set Memory Allocation Strategy 3.0

59H 89 Get Extended Error Information 3.0

5AH 90 Create Temporary File 3.0

5BH 91 Create New File 3.0

5CH 92 Lock/Unlock File Region 3.0

5EH 94 Network Machine Name and Printer Setup 3.1

5FH 95 Network Redirection 3.1

62H 98 Get PSP Address 3.0

65H 101 Get Extended Country Information 3.3

66H 102 Get/Set Global Code Page 3.3

67H 103 Set Handle Count 3.3

68H 104 Commit File 3.3

354

Chapter 17: DOS Functions: Versions 2.0 and Later

Function 2FH (decimal 47): Get DTA Address
Function 2FH (decimal 47) returns the address of the disk transfer area
(DTA) currently used by DOS. The address is returned in the register pair
ES:BX. Contrast this with function lAH, discussed on page 335.

Function 30H (decimal 48): Get DOS Version Number
Function 30H (decimal 48) returns the DOS major and minor version num
bers. The major version number is in AL, and the minor version number is
in AH; BX and CX contain a serial number (0 in IBM's versions of DOS;
other possible values in non-IBM versions). For example, if you execute
function 30H in DOS version 3.3, the function returns AL = 03H (the major
version number), AH = lEH (30, the minor version number), BX = OGH, and
CX = OGH. In the OS/2 compatibility box, function 3GH returns AL = GAH;
that is, the major version number is IG.

In DOS version 1, function 3GH was unsupported. Nevertheless, you
can still test for DOS version 1 by executing function 3GH; in DOS version 1,
function 3GH is guaranteed to return AL = GGH. Thus, a simple test of the
value returned in AL is sufficient to distinguish between version 1 and later
versions:

mov ah,30h ; AH = 30H (interrupt 21H function number)

int 21h ; get DOS version number

cmp al,2

jl EarlyVerslon ; jump If DOS version 1

Any program that uses interrupt 21H functions with numbers above
2EH can use function 3GH to determine if the appropriate DOS version is
being used.

Function 31H (decimal 49): Terminate and Stay Resident
Function 31H (decimal 49) terminates a program and leaves part of the
program resident in memory. Except for the fact that function 31H lets you
reserve memory for a memory-resident program, its function is the same as
that of the program termination function (function 4CH). You call function
31H with a return code value in AL and with the number of^paragraphs of
memory to reserve for the program in DX.

355

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Before you use function 31H, you should generally carry out the
following steps:

1. Call function 30H to verify that the DOS version is 2.0 or later.
Function 31H isn't supported in DOS version 1.

2. Call function 49H to free the memory allocated to the program's
environment block. (The word at offset 2CH in the program's PSP
contains the paragraph address of the environment block.)

3. Determine the amount of memory to reserve for the resident pro
gram. This value must include the 16 paragraphs reserved for the
program's PSP in addition to contiguous memory reserved for the
program itself. This value does not include memory allocated
dynamically by the program using function 48H.

4. Call function 31H to terminate the program.

Like function 4CH, function 3IH restores the interrupt vectors for in
terrupts 22H (Terminate Address), 23H (Ctrl-C Handler), and 24H (Critical
Error Handler) to the DOS default values; therefore, you cannot use this
function to install memory-resident handlers for these interrupts.

Function 31H is much more flexible than the Terminate-and-Stay-

Resident service supported through interrupt 27H. You should always use
function 31H in your TSR programs unless you are concerned about main
taining compatibility with DOS version 1.

Function 33H (decimal 51): Get/Set Ctrl-C Flag
Function 33H (decimal 51) lets you test or update DOS's internal Ctrl-C flag.
When you call function 33H with AL = OOH, DOS reports the current state of
the Ctrl-C flag in DL:

• If the flag is clear (DL = OOH), DOS checks for Ctrl-C keystrokes
only when transmitting a character to or from a character device
(interrupt 21H functions OOH through OCH).

• If the flag is set (DL = OIH), DOS also checks for Ctrl-C when it re
sponds to other service requests, such as file I/O operators.

When yo"U call function 33H with AL = OIH, DOS expects DL to contain
the desired value for the break flag:

• DL = OOH disables the break check.

• DL = OIH enables the break check.

356

Chapter 17: DOS Functions: Versions 2.0 and Later

Function 35H (decimal 53): Get Interrupt Vector
Function 35H (decimal 53) returns the interrupt vector for the interrupt
number you specify in register AL. The vector is returned in the register
pair ES:BX.

Function 35H provides a complementary service to function 25H,

which updates an interrupt vector. (See Chapter 16.)

Function 36H (decimal 54): Get Disk Free Space
Function 36H (decimal 54) is similar to function ICH (which gets disk infor
mation), but also provides information about unused disk space, which
function ICH does not. Before calling this function, select the drive that you
are interested in with the DL register: DL = OOH indicates the default drive,
DL = OIH indicates drive A, DL = 02H indicates drive B, and so on.

If you specify an invalid drive, function 36H returns FFFFH in the AX

register. Otherwise, AX contains the number of sectors per cluster, CX con
tains the number of bytes per sector, BX contains the number of available

clusters, and DX contains the total number of clusters.

From these numbers you can make many interesting calculations, as
follows:

CX * AX = bytes per cluster

CX * AX * BX = total number of free bytes
CX * AX * DX = total storage space in bytes

(BX * 100) / DX = percentage of free space

If S were the size of a file in bytes, you could calculate the number of

occupied clusters in this way:

(S + CX * AX - 1)\(CX * AX)

Similar formulas would give you the number of sectors and the amount and
proportion of space allocated to a file but not used (the slack space).

Function 38H (decimal 56):
Get/Set Country-Dependent Information

Function 38H (decimal 56) allows DOS to adjust to different international

currency and date format conventions. In DOS version 2, this function

reports a very small set of country-dependent information. In DOS version

3, function 38H reports a more detailed list of country-dependent items; in
this version of DOS, a program can also change the country-dependent
information with a call to function 38H.

357

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

To get country-dependent information from DOS, call function 38H
with DS:DX containing the address of a 32-byte buffer. (In DOS versions 3.0
and later, the size of the buffer must be 34 bytes.) Register AL must be set to
OOH to get the current country information. For DOS versions 3.0 and later,
register AL can also be set to a predefined country code. (The country code
is the same 3-digit code used as the country's international telephone access
code.) To specify a country code of 255 or greater, AL can be set to FFH
(decimal 255), and the country code can be put into register BX.

If the requested country code is invalid, DOS sets the carry flag (CF)
and places an error code in AX. Otherwise, register BX contains the country
code, and the buffer at DS:DX is filled in with the country-specific
information shown in Figures 17-4 and 17-5.

To set the current country code in DOS version 3, set DX equal to
FFFFH and call function 38H with AL equal to the country code (or if the
code is greater than 254, set AL equal to FFH and register BX equal to the
country code).

The country-dependent information is used by DOS utilities like DATE
and TIME. A program can call function 38H to obtain the information DOS
uses to configure itself for country-dependent conventions.

The date format is an integer word whose value specifies the display
format for the date. This word has three predefined values and three
corresponding date formats. (See Figure 17-6.) Room is reserved so that
others might be added in the future.

The currency symbol is the symbol used in displaying an amount of
money: In the United States, the currency symbol is a dollar sign ($); in the
United Kingdom, it's the pound symbol (£); in Japan, it's the yen symbol
(¥). In DOS versions 2.0 and 2.1, the currency symbol can only be a single
character, but in DOS version 3, a string up to four characters in length can
be used. For example, one of the currency strings that could be used in DOS
version 3.3 is DKR, which stands for Danish kroner.

Offset Size

Hex Dec (bytes) Description

OOH 0 2 Date format

02H 2 2 Currency symbol string (ASCIIZ format)

04H 4 2 Thousands separator string (ASCIIZ format)

06H 6 2 Decimal separator string (ASCIIZ format)

08H 8 24 (Reserved)

Figure 17-4. The country-dependent information reported by function 38H in DOS
version 2.

358

Chapter 17: DOS Functions: Versions 2.0 and Later

Offset Size

Hex Dec (bytes) Description

OOH 0 2 Date format

02H 2 5 Currency symbol string (ASCIIZ format)

07H 7 2 Thousands separator string (ASCIIZ format)

09H 9 2 Decimal separator string (ASCIIZ format)

OBH 11 2 Date separator string (ASCIIZ format)

ODH 13 2 Time separator string (ASCIIZ format)

OFH 15 1 Currency symbol location

lOH 16 1 Currency decimal places

IIH 17 1 Time format: 1 = 24-hour clock; 0 = 12-hour

12H 18 4 Extended ASCII map call address

16H 22 2 List separator string (ASCIIZ format)

18H 24 10 (Reserved)

Figure 17-5. The country-dependent information returned by function 38H in DOS
version 3.

Value Use Date

OOH American month day year

OIH European day month year

02H Japanese year month day

Figure 17-6. The three predefined date formats returned by function 38H.

The thousands separator is the symbol used to punctuate the thousands

mark in numbers. The U.S. uses a comma as a thousands separator, as in the

number 12,345; other countries use a period or a blank.

The decimal separator is the symbol used to punctuate decimal places.

The U.S. uses a period as a decimal separator, as in 3.0; other countries use a

comma.

The date separator and time separator are the punctuation used in dis

playing the date (for example, - as in 7-4-1988) and in displaying the time

(for example,: as in 12:34).

The currency symbol location indicates where the currency symbol

should be placed. A value of OOH places the currency symbol immediately
before the amount (¥1500); OIH places the symbol immediately after the

amount (150); 02H places the symbol before the amount with an intervening

359

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

space (FFr 15); 03H places the symbol after the amount with an intervening
space (15 DKR); and 04H replaces the decimal separator with the currency
symbol.

The currency decimal places value specifies how many decimal places
are used in the currency. For example, the value would be 02H for U.S. cur

rency (dollars and cents) and OOH for Italian currency (lire).
The time format field specifies whether time appears in a 12-hour or

24-hour format. Only the low-order bit (bit 0) is currently used; if the bit is
set to 0, a 12-hour clock is used; if it is set to 1, a 24-hour clock is used.

The extended ASCII map call address is the segmented address of a rou
tine that maps ASCII characters 80H through FFH to characters in the range
OOH through 7FH. Not all printers or plotters can display extended ASCII
characters in the range 80H-FFH, so the routine at this address is called
when it is necessary to map such characters into the usual range of ASCII
characters (00H-7FH).

The list separator indicates the symbol used to separate items in a list,
such as the commas in the list A, B, C, and D.

Function 39H (decimal 57): Create Directory
Function 39H (decimal 57) creates a subdirectory, just as the DOS command
MKDIR does. To invoke this service, create an ASCIIZ string containing the
pathname of the new directory. The register pair DS:DX contains the ad
dress of the ASCIIZ string. If an error occurs, function 39H sets the carry
flag and returns an error code in AX. The possible error codes are 03H (path
not found) and 05H (access denied).

Function 3AH (decimal 58): Remove Directory
Function 3AH (decimal 58) removes (deletes) a subdirectory exactly as the
DOS command RMDIR does. To invoke this function, create an ASCIIZ

string containing the pathname of the directory you want to remove. The
register pair DS:DX points to the ASCIIZ string. If an error occurs, function
3AH sets the carry flag and returns an error code in AX. The possible error

codes are 03H (path not found), 05H (access denied), and lOH (attempt to
remove current directory).

360

Chapter 17: DOS Functions: Versions 2.0 and Later

Function 3BH (decimal 59): Change Current Directory
Function 3BH (decimal 59) changes the current directory exactly as the DOS

command CHDIR does. To invoke this function, create an ASCIIZ string
containing the pathname of the new directory. DS:DX contains the address
of the ASCIIZ string. If an error occurs, function 3BH sets the carry flag and
returns an error code in AX. The one possible error code is 03H (path not
found).

Function 3CH (decimal 60): Create File
Function 3CH (decimal 60) opens an empty file using a specified name. If
the file exists, function 3CH truncates it to zero length. If the file does not
exist, function 3CH creates a new file. This function parallels function 16H

(discussed on page 334).

To invoke this function, create an ASCIIZ string containing the
pathname and filename. The register pair DS:DX contains the address of the
ASCIIZ string. CX contains the file attribute. (See page 113 for more on file
attributes and attribute bit settings.) When function 3CH executes suc

cessfully, it clears the carry flag and returns a handle in AX. Otherwise, this
function sets the carry flag and leaves an error code in AX. Possible error

codes are 03H (path not found), 04H (no handle available), and 05H (access
denied). Code 05H can indicate either that there is no room for a new direc

tory entry or that the existing file is marked read-only and can't be opened
for output.

Be aware that by using function 3CH you can accidentally truncate an
existing file to zero length. The best way to avoid this mistake is simply to
call function 4EH to search the directory for an existing file before you call

function 3CH. Or, if you are using DOS 3.0 or later, you have two other alter

natives: You can call function 5BH, which works like function 3CH but

won't open an existing file, or you can use function 5AH to create a tempo
rary file with a unique filename.

Function 3DH (decimal 61): Open Handle
Function 3DH (decimal 61) opens an existing file or device. You provide the

pathname and filename in the form of an ASCIIZ string. As with all other
file I/O functions, DS:DX points to this string. You also indicate how you

want to use the file by placing a file-access code in register AL. The 8 bits of

AL are divided into the four fields shown in Figure 17-7 on the following

page.

361

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit

7 6 5 4 3 2 1 0 Use

I Inheritance flag (DOS version 3 only)

S S S Sharing mode (DOS version 3 only)

. . . . R . . . (Reserved)

A A A Access code

Figure 17-7. File-access and sharing codes for function SDH.

The file-access code for DOS version 2 is simple: Only the access bits
(bits 0-2) are used; all other bits are set to 0. The three access-code settings

are defined in Figure 17-8.

Bit

2 1 0 Use

0 0 0 Read (only) access

0 0 1 Write (only) access

0 1 0 Read or write access

Figure 17-8. File-access modes for function SDH.

DOS version 3 uses the inheritance and sharing codes as well as the ac
cess code. The inheritance and sharing codes give you control over how dif

ferent programs access the same file at the same time.

Bit 7, the inheritance bit, indicates whether or not a child process can
inherit the use of this file. (For more about parent and child processes, see
the discussion of function 4BH later in this chapter.) When a child process
inherits a handle, it inherits the file's access and sharing codes: If bit 7 = 0, a
child process can use the same handle to access the file as the parent
process; if bit 7 = 1, the child process must itself open the file to obtain a
different handle.

Bits 4 through 6, the sharing-mode bits (SSS in Figure 17-7), define
what will happen when more than one program tries to open the same file.
There are five sharing modes: compatibility mode (SSS = 000), deny read/
write mode (SSS = 001), deny write mode (SSS = 010), deny read mode (SSS

= Oil), and deny none mode (SSS = 100). When a second attempt is made to
open the file, DOS compares the file's sharing code with the access re
quested in the second open operation. DOS allows the second open operation
to succeed only if the sharing mode and the requested access mode are

compatible.

362

Chapter 17: DOS Functions: Versions 2.0 and Later

□ NOTE: DOS performs this file-sharing validation only if it is run
ning on a network or if the SHARE utility is installed. See the DOS
technical reference manual for more details on networking and the
SHARE utility.

Bit 3, marked as "Reserved" in Figure 17-7, should be set to 0.
Like function 3CH, function SDH clears the carry flag and returns a

handle in AX when it successfully opens a file or device. Otherwise, this
function sets the carry flag and leaves an error code in AX. The possible
return codes from function SDH are 02H (file not found), OSH (path not
found), 04H (no handles available), 05H (access denied), and OCH (invalid
access code).

If SHARE or network file sharing is in force in DOS version S, DOS
signals a sharing violation by executing interrupt 24H.

Function 3EH (decimal 62): Close Handle
Function SEH (decimal 62) closes a file or device associated with the handle
in BX. This function flushes all file buffers and updates the directory if
necessary. The only error code this function can return is 06H (invalid
handle).

Function 3FH (decimal 63): Read from File or Device
Function SFH (decimal 6S) reads the file or device associated with the
handle in BX. The CX register specifies the number of bytes to read; DS:DX
points to the buffer where data that is read will be placed. If the read opera
tion is successful, function SFH clears the carry flag and returns the number
of bytes read in AX. If this value is 0, the function has tried to read from the
end of a file. If the read operation fails, this function sets the carry flag and
leaves an error code in AX. The possible error codes are 05H (access denied)
and 06H (invalid handle).

Function 40H (decimal 64): Write to File or Device
Function 40H (decimal 64) writes to the file or device associated with the
handle in BX. CX specifies the number of bytes to be written; DS:DX points
to the address of the data bytes.

When the write operation is complete, function 40H updates the file
pointer to point past the data just written.

You must examine both the carry flag and the value in AX returned by
function 40H to determine the success of the write operation:

• If the carry flag is clear and AX = CX, the operation completed
successfully.

S6S

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

• If the carry flag is clear but AX < CX, then the output was written
to a disk file that had insufficient disk space to complete the write
operation.

• If the carry flag is set, AX contains an error code of 05H (access
denied) or 06H (invalid handle).

The fact that function 40H updates the file pointer has an interesting
side effect: You can set the size of a file to any arbitrary value by executing
function 40H with CX = OOH. The usual technique is to call function 42H to
set the file pointer location and then to immediately call function 40H with
CX = OOH to update the file size.

Function 41H (decimal 65): Delete File
Function 41H (decimal 65) deletes the directory entry of a file. The file is
specified by an ASCIIZ string containing the path and filename. The regis
ter pair DS:DX points to the string. Unlike function 13H, function 41H does
not support wildcard characters in the file specification: With function 41H
you can delete only one file at a time.

You cannot delete read-only files with this function. To delete a read
only file, first remove the read-only attribute using functioii 43H, and then
use function 41H.

Function 41H can return three error codes in AX: 02H (file not found),

03H (path not found), and 05H (access denied).

Function 42H (decimal 66): Move File Pointer
Function 42H (decimal 66) changes the logical read/write position in a file.
To invoke this service, load BX with a handle and then specify the new
pointer location by placing a reference location in AL and an offset relative
to the reference location in register pair CX:DX. The byte offset in CX:DX is
a 32-bit, long integer. CX is the high-order part of the offset (which is 0, un

less the offset amount is more than 65,535) and DX is the low-order part.
You can specify the reference location in AL in three different ways:

If AL = OOH, the offset is taken relative to the beginning of the file and the
file pointer is moved CX:DX bytes from that point; if AL = OIH, the offset is
taken relative to the current file pointer location; if AL = 02H, the offset is

taken from the current end of file.

If the function executes successfully, it clears the carry flag and
returns in the register pair DX:AX the current file pointer location relative to
the beginning of the file. The pointer is returned as a 32-bit long integer.

364

Chapter 17: DOS Functions: Versions 2.0 and Later

with the high-order part in DX and the low-order part in AX. If the function
fails, it sets the carry flag and returns an error code in AX. Possible error
codes are OIH (invalid function number, which means AL did not contain

OGH, OIH, or 02H) and 06H (invalid handle).
You can use function 42H in several different ways:

• To place the file pointer at an arbitrary location in the file, call
function 42H with AL = OOH and CX:DX specifying the desired off

set relative to the start of the file.

• To position the file pointer at the end of the file, call function 42H
with AL = 02H and OOH in CX:DX.

• To determine the current location of the file pointer, use AL = OIH

and OOH in CX:DX; the value returned in DX:AX is the current file

pointer location.

DOS does not validate the resulting location of the file pointer. In par
ticular, you can end with a negative file pointer offset (that is, a file pointer at
a position before the logical start of the file). However, it's not a good idea
to use negative file pointers for two reasons: If you perform a subsequent
read or write operation, you'll be in error; and your program will be harder
to adapt for OS/2, where an attempt to move a file pointer to a negative off
set generates an error.

□ NOTE: The operation of moving a logical file pointer to a speci
fied location in a file is sometimes called a ''seek/' but the same
word is also used in the sense of moving the readfwrite heads of a
disk drive to a specified cylinder on a disk. The two operations
aren't the same.

Function 43H (decimal 67): Get/Set File Attributes
Function 43H (decimal 67) gets or sets the attributes of a file. (See page 113
for details about file attributes.) DS:DX points to an ASCIIZ string that spec
ifies the file in question. (Global filename characters ? and * cannot be
used.) Calling function 43H with AL = OOH returns the file's attributes in
CX; AL = OIH sets the attribute values you specify in CX.

If function 43H fails, the carry flag is set and AX contains one of four
error codes: OIH (invalid function), 02H (file not found), 03H (path not
found), and 05H (access denied).

365

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function 44H (decimal 68): lOCTL—I/O Control for Devices
Function 44H (decimal 68) performs input/output control operations, mostly
for devices. (See Figure 17-9.) AL selects one of 16 subfunctions, numbered
OOH through OFH; some of these subfunctions have sub-subfunctions you
specify with a "minor code" in CL.

The main purpose of the lOCTL function is to provide a consistent in
terface between DOS programs and device drivers. In general, you shouldn't
use lOCTL calls unless you know something about how device drivers are
structured—a topic we'll cover in Appendix A. A few lOCTL calls, how
ever, are useful even if you don't understand the details of device-driver
operations. We'll point these out as we summarize the various lOCTL calls.

□ NOTE; Not all lOCTL subfunctions are supported in earlier ver
sions cf DOS. Figure 17-9 indicates the DOS versions in which the
various lOCTL subfunctions were introduced.

Subfunction DOS
Hex Dec Description Version

OOH 0 Get device data. 2.0

OIH 1 Set device data. 2.0

02H 2 Receive control data from character device. 2.0

03H 3 Send control data to character device. 2.0

04H 4 Receive control data from block device. 2.0

05H 5 Send control data to block device. 2.0

06H 6 Check input status. 2.0

07H 7 Check output status. 2.0

08H 8 Check if block device is removable. 3.0

09H 9 Check if block device is remote. 3.1

OAH 10 Check if handle is remote. 3.1

OBH 11 Change sharing retry count. 3.0

OCH 12 Generic I/O control for handles. 3.2

ODH 13 Generic I/O control for block devices. 3.2

OEM 14 Get logical drive map. 3.2

OFH 15 Set logical drive map. 3.2

Figure 17-9. Subfunctions available under interrupt 21H, function 44H (lOCTL).

366

Chapter 17: DOS Functions: Versions 2.0 and Later

Subfunctions OOH and OIH. These subfunctions get and set device in
formation formatted in DX by a complicated set of bit coding. Bit 7 is set to
1 for devices and to 0 for disk files. For devices, bits 0 through 5 are speci

fied as shown in Figure 17-10. For disk files, bits 0 through 5 provide the
disk-drive number: A value of 0 represents drive A, a value of 1 represents
drive B, and so on. Both subfunctions should be called with a file or device
handle in EX. Subfunction OOH can be called for both disk files and devices;

subfunction OIH can be called only for character devices.

Bit

15141312 11 10 9 8 76543210

R

X .

R

R

. . . . X

. . . X

. . X .

. X . .

X . . .

X

. X

X .

Use

1 = standard input device

1 = standard output device

1 = null device

1 = clock device

(Reserved)

1 = data is *'raw" (without control-
character checking); 0 = data is *'cooked"
(with control-character checking)

0 = end of file; 1 = not end of file (for
input)

1 = device; 0 = disk-drive file

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

1 = device can process control strings
transferred by lOCTL subfunctions 02H
through 05H

(Reserved)

Figure 17-10. The bit settings of the device data word DXfor subfunction OOH or OIH of
interrupt 21H, function 44H.

367

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

You can modify how DOS processes I/O for the CON device (the key
board/video display combination) by setting "raw" input/output mode for
the device. Do this by clearing bit 5 of the device data word in DX and call
ing subfunction OIH:

mov ax.4400h AH = 44H (interrupt 21H function number)

AL = 0 (subfunction number)

mov bx,0 BX =" 0 (handle for CON device)

int 21h get device data into DX

or dx.0020h set bit 5 ("raw" mode)

anij dx,OOFFh zero reserved bits 8-15

mov ax,4401h set up for subfunction 1

mov bx,0 BX = CON device handle

i nt 21h set device data for CON

After you execute this sequence of code, DOS no longer recognizes
Ctrl-P and Ctrl-S characters, nor does it expand tabs on output.

Subfunctions 02H through 05H. These subfunctions transfer control
data between your program and a device driver. Subfunctions 02H and 03H
get and send control data for character-oriented devices; subfunctions 04H
and 05H get and send control data for block-oriented devices. In all four

subfunctions you specify the subfunction number in AL, the address of a
data buffer in DS:DX, and the number of bytes to transfer in CX. For
subfunctions 02H and 03H, you must specify a handle in BX; for
subfunctions 04H and 05H, you must specify a drive number in BL (OOH =
default drive, OIH = drive A, and so on).

The control data you transfer to or from a device driver is not
necessarily part of the device's input/output data stream: The control data is
often used to obtain the device status or to control hardware-specific
features such as printer font characteristics or tape drive rewind.

These subfunctions can be used only if the device can process control
strings. This capability is indicated by bit 14 in the device data word
returned by subfunction OOH.

Subfunctions 06H and 07H. These subfunctions return the current
input or output status of a device or file. Call them with a handle in BX:
Subfunction 06H returns the current input status; subfunction 07H returns
the current output status.

Both of these subfunctions use the carry flag to indicate a successful
call. If the carry flag is clear, AL contains the status: AL = OOH means the
device is not ready for input or output; AL = FFH means the device is ready.
(For a file, input status AL = OOH means end-of-file; output status is always

368

Chapter 17: DOS Functions: Versions 2.0 and Later

"ready" regardless of the value in AL.) If the carry flag is set, AX contains
an error code: OIH (invalid function), 05H (access denied), 06H (invalid
handle), or ODH (invalid data).

Subfunction 08H. This subfunction, supported only in DOS versions

3.0 and later, indicates whether a block-oriented device has removable
media or not. (The floppy diskettes in a diskette drive are removable; the
fixed disk in a fixed-disk drive is not.) Subfunction 08H can be extremely

useful because it lets a program know if it has to check for a disk change or
if it can rely on the same disk always being there. Call subfunction 08H with
a drive number in BL (OOH = default drive, OIH = drive A, and so on). The
subfunction clears the carry flag on a successful return and leaves AX = OOH
if the storage medium is removable or AX = OIH if the storage medium is
nonremovable. If the carry flag is set, AX contains an error code: OIH
(invalid function) or OFH (invalid drive).

Subfunction 09H. In a network configuration, this subfunction
determines whether a particular block device is local (attached to the
computer running the program) or remote (redirected to a network server).
You must specify a drive number in BL when you call this subfunction.

Subfunction 09H clears the carry flag to indicate a successful call. In
this case, bit 12 of the value in DX indicates whether the device is remote
(bit 12 = 1) or local (bit 12 = 0). If the carry flag is set, AX contains an error
code: OIH (invalid function) or OFH (invalid drive). Subfunction 09H is
available in DOS 3.1 and later.

Subfunction OAH (decimal 10). This subfunction is similar to

subfunction 09H but is used with a device handle instead of a drive number.

Specify the handle in BX when you call this subfunction.
Like subfunction 09H, subfunction OAH clears the carry flag and

returns a value in DX that indicates whether the device is local or remote.

Bit 15 of DX indicates whether the device is remote (bit 15 = 1) or local (bit

15 = 0). If an error occurs, the function sets the carry flag and returns an
error code in AX: OIH (invalid function) or 06H (invalid handle).
Subfunction 09H is available in DOS 3.1 and later.

Subfunction OBH (decimal 11). This subfunction, which is supported

only in DOS versions 3.0 and later, controls the way DOS attempts to resolve
file-sharing conflicts. Because some programs lock files only briefly, file-
sharing conflicts can be very transitory. DOS can try more than once to
gain access to a shared file before reporting a conflict, in the hope that the
lock condition goes away in the meantime.

Subfunction OBH can halp you empirically tune a network in which
you expect transient file-sharing conflicts to occur. Call this subfunction

369

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

with DX containing the number of times you want DOS to retry access to a
shared file before it gives up and reports an error. CX should specify the
delay value between retries. DOS creates a delay by executing an empty
loop 65,536 times; the value in CX indicates the number of times you want
DOS to execute the empty delay loop. (The DOS defaults are three retries
and one delay loop between retries.)

If the subfunction executes successfully, it clears the carry flag. If the
carry flag is set, AX contains an error code of OIH (invalid function).

Subfunction OCH (decimal 12). This subfunction provides mis
cellaneous control functions for character-oriented devices. Each control
function is designated by a minor code in CL and a major code (also called
a category code) in CH. The various major and minor codes are listed in
Figure 17-11.

Minor codes 45H and 65H were introduced in DOS version 3.2. They
apply only to print devices (major code 05H). They deal with the number of
times DOS attempts to send a character to a printer before it assumes the
printer is busy. The remaining minor codes were introduced in DOS version

Hex Dec Description

Major Code (specified in CH)

OOH 0 Unknown

OIH 1 Serial port (COMl, COM2, COM3, COM4)
03H 3 Console (CON)

05H 5 Printer (LPTl, LPT2, LPT3)

Minor Code (specified in CL)

45H 69 Set iteration count.

4AH 74 Select code page.

4CH 76 Start code page preparation.

4DH 77 End code page preparation.

65H 101 Get iteration count.

6AH 106 Query selected code page.

6BH 107 Query prepare list.

Figure 17-11. Major and minor codes for lOCTL subfunction OCH (generic HO control
for handles).

370

Chapter 17: DOS Functions: Versions 2.0 and Later

3.3. They provide detailed support for defining and loading code pages for
output devices that can use multiple character sets or fonts.

For details on the use of the services provided in this lOCTL subfunc-
tion, see the DOS technical reference manual.

Subfunction ODH (decimal 13). Subfunction ODH provides six generic
services for block-oriented devices. Each service is designated by a major
code in CH and a minor code in CL. (See Figure 17-12.) In general, these ser
vices are similar to services provided by the ROM BIOS for diskettes and
fixed disks, but these lOCTL services provide a consistent interface to any
block-oriented device with a device driver that supports these lOCTL calls.

Subfunction ODH is available in DOS 3.2 and later. See the DOS techni

cal reference manual for details on subfunction ODH services.

Hex Dec Description

Major Code (specified in CH)

08H 8 Disk drive

Minor Code (specified in CL)

40H 64 Set parameters for block device.

41H 65 Write track on logical drive.

42H 66 Format and verify track on logical drive.

60H 96 Get parameters for block device.

61H 97 Read track on logical drive.

62H 98 Verify track on logical drive.

Figure 17-12. Major and minor codes for lOCTL subfunction ODH (generic HO control
for block devices).

Subfunctions OEH and OFH (decimal 14 and 15). These two subfunc-
tions relate logical mapping of drive letter assignments to physical drives.
For example, in systems with only one diskette drive, DOS maps drive letter
B to physical drive A.

Call these subfunctions with a logical drive ID in BL (OIH represents
drive A, 02H represents drive B, and so on). Subfunction OEH returns a logi
cal drive ID that is currently mapped to the drive you specified in BL. Sub-
function OFH also updates DOS's internal logical map so that the drive ID
you specified becomes the new logical drive ID. Both subfunctions use AL
to return the logical drive ID; if AL = OOH, only one logical drive is associ
ated with the drive ID you specified in BL. If an error occurs, the carry flag
is set and AX contains an error code: OIH (invalid function) or OFH (invalid
drive).

371

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

For example, if you execute the following instructions on a system
with only one diskette drive, DOS associates drive B with the diskette drive:

mov bl.2

mov ax,440Fh

int 21h

BL = logical drive number

set logical drive map

update the logical drive ID

(DOS returns AL = 02H)

Function 45H (decimal 69): Duplicate Handle
Function 45H (decimal 69) duplicates an open file handle and returns a new
handle number that refers to the same file or device. All actions performed
with one handle will be reflected in the other handle—the new handle does
not act independently in any way.

Call function 45H with an open handle in BX. If the function executes
successfully, it clears the carry flag and leaves a new handle number in AX.
If an error occurs, the carry flag is set and AX contains an error code: 04H
(no more handles) or 06H (invalid handle).

You can use function 45H along with function 46H to implement input/
output redirection. You can also use it to commit an open file to disk by
duplicating the open file's handle and then closing the duplicate handle.
This has the effect of flushing the file's disk buffers and updating the
directory, without the overhead of closing the file, reopening it (which
involves a directory search), and repositioning the file pointer:

mov bx,Handle ; BX = handle of open file

mov ah,45h

int 21h ; get duplicate handle into AX

jc Error

mov bx.ax ; BX = duplicate handle

mov ah,3Eh

int 21h ; close duplicate handle

; (original handle remains open)

Function 46H (decimal 70): Force Duplicate Handle
Function 46H (decimal 70) has a somewhat misleading name because it
really does not create a duplicate handle as does function 45H. Instead,
function 46H associates an existing open handle with a different device.
This is the key to implementing input/output redirection in DOS.

Call function 46H with an open handle in BX and a second handle in
ex. When function 46H returns, the handle in CX is associated with the

372

Chapter 17: DOS Functions: Versions 2.0 and Later

same device as the open handle in BX. If the handle in CX was previously
associated with an open device, function 46H closes the device (which might
otherwise be without a handle). If no errors occur, the function clears the
carry flag. Otherwise, the carry flag is set, and AX contains an error code:
04H (no more handles) or 06H (invalid handle).

To see how function 46H works, consider how you would redirect
output from the standard output device (the video screen) to a file:

mov bx.stdout

mov ah,45h

int 21h

jc Error

mov stdoutDup.ax

BX = handle of standard output device

AH = function number ("Duplicate Handle")

get duplicate handle Into AX

(trap errors)

save the duplicate handle In a memory variable

mov bx.FlleHandle

mov cx.stdout

mov ah,46h

Int 21h

jc Error

BX = handle of open file

CX = handle to be redirected

AH = function number ("Force Duplicate Handle")

redirect stdout to the file

at this point, all output to stdout

goes Into the file

To undo this redirection, associate the standard output device with the
saved duplicate:

mov bx.stdoutDup

mov cx.stdout

mov ah,46h

Int 21h

jc Error

BX = duplicate of previous stdout

CX = handle to be redirected

AH = function number ("Force Duplicate Handle")

restore stdout to what It was

mov bx.stdoutDup

mov ah.3Eh

Int 21h

BX = duplicate

AH = function number ("Close")

discard duplicate handle

Function 47H (decimal 71): (Jet Current Directory
Function 47H (decimal 71) reports the current directory in the form of an
ASCIIZ string. Call function 47H with a drive number in DL (OOH = default
drive, OIH = drive A, and so on) and the address of a 64-byte buffer in DS:SI.
The function normally clears the carry flag and fills the buffer with an
ASCIIZ string indicating the path from the root to the current directory. If
you specify an invalid drive number, the function sets the carry flag and
returns an error code of OFH in AX.

373

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Because the path returned by this function starts at the root directory,
the string at DS:SI includes neither the drive letter (as in A:) nor the start-
from-the-root backslash (as in A:\). By these rules, if the current directory
is the root directory, then this function returns a null string. If you want an
intelligible display of the current directory, you can prefix the information
returned by this function with the drive-and-root indicators (as in A:\).

Function 48H (decimal 72): Allocate Memory Block
Function 48H (decimal 72) dynamically allocates memory. You request the
number of paragraphs (16-byte units) you want allocated in EX. On return,
AX contains the segment of the allocated memory block.

If an error occurs, the carry flag is set and AX contains an error code:
07H (memory control blocks destroyed) or 08H (insufficient memory). If
there is insufficient memory to satisfy your request, BX contains the size, in
paragraphs, of the largest available block of memory.

Memory blocks allocated to a program using function 48H are freed
by DOS when the program terminates with function OOH or 4CH, but they
remain allocated to a memory-resident program that terminates with the
Terminate-and-Stay-Resident function, 31H.

Function 49H (decimal 73): Free Memory Block
Function 49H (decimal 73) frees a block of memory for subsequent reuse by
DOS or by other programs. Call function 49H with ES containing the
paragraph address (segment) of the start of the memory block. If the
memory is successfully freed, the function clears the carry flag. Otherwise,
the carry flag is set, and AX contains an error code: 07H (memory control
blocks destroyed) or 09H (invalid memory-block address).

Although function 49H is usually used to free memory previously
allocated through function 48H, it will free any memory block. For
example, a Terminate-and-Stay-Resident program can free its environment
block by calling function 49H with ES containing the paragraph address of
the environment block. (See the discussion of function 31H in this chapter.)

Function 4AH (decimal 74): Resize Memory Block
Function 4AH (decimal 74) is used to increase or decrease the size of a block
of memory that was allocated by function 48H. Register ES contains the
segment address of the block that will be changed. Register BX contains the
desired size of the block in paragraphs (units of 16 bytes).

374

Chapter 17: DOS Functions: Versions 2.0 and Later

The function clears the carry flag if the memory block can be resized
as requested. If an error occurs, the carry flag is set, and AX contains an
error code: 07H (memory control blocks destroyed), 08H (insufficient
memory), or 09H (invalid memory-block address). If DOS reported that
there was insufficient memory to increase the size of a memory block, BX
contains the maximum size, in paragraphs, of the memory block.

Function 4BH (decimal 75): EXEC—Load and Execute a Prt^ram
Function 4BH (decimal 75) lets a parent program load a "child" program
into memory and execute it. This function can also be used to load
executable code or data into memory without executing it. In both cases,
you call function 4BH with DS:DX pointing to an ASCIIZ string with the path
and filename of the file to be loaded. The register pair ES:BX points to a
parameter block that contains control information for the load operation. AL
specifies whether the child program is to be executed after it is loaded.

If AL = OOH, DOS allocates memory for the child program, creates a
new program segment prefix at the start of the newly allocated memory,
loads the child program into memory immediately above the PSP, and
transfers control to it. The parent program regains control only when the
child program terminates. If AL = 03H, DOS does not allocate memory,
create a PSP for the child program, or transfer control to the program after it
is loaded. For these reasons, the AL = 03H variation is normally used to load
a program overlay. It is also an effective way to load data into memory.

When AL = OOH, ES:BX points to a block 14 bytes long, which contains
the information shown in Figure 17-13. When AL = 03H, ES:BX points to a
block 4 bytes long, which contains the information shown in Figure 17-14 on
the following page.

Offset Size

Hex Dec (bytes) Description

OOH 0 2 Segment address of environment string

02H 2 4 Segmented pointer to command line

06H 6 4 Segmented pointer to first default FCB

OAH 10 4 Segmented pointer to second default FCB

Figure 17-13. The information in the EXEC parameter block that is pointed to by ES.BX
when AL = OOH. DOS builds this information into the PSP of the program that is being
loaded.

375

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Offset Size
Hex Dec (bytes) Description

OOH 0 2 Segment address where file is to be loaded

02H 2 2 Relocation factor for program (applies
only to EXE-format programs)

Figure 17-14. The information in the EXEC parameter block that is pointed to by ES.BX
when AL = 03H.

Function 4BH clears the carry flag if it successfully loads a program.
However, in DOS version 2, this function changes all registers, including
SS:SP. For this reason, you should save the current SS and SP values in the
code segment before you call function 4BH.

If function 4BH fails, it sets the carry flag and returns one of the fol
lowing error codes in AX: OIH (invalid function), 02H (file not found), 03H
(path not found), 05H (access denied), 08H (insufficient memory), OAH (in
valid environment block), or OBH (invalid format).

When a child program is loaded and executed, it inherits any handles
opened by the parent program. (The only exception, in DOS versions 3.0 and
later, is when a handle opened by the parent had the inheritance bit of its
file-access code set to l.) Because a child program inherits its parent's open
handles, the parent program can redirect the standard I/O handles and use
this technique to influence the operation of the child program. For example,
a parent program might redirect the standard input and output devices to
files and then use the DOS SORT filter to sort the data in one file and copy it
to another.

More commonly, however, a parent program uses EXEC to execute a
copy of the DOS command interpreter, COMMAND.COM. The parent pro
gram can carry out any DOS command by passing the command to COM-
MAND.COM through the EXEC parameter block. You can even get fancy by
making COMMAND.COM execute a batch file—one that the parent pro
gram might well have constructed dynamically. This batch file could, in
turn, invoke other programs and then perform the EXIT command, which
would end the execution of the command interpreter. At that point, the
parent program would be back in control. This opens up vast and compli
cated possibilities.

□ NOTE: Strangely enough, you can't use function 4BH to load
overlays created with the DOS LINK program's overlay option: LINK
builds all program overlays into a single executable file, not into
separate files as would be needed with function 4BH.

376

Chapter 17: DOS Functions: Versions 2.0 and Later

Function 4CH (decimal 76): Terminate with Return Code
Function 4CH (decimal 76) ends a program and passes back the return code

you specify in AL. If the program was invoked as a child program, the
parent program can retrieve the return code through function 4DH. If the
program was invoked as a DOS command, then the return code can be

tested in a batch file using the DOS ERRORLEVEL option.

When this function is performed, DOS does some cleanup work in

case your program neglected to do so: It restores the interrupt 22H, 23H, and
24H vectors to default values, flushes the file buffers and closes all open

files, and frees all memory allocated to the program.
Because function 4CH is more flexible and easier to use than interrupt

20H or interrupt 21H, function OOH, you should normally use function 4CH to

terminate your programs. The only exception to this rule is if you need to
maintain compatibility with DOS version 1, which does not support function
4CH. In that case, you should use either interrupt 20H or function OOH of in

terrupt 21H.

Function 4DH (decimal 77): Get Return Code

Function 4DH (decimal 77) gets the return code of a child program invoked
with function 4BH and terminated with function 31H or 4CH. The informa

tion is returned in two parts. AL reports the return code issued by the child
program; AH reports how the child program ended and has four possible

values:

• AH = OOH indicates a normal voluntary end.

• AH = OIH indicates termination by DOS due to a keyboard break
(Ctrl-C).

• AH = 02H indicates termination by DOS within a critical-error

handler.

• AH = 03H indicates a voluntary end using a terminate-and-stay-

resident service (interrupt 27H or function 31H).

You should call this function only after you call function 4BH. Func
tion 4DH does not indicate an error if you call it when no previous child pro
gram has terminated. Also, you can call this function only once for each
EXEC call. The second time you call it, you'll get garbage in AH and AL
instead of return codes.

377

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function 4EH (decimal 78): Find First Matching Directory Entry
Function 4EH (decimal 78) searches a directory for a specified name and at
tribute. Call function 4EH with DS:DX pointing to an ASCIIZ string contain
ing the path and name to be matched. (You can use both * and ? wildcard

characters in the search name you specify.) In addition, you must place a
directory attribute for the search in CX. You can search for hidden, system,
subdirectory, and volume-label directory entries by setting the appropriate
bits in CX. (See page 113 for a table of attribute bits.)

□ NOTE: Before you call function 4EH, be sure that the current
disk transfer area (DTA) is at least 43 bytes in size.

If this function successfully matches the name you specify to a direc
tory entry, it clears the carry flag and fills the DTA with the data shown in
Figure 17-15. If the function fails, it sets the carry flag and returns an error
code in AX: 02H (file not found), 03H (path not found), or 12H (no more files;
no match found).

This function is similar to function IIH. The file attributes in this
search function are the same as they are with an extended FOB in function
IIH. (See page 332.)

The attribute search follows a particular logic. If you specify any
combination of the hidden, system, or directory attribute bits, the search
matches normal files and also any files with the specified attributes. If you
specify the volume-label attribute, the search matches only a directory en
try with that attribute. The archive and read-only bits do not apply to the
search operations.

Offset Size
Hex Dec (bytes) Description

OOH 0 21 Area used by DOS for find-next function
4FH

15H 21 1 Attribute of file found

16H 22 2 Time stamp of file (see page 116)
18H 24 2 Date stamp of file (see page 116)
lAH 26 4 File size in bytes
lEH 30 13 Filename and extension (ASCIIZ string)

Figure 17-15. The information returned in the DTA by function 4EH.

378

Chapter 17: DOS Functions: Versions 2,0 and Later

Function 4FH (decimal 79); Find Next Matchii^ Directory Entry
Function 4FH (decimal 79) continues a directory search with a name that

may match more than one directory entry because it contains wildcard
characters. When you call this function, the DTA must contain the data
returned by a previous call to function 4EH or 4FH.

If this function finds a matching directory entry, it clears the carry
flag and updates the DTA accordingly. If it fails to find a match, it sets the
carry flag and returns error code 12H (no more files) in AX.

The usual logic for a wildcard search with functions 4EH and 4FH
follows this pattern:

initialize DTA address with function lAH

call function 4EH

WHILE carry flag = 0

use current contents of DTA

call function 4FH

Function 54H (decimal 84): Get Verify Flag
Function 54H (decimal 84) reports the current state of the verify flag, which
controls whether or not DOS verifies disk-write operations. AL = OOH
indicates that disk writes will not be verified; AL = OIH indicates that they

will be. This function complements function 2EH, which sets or resets the
verify flag.

This function brings up an annoying inconsistency in DOS services:
While some get/set service pairs are integrated into one function (like
function 57H), others are split into two separate functions, like function 54H
and function 2EH.

Function 56H (decimal 86): Rename File
Like the standard DOS RENAME command, function 56H (decimal 86)

changes the name of a file. But it can also move a file's directory entry
from one directory to another. The file itself is not moved, only the
directory entry, which means the new and old directory paths must be on
the same drive. This is a truly fabulous and useful feature, and it is rather
disappointing that it's not a part of the RENAME command.

This function needs two pieces of information: the old and new path
and filenames. These can be full-blown file specifications, with drive and
path components. The specified or implied drives must be the same so that
the new directory entry will be on the same drive as the file. The wildcard
characters * and ? cannot be used, because this function works on single

files only.

379

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

As usual, both file specifications are supplied in the form of ASCIIZ
strings. The register pair DS:DX points to the old name string and ES:DI
points to the new string.

Function 56H clears the carry flag when it successfully renames a file.
If an error occurs, the carry flag is set, and AX contains an error code: 02H
(file not found), 03H (path not found), 05H (access denied), or IIH (not the
same device). One error that might not be reported occurs if you use
function 56H to rename an open file. Be sure to close an open file with
function lOH or 3EH before you use function 56H to rename it.

Function 57H (decimal 87): Get/Set File Date and Time
Function 57H (decimal 87) gets or sets a file's date and time. Normally a
file's directory entry contains the date and time the file was created or last
changed. This function lets you inspect or explicitly update the recorded
date and time. AL selects the operation: AL = OOH gets the date and time,
and AL = OIH sets the date and time.

The file is selected by placing the file handle in BX, which makes this
function applicable only to files that were opened using the handle-based
DOS functions covered in this chapter. Thus, setting a file's time stamp
with this function will take effect only if the file is successfully closed.

The date and time are placed in registers CX and DX in the same
format used in the disk directory entries, though in a slightly different
order. In this function, the time is placed in CX and the date in DX.

Use the following formulas to build or break down the date and time:

CX = HOUR * 2048 + MINUTE * 32 + SECOND / 2

DX = (YEAR - 1980) * 512 + MONTH * 32 + DAY

If this function fails, it returns an error code in AX: OIH (invalid function
number—based on the subfunction selected in AL, not the main function

number) or 06H (invalid handle).

Function 58H (decimal 88): Get/Set Memory Allocation Strategy
Function 58H (decimal 88) gets or sets the method DOS uses to allocate free
memory to programs. You can choose from three different memory
allocation strategies. (See Figure 17-16.) Each strategy assumes that memory
resources are broken into blocks of various sizes and that each block can be

randomly allocated to a program or freed, depending on the specific
requirements of DOS and of each program. You might think that all free

380

Chapter 17: DOS Functions: Versions 2.0 and Later

Value in Function 58H Strategy

0 First fit

1 Best fit

2 Last fit

Figure 17-16. DOS memory allocation strategies.

memory would be located in one large block just above where a program
ends, but terminate-and-stay-resident programs and device drivers can
reserve memory blocks and thereby fragment available memory into two or
more smaller blocks.

When DOS responds to a request for memory allocation, it searches
through a list of free-memory blocks, starting at the lowest available ad
dress and working upward. With the first-fit strategy, DOS allocates the
first free block of memory large enough to accommodate the memory-
allocation request. With the last-fit strategy, DOS allocates the last free
block in the list that is large enough. With the best-fit strategy, DOS
searches the entire list and allocates the smallest block that is large enough.

DOS uses the first-fit strategy by default.
To obtain the allocation strategy from DOS, call function 58H with

AL = OOH. DOS reports the current allocation strategy (OOH, OIH, or 02H) in
AX. To set the allocation strategy, call this function with AL = OIH and the
desired strategy (OOH, OIH, or 02H) in BX. The only error detected by this
function occurs when you call it with AL > OIH, in which case the carry flag
is set and AX contains an error code of OIH (invalid function). This function

does not validate the value you pass in BX, so be careful to use a valid value
(OOH, OIH, or 02H) when you set the allocation strategy.

Function 59H (decimal 89): Get Extended Error Information
Function 59H (decimal 89) is used after an error occurs. It provides detailed

information about the errors that occur under these circumstances: inside a

critical-error (interrupt 24H) handler, after a DOS function call invoked with
interrupt 21H reports an error by setting the carry flag (CP), and after old-
style FCB file operations report a return code of FFH. It will not work with
other DOS functions that do not report errors in CF, even though they may
have ended in an error.

This function is called in the standard way, by placing function code
59H in register AH. You must also specify a version code in the BX register.
For DOS version 3, set the version code to 0.

381

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Four types of information are returned on completion of this service:

• AX contains the extended error code.

• BH indicates the class of error.

• BL gives the code of any suggested action that your program
should take.

• CH gives a locus code, which attempts to show where the error
occurred.

Beware: Registers CL, DX, SI, DI, ES, and DS are also changed by
function 59H. Save these registers as necessary before you make a call to
this function.

The extended error codes can be organized into three groups: Codes
OIH through I2H are returned by interrupt 21H functions. Codes 13H through
IFH are used in critical-error (interrupt 24H) handlers. The remaining error
codes were introduced in DOS 3.0 and generally report network-related er
rors. Figure 17-17 lists the extended error codes, Figure 17-18 lists the error
classes. Figure 17-19 lists the action codes, and Figure 17-20 lists the locus
codes.

Error Code

Hex Dec Description

Returned by interrupt 21Hfunctions:

OOH 0 (No error)

OIH \ Invalid function number

02H 2 File not found

03H 3 Path not found

04H 4 No more handles (too many open files)

05H 5 Access denied (e.g., attempt to write to read-only file)

06H 6 Invalid handle

07H 7 Memory control blocks destroyed

08H 8 Not enough memory

09H 9 Invalid memory-block address

OAH 10 Invalid environment block

OBH 11 Invalid format

OCH 12 Invalid file-access code

Figure 17-17. DOS extended error codes. (continued)

382

Chapter 17: DOS Functions: Versions 2.0 and Later

Figure 17-17. continued

Error Code

Hex Dec Description

Returned by interrupt 21H functions: (continued)

ODH 13 Invalid data

GEH 14 (Reserved)

OFH 15 Invalid drive specification

lOH 16 Attempt to remove the current directory

11H 17 Not the same device

12H 18 No more files

Used in criUcal-error (interrupt 24H) handlers:

13H 19 Disk is write-protected

14H 20 Unknown disk unit ID

15H 21 Disk drive not ready

16H 22 Unknown disk command

17H 23 Disk data error

18H 24 Bad disk request structure length

19H 25 Disk seek error

lAH 26 Non-DOS disk

IBH 27 Disk sector not found

ICH 28 Printer out of paper

IDH 29 Write error

IBH 30 Read error

IFH 31 General failure

Used in DOS versions 3.0 and later:

20H 32 File-sharing violation

21H 33 File-locking violation

22H 34 Invalid disk change

23H 35 No FCB available

24H 36 Sharing buffer overflow

25H-31H 37-49 (Reserved)

32H 50 Network request not supported

33H 51 Remote computer not listening

(continued)

383

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 17-17. continued

Error Code

Hex Dec Description

Used in DOS versions 3.0 and later: (continued)

34H 52 Duplicate name on network

35H 53 Network name not found

36H 54 Network busy

37H 55 Network device no longer exists

38H 56 Network BIOS command limit exceeded

39H 57 Network adapter hardware error

3AH 58 Incorrect response from network

3BH 59 Unexpected network error

3CH 60 Incompatible remote adapter

3DH 61 Print queue full

3EH 62 Not enough space for print file

3FH 63 Print file was deleted

40H 64 Network name was deleted

41H 65 Access denied

42H 66 Network device type incorrect

43H 67 Network name not found

44H 68 Network name limit exceeded

45H 69 Net BIOS session limit exceeded

46H 70 Sharing temporarily paused

47H 71 Network request not accepted

48H 72 Print or disk redirection is paused

49H-4FH 73-79 (Reserved)

50H 80 File already exists

51H 81 (Reserved)

52H 82 Cannot create directory entry

53H 83 Fail on interrupt 24H

54H 84 Out of network structures

55H 85 Network device already assigned

56H 86 Invalid password

57H 87 Invalid parameter

58H 88 Network data fault

384

Chapter 17: DOS Functions: Versions 2.0 and Later

Code

Hex Dec Meaning

OIH 1 Out of resource: no more of whatever you asked for

02H 2 Temporary situation: Try again later

03H 3 Authorization: You aren't allowed; someone else might be

04H 4 Internal error in DOS: not your fault

05H 5 Hardware failure

06H 6 System software error: other DOS problems

07H 7 Application software error: It's your fault

08H 8 Item requested not found

09H 9 Bad format (e.g., unrecognizable disk)

OAH 10 Item locked

OBH 11 Media error (e.g., disk reports CRC error)

OCH 12 Already exists

ODH 13 Error class is unknown

Figure 17-18. The error classes returned in register BH by function 59H.

Code

Hex Dec Meaning

OIH 1 Try again several times, then issue *'Abort or Ignore"
prompt.

02H 2 Try again after a pause, then issue "Abort or Ignore" prompt.

03H 3 Ask the user to change incorrect information (e.g., bad
filename).

04H 4 Shut down the program, but OK to clean up (e.g., close files).

05H 5 Shut down immediately; don't try to clean up.

06H 6 Ignore the error: It's for information only.

07H 7 Retry after user action (e.g., change diskettes).

Figure 17-19. The suggested action codes returned in register BL by function 59H.

385

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Hex

Code

Dec Meaning

OIH 1 Unknown: sorry

02H 2 Block device (e.g., disk drive)

03H 3 Network

04H 4 Serial device (e.g., printer)

05H 5 Memory

Figure 17-20. The locus codes returned in register CH by function 59H.

Function 5AH (decimal 90): Create Temporary File
Function 5AH (decimal 90) was introduced in DOS version 3.0. It creates a

file for temporary use. It generates a unique filename for the file by build
ing the name from the current time of day. You provide two parameters: the
file attribute, placed in the CX register, and the pathname of the directory
where the file will be created. The pathname must be an ASCllZ string and

is pointed to by the register pair DS:DX.

The pathname string must be ready to have the filename of the cre
ated file appended to it: The string must end with a backslash character and
be followed by 13 bytes to allow enough room for DOS to add a filename to
the string. If you don't want to specify a particular path, you can give DOS a
null string, which tells it to use the current directory of the current drive.

If function 5AH successfully creates a file, it clears the carry flag and

returns the name of the file appended to the pathname you specified in

DS:DX. If the function fails, it sets the carry flag and returns an error code
in AX: 03H (path not found), 04H (no more handles), or 05H (access denied).

This function is called "create temporary file" only to suggest its in
tended purpose. Actually, there is nothing temporary about the file that is
created because DOS does not automatically delete it; your programs must

look after that chore.

Function 5BH (decimal 91): Create New File
Function 5BH (decimal 91) was introduced in DOS version 3.0. It is similar

to function 3CH, which is (inaccurately) called the "create-file function."
Function 3CH is actually designed to find a file or to create one if the re

quested file does not exist. By contrast, function 5BH is a pure create-file
function and will fail if the file already exists.

386

Chapter 17: DOS Functions: Versions 2.0 and Later

As with function 3CH, the CX register is set to the file attribute, and
DS:DX contains the address of the pathname and filename (which is stored
as an ASCIIZ string). On return, if CP = 0, then AX = file handle for the new

file. If CP = 1, then AX contains the error code: 03H (path not found), 04H
(no more handles), 05H (access denied), or 50H (file already exists).

You should use function 3CH if you want to reuse a file with a particu
lar filename if it exists or create a file with that name if it doesn't exist. If,
however, you simply want to open a file that does not already exist, use
function 5BH.

Function 5CH (decimal 92): Lock/Unlock File Region
Function 5CH (decimal 92) locks certain parts of a file so that the file can

be shared by several programs without one program interfering with the
operations of another. If one program locks one part of a file, it can use or
change that part of the file while it is locked, safe in the knowledge that no
other program will be able to use that part while it remains locked. As you
may guess, file locking is used only in conjunction with file-sharing opera
tions, like those that can occur in a network.

When you call function 5CH, AL indicates whether you are locking
(AL = OOH) or unlocking (AL = OIH) a portion of a file. BX gives the file
handle. CX and DX are treated as a 4-byte integer that specifies the byte off
set of the start of the locked portion of the file. SI and DI also form a 4-byte
integer that specifies the length of the locked portion. The first register in
each of these register pairs (CX or SI) gives the high-order part of the in
teger. When function 5CH successfully locks a portion of a file, it clears the
carry flag. If an error occurs, the carry flag is set, and AX contains an error

code: OIH (invalid function), 06H (invalid handle), 21H (file-locking viola
tion), or 24H (sharing buffer overflow).

You are not allowed to unlock file portions piecemeal or in combina
tion; an unlock request should exactly match a previous lock request. You
must also explicitly remove all locks before closing a file or terminating a
program that does file locking.

Use function 5CH to lock a file region before you read or write a file
that may have been locked by another program; use function 5CH again to
unlock the region after the read or write operation is complete. The first
call to function 5CH tells you if the part of the file you intend to access is
already locked; you should not rely on the read and write functions to return

error codes if they access a previously locked region.
Function 5CH is supported only in DOS versions 3.0 and later.

387

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function 5EH (decimal 94):
Network Machine Name and Printer Setup

Function 5EH (decimal 94) first appeared in DOS version 3.1. It comprises
several subfunctions that are useful only to programs running in a network.
(See Figure 17-21.) You must specify a subfunction number in AL when you
call function 5EH.

Subfunction
Hex Dec Description

OOH 0 Get machine name.

02H 2 Set printer setup string.

03H 3 Get printer setup string.

Figure 17-21. Subfunctions available through interrupt 2IH, function 5EH.

Subfiinction OOH. This subfunction retrieves the network name of the

computer on which the program is running. Call it with DS:DX pointing to
an empty 16-byte buffer. If the function returns successfully, the buffer con
tains the machine name as an ASCIIZ string; CH contains a flag that, if
nonzero, indicates that the machine name is a valid network name; and CL
contains the NETBIOS number associated with the machine name.

Subfunction 02H. This subfunction passes a printer setup string to
DOS. DOS adds this string to the beginning of any files it sends to a network
printer. Call this function with an assign-list index number in BX, the length
of the setup string in CX, and DS:SI pointing to the string itself. The assign-
list number identifies a particular printer on the network. (See function
5FH.) The maximum length of the string is 64 bytes.

Subfunction 03H. This subfunction complements subfunction 02H.
Call it with an assign-list index number in BX and with ES:DI pointing to an
empty 64-byte buffer. The subfunction places the requested printer setup
string in the buffer and returns the length of the string in CX.

Function 5FH (decimal 95): Network Redirection
Like function 5EH, function 5FH (decimal 95) consists of subfunctions used
by programs running in a network. (See Figure 17-22.) In a network envi
ronment, DOS maintains an internal table of devices that can be shared
across the network; this is called an assign list or redirection list. The table
associates local logical names for such devices with their network names.
These subfunctions give a program access to the table.

388

Chapter 17: DOS Functions: Versions 2.0 and Later

Subfunction
Hex Dec Description

02H 2 Get assign-list entry.

03H 3 Make assign-list entry.

04H 4 Cancel assign-list entry.

Figure 17-22. Subfunctions available through interrupt 2IH, function 5FH.

Subfunction 02H. This subfunction obtains the local name and net

work name for one of the devices in the assign-list table. Call this subfunc

tion with an assign-list index number in BX, with DS:SI pointing to an empty
16-bit buffer, and with ES:DI pointing to an empty 128-byte buffer. The sub-

function returns the local device name in the 16-bit buffer and the network

name in the 128-byte buffer. The subfunction also indicates the device status

in BH (OOH = valid device, OIH = invalid device) and the device type in BL
(03H = printer, 04H = disk drive), and it updates CX with the user parameter
associated with the device through subfunction 03H.

Subfunction 02H is designed to let you step through the assign-list ta
ble. The first table entry's assign-list index is 0. By incrementing the
assign-list index each time you call this subfunction, you can examine each
table entry in turn. When you request a table entry past the end of the table,

subfunction 02H sets the carry flag and returns an error code of 12H (no

more files) in AX.

Beware: A successful call to subfunction 02H changes DX and BP.
Subfunction 03H. This subfunction redirects a local device to a net

work device. Call this subfunction with DS:SI containing the address of a

16-byte buffer that contains an ASCIIZ local device name (e.g., PRN or E)
and ES:DI pointing to a 128-byte buffer containing an ASCIIZ network
device name followed by an ASCIIZ password. You must also specify the
device type in BL (03H = printer, 04H = drive) and place a user parameter in
CX. (This parameter should be OOH if you are using IBM's Local Area Net

work software.)

If subfunction 03H successfully establishes redirection of input/output
to the network device, it adds a corresponding entry to its assign-list table
and clears the carry flag. If the operation fails, the carry flag is set, and AX
contains an error code.

389

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Subfunction 04H. This subfunction cancels network redirection of a

device and removes the corresponding assign-list table entry. Call it with
DS:S1 pointing to an ASCllZ string that specifies the local device whose re
direction you want canceled. If the operation is successful, subfunction 04H
clears the carry flag.

Function 5FH is supported only in DOS versions 3.1 and later.

Function 62H (decimal 98): Get PSP Address
Function 62H (decimal 98) returns the segment (paragraph address) of the
program segment prefix in BX.

When DOS transfers control to a program, registers DS and ES always
contain the segment of the program's PSP. Function 62H provides an alter
native method of determining this address in DOS versions 3.0 and later.

Function 65H (decimal 101): Get Extended Country Information
Function 65H (decimal 101) was introduced in DOS version 3.3 along with

support for global code pages (user-configurable character sets for output
devices). It returns a superset of the country information available through
function 38H. Function 65H has subfunctions, each of which returns a differ

ent type of information. (See Figure 17-23.)
Call function 65H with a subfunction number in AL, a code page num

ber in BX, a buffer size in CX, a country ID in DX, and the address of an
empty buffer in ES:D1. Calls with BX = -1 refer to the active code page; calls
with DX = -1 return information for the default country ID.

The size of the buffer you supply to this function depends on which
subfunction you call. The function clears the carry flag and fills the buffer
with the information you requested.

Subfunction
Hex Dec Description

OIH 1 Get extended country information.

02H 2 Get pointer to character translation table.

04H 4 Get pointer to filename character translation table.

05H 5 (Reserved)

06H 6 Get pointer to collating sequence.

Figure 17-23. Subfunctions available through interrupt 2injunction 65H.

390

Chapter 17: DOS Functions: Versions 2.0 and Later

Subfunction OIH. This subfunction returns the same information as

function 38H, but also includes the current code page and country ID
(Figure 17-24).

Offset Size

Hex Dec (bytes) Description

OOH 0 1 Subfunction ID (always OIH)

OIH 1 2 Size of following information (38 bytes or less)

03H 3 2 Country ID

05H 5 2 Code page

07H 7 2 Date format

09H 9 5 Currency symbol string (ASCIIZ format)

OEH 14 2 Thousands separator string (ASCIIZ format)

lOH 16 2 Decimal separator string (ASCIIZ format)

12H 18 2 Date separator string (ASCIIZ format)

14H 20 2 Time separator string (ASCIIZ format)

16H 22 1 Currency symbol location

17H 23 1 Currency decimal places

18H 24 1 Time format

19H 25 4 Extended ASCII map call address

IDH 29 2 List separator string (ASCIIZ format)

IFH 31 10 (Reserved)

Figure 17-24. Format of extended country information returned by function 65H, sub-
function OIH. The information starting at offset 7 is the same as that returned by interrupt
2IH, function 38H.

Subfunction 02H. This subfunction returns 5 bytes of data in the
buffer at ES:DL The first byte always has the value 02H (the subfunction

number). The 4 remaining bytes contain the segmented address of a transla

tion table used to convert extended ASCII characters (ASCII codes 80H

through FFH) to characters with ASCII codes OGH through FFH. This table is

used by the character-mapping routine whose address is returned by sub-
function OIH.

Subfunction 04H. This subfunction also fills the buffer at ES.DI with a

single subfunction ID byte followed by the 4-byte segmented address of a
translation table. This table serves the same purpose as the table whose ad

dress is returned by subfunction 02H, but this table is used for filenames.
Subfunction 06H. Like subfunctions 02H and 04H, this subfunction

fills the buffer at ES:DI with a subfunction ID byte followed by a segmented
address. In this case, the address points to a table that specifies the collating

sequence for the character set defined in the code page.

391

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Function 66H (decimal 102): Get/Set Global Code Page
Function 66H (decimal 102), also introduced with DOS version 3.3, consists

of two subfunctions that provide support for code page switching within a

program. Call this function with a subfunction number (OIH or 02H) in AL.

Subfunction OIH. This subfunction returns the number of the active

code page in BX. It also reports (in DX) the number of the default code page
used when the system is first booted.

Subfunction 02H. Call this subfunction with a new code page number
in BX. DOS copies the new code page information from the COUNTRY.SYS
file and uses it to update all devices configured for code page switching.
For this subfunction to operate successfully, you must include the appropri

ate DEVICE and COUNTRY commands in your CONFIG.SYS file and also

execute the MODE CP PREPARE and NLSFUNC commands. (See your DOS
reference manual for details.)

Function 67H (decimal 103): Set Handle Count
Function 67H (decimal 103), introduced in DOS version 3.3, lets a program

specify the maximum number of handles it can keep open at any one time.
DOS maintains a table of the handles used by a program in a reserved area
in the program's PSP. Normally, the limit is 20 handles, of which 5 are auto

matically opened by DOS for the standard input, output, error, auxiliary,
and printer devices.

To increase the maximum number of open handles, call function 67H
with the maximum number of desired handles in BX. DOS will allocate a

new block of memory and use it to store an expanded table of handles. The
function clears the carry flag to indicate success; if the carry flag is set, AX

contains an error code.

Remember two points about function 67H:

• If you are running a COM program that uses all available memory,

it must call function 4AH to shrink its memory allocation before
DOS can allocate a memory block for the handle table.

• The size of DOS's internal file table imposes an upper limit on the
number of handles you can open. You can increase the size of that

table with the FILES command in your CONFIG.SYS file.

392

Chapter 17: DOS Functions: Versions 2.0 and Later

Function 68H (decimal 104): Commit File
Function 68H (decimal 104) was first supported in DOS version 3.3. When

you call this function with an open file handle in BX, DOS flushes the disk

buffer associated with the handle and updates the disk directory accord
ingly. This ensures that data written to the disk buffer but not yet physically
written on a disk will not be lost should a power failure or other mishap
occur.

By executing function 68H, you obtain the same result that you would

by using function 45H to duplicate a file handle and then using function 3EH
to close the duplicate handle.

393

Chapter 18

DOS Functions

Summary

Short Summary 396

Long Summary 400

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

This chapter summarizes the DOS functions and is designed to be used as a
quick reference guide. For details about the specific operation of each func
tion, see Chapters 15 through 17. Once you understand the DOS functions,
these tables should provide you with most of the programming information
youTl need.

Short Summary
Figure 18-1 lists the five interrupts that can be executed to obtain various
DOS functions. Of these, interrupt 21H is by far the most useful—it is the
function-call interrupt that provides general access to nearly all DOS func
tions. Interrupts 25H and 26H, the absolute disk read/write interface, may
occasionally be needed to bypass the usual DOS file interface. The remain
ing interrupts, 20H and 27H, provide program-termination services in DOS
version 1 that were made obsolete by interrupt 21H functions introduced in
DOS version 2.0. Chapter 15 covers the DOS interrupts in detail.

Interrupt
Hex Dec Description

20H 32 Program terminate: Come to a normal ending.

21H 33 General DOS functions.

25H 37 Absolute disk read.

26H 38 Absolute disk write.

27H 39 Terminate and stay resident.

Figure 18-1. The five main DOS interrupts.

Figure 18-2 lists the interrupt 21H functions introduced with DOS ver
sion 1 and supported in all versions of DOS. These functions are discussed
in Chapter 16.

Figure 18-3 lists the expanded set of interrupt 21H functions intro
duced in DOS version 2.0 and augmented in later DOS versions. Chapter 17
describes these functions.

All interrupt 21H functions are called by executing interrupt 21H with
a function number in the AH register and other parameters as needed in the
other 8086 registers. Most DOS functions return a completion code in the AL
or AX register; most of the functions introduced in DOS versions 2.0 and
later also use the carry flag to report the success of a function call. See
Chapters 16 and 17 for several program examples of interrupt 21H calls.

396

Chapter 18: DOS Functions Summary

Function

Hex Dec Description

OOH 0 Terminate.

OIH 1 Character Input with Echo.

02H 2 Character Output.

03H 3 Auxiliary Input.

04H 4 Auxiliary Output.

05H 5 Printer Output.

06H 6 Direct Character Input/Output.

07H 7 Direct Character Input Without Echo.

08H 8 Character Input Without Echo.

09H 9 String Output.

OAH 10 Buffered Keyboard Input.

OBH 11 Check Keyboard Status.

OCH 12 Flush Keyboard Buffer, Read Keyboard.

ODH 13 Flush Disk Buffers.

OEH 14 Select Disk Drive.

OFH 15 Open File.

lOH 16 Close File.

IIH 17 Find First Matching Directory Entry.

12H 18 Find Next Matching Directory Entry.

13H 19 Delete File.

14H 20 Sequential Read.

15H 21 Sequential Write.

16H 22 Create File.

17H 23 Rename File.

19H 25 Get Current Disk.

lAH 26 Set DTA Address.

IBH 27 Get Default Drive Information.

ICH 28 Get Specified Drive Information.

21H 33 Read Random Record.

22H 34 Write Random Record.

23H 35 Get File Size.

24H 36 Set FCB Random Record Field.

25H 37 Set Interrupt Vector.

26H 38 Create New PSP.

27H 39 Read Random Records.

Figure 18-2. Interrupt 21H functions available in all DOS versions. (continued)

397

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-2. continued

Function

Hex Dec Description

28H 40 Write Random Records.

29H 41 Parse Filename.

2AH 42 Get Date.

2BH 43 Set Date.

2CH 44 Get Time.

2DH 45 Set Time.

2EH 46 Set Verify Flag.

Function DOS

Hex Dec Description Version

2FH 47 Get DTA Address. 2.0

BOH 48 Get DOS Version Number. 2.0

31H 49 Terminate and Stay Resident. 2.0

33H 51 Get/Set Ctrl-C Flag. 2.0

35H 53 Get Interrupt Vector. 2.0

36H 54 Get Disk Free Space. 2.0

38H 56 Get/Set Country-Dependent Information. 2.0

39H 57 Create Directory. 2.0

BAH 58 Remove Directory. 2.0

BBH 59 Change Current Directory. 2.0

BCH 60 Create File. 2.0

BDH 61 Open File. 2.0

BEH 62 Close File. 2.0

BFH 63 Read from File or Device. 2.0

40H 64 Write to File or Device. 2.0

41H 65 Delete File. 2.0

42H 66 Move File Pointer. 2.0

4BH 67 Get/Set File Attributes. 2.0

44H 68 lOCTL—I/O Control for Devices. 2.0

45H 69 Duplicate File Handle. 2.0

46H 70 Force Duplicate File Handle. 2.0

Figure 18-3. Interrupt 21Hfunctions available in DOS
versions 2.0 and later.

(continued)

398

Chapter 18: DOS Functions Summary

Figure 18-3. continued

Function DOS

Hex Dec Description Version

47H 71 Get Current Directory. 2.0

48H 72 Allocate Memory Block. 2.0

49H 73 Free Memory Block. 2.0

4AH 74 Resize Memory Block. 2.0

4BH 75 Load and Execute a Program. 2.0

4CH 76 Terminate with Return Code. 2.0

4DH 77 Get Return Code. 2.0

4EH 78 Find First Matching Directory Entry. 2.0

4FH 79 Find Next Matching Directory Entry. 2.0

54H 84 Get Verify Flag. 2.0

56H 86 Rename File. 2.0

57H 87 Get/Set File Date and Time. 2.0

58H 88 Get/Set Memory Allocation Strategy. 3.0

59H 89 Get Extended Error Information. 3.0

5AH 90 Create Temporary File. 3.0

5BH 91 Create New File. 3.0

5CH 92 Lock/Unlock File Region. 3.0

5EH 94 Network Machine Name and Printer Setup. 3.1

5FH 95 Network Redirection. 3.1

62H 98 Get PSP Address. 3.0

65H 101 Get Extended Country Information. 3.3

66H 102 Get/Set Global Code Page. 3.3

67H 103 Set Handle Count. 3.3

68H 104 Commit File. 3.3

399

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Long Summary
In the last section, we briefly listed all the DOS functions so that individual

functions could be found by their function number. In this section, we have
expanded the listing to show the register values passed to and returned from
interrupt 21H functions.

Since most new versions of DOS have introduced new functions that

cannot be used with earlier versions, we have included the DOS version

number in which each function was introduced.

Function

Service (hex)

Register

Input Output
DOS

Version Notes

Program Control Functions

Terminate: End OOH

program.

AH = OOH

CS = segment of PSP
1.0 Obsolete: Use

function 4CH

instead.

Create new program 26H
segment.

AH = 26H

DX = segment where
new PSP starts

1.0 Obsolete: Use

function 4BH

instead.

Terminate and stay
resident.

31H AH = 31H

AL = return code

DX = # of paragraphs
to keep resident

2.0

Get/set Ctrl-C flag. 33H AH = 33H

To set flag:
AL = 01H

DL = value

To get flag:
AL = OOH

AL = result code 2.0

If called with
AL = OIH:

DL = current value

of flag (0 = off,
1 = on)

EXEC: Load and

execute a program.
4BH AH = 4BH

DS:DX ASCIIZ

command line

ES:BX —> control

block

To execute child

program:

AL = OOH

If no error :
CF clear

If error :
CF set

AX = error code

2.0 Changes all
registers,
including
SS:SP.

Figure 18-4. A summary of the DOS interrupt 21H functions. (continued)

400

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Function Register DOS

Service (hex) Input Output Version Notes

EXEC: Load and To load without

execute a program.

(continued)

executing:
AL = 03H

Terminate with

return code.

4CH AH = 4CH

AL = return code

2.0

Get return code. 4DH AH = 4DH AL = return code

AH = termination

method

2.0 Call only once
after calling
function 4CH.

Get PSP address. 62H AH = 62H BX = PSP segment 3.0

Standard Input Functions

Character input
with echo.

OIH AH = OIH AL = 8-bit

character

1.0

Direct character

input without echo.
07H AH = 07H AL = 8-bit

character

1.0

Character input
without echo.

08H AH = 08H AL = 8-bit

character

1.0

Buffered keyboard
input.

OAH AH = OAH

DS:DX -> input
buffer

Buffer contains

keyboard input.
1.0 See Chapter 16

for input buffer
format.

Check keyboard
status.

OBH AH = OBH If character
available:

AL = FFH

If no character
available:

AL = OOH

1.0

Flush keyboard
buffer, read

keyboard.

OCH AH = OCH (Depends on
AL = function number function specified
(OIH, 06H, 07H, inAL)
08H, or OAH)

1.0

(continued)

401

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function

(hex)

Register

Input Output
DOS

Version Notes

Standard Output Functions

Character output. 02H AH = 02H

DL = 8-bit character

1.0

String output. 09H AH = 09H

DS:DX -> string
terminated with '$'

1.0

Console HO Functions

Direct character

input/output.
06H AH = 06H

To input a character:
DL = FFH

To output a character:
DL = 8-bit character

(OGH-FEH)

If called with
DL = FFH:

AL = 8-bit

character

1.0

Miscellaneous HO Functions

Auxiliary input. 03H AH = 03H AL = 8-bit

character

1.0

Auxiliary output. 04H AH = 04H

DL = character

1.0

Printer output. 05H AH = 05H

DL = character

1.0

Disk Functions

Flush disk buffers. ODH AH = ODH 1.0 See also

function 68H

Select disk drive. OEH AH = OEH

DL = drive ID

AL = number of

drives in system
1.0 In DOS 3.0 and

later, AL >=

05H.

(continued)

402

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Function Register DOS

5^rvic^ (hex) Input Output Version Notes

Get current disk. 19H AH = 19H AL = drive ID 1.0

Set DTA address. lAH AH = lAH 1.0

DS:DX -> DTA

Get default drive IBH AH = IBH AL = sectors 1.0 Obsolete: Use

information. per cluster function 36H

CX = bytes instead.

per sector

DX = total clusters

on disk

DS:BX —> media

ID byte

Get specified drive ICH AH = ICH AL = sectors 1.0 Obsolete: Use

information. DL = drive ID per cluster function 36H

CX = bytes instead.

per sector

DX = total clusters

on disk

DSiBX —> media

ID byte

Set verify flag. 2EH AH = 2EH 1.0 Call with

AL = value for flag DL = OOH in

(0 = off, 1 = on) DOS versions

DL = OGH prior to 3.0.

Get DTA address. 2FH AH = 2FH ES:BX DTA 2.0

Get disk free space. 36H AH = 36H If bad drive ID: 2.0

DL = drive ID AX = FFFFH

If no error :
AX = sectors

per cluster
BX = unused

clusters

CX = bytes
per sector

DX = total clusters

on disk

(continued)

403

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function

(hex)

Register

Input Output
DOS

Version Notes

Get verify flag. 54H AH = 54H AL = value of flag
(0 = off, 1 = on)

2.0

File Management Functions

Delete file. 13H AH=13H

DS:DX FOB

If error :
AL = FFH

If no error :
AL = 0

1.0 Obsolete: Use

function 41H

instead.

Create file. 16H AH = 16H

DS:DX FCB

If error:
AL = FFH

If no error :
AL = OOH

1.0 Obsolete: Use

function 3CH,
5AH, orSBH

instead.

Rename file. 17H AH = 17H

DS:DX modified

FCB

If error:
AL = FFH

If no error:
AL = OOH

1.0 Obsolete: Use

function 56H

instead.

Get file size. 23H AH = 23H

DS:DX ̂ FCB

If error:
AL = FFH

If no error :
AL = OOH

FCB contains

file size.

1.0 Obsolete: Use

function 42H

instead.

Parse filename. 29H AH = 29H

AL = control bits

DS:SI string
to parse

ES:DI^FCB

AL = error code

DS:SI —> byte past
parsed string
ES:DI ̂ FCB

1.0 Cannot parse
pathnames.

(continued)

404

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Service

Function

(hex)

Register

Input Output
DOS

Version Notes

Create file. 3CH AH = 3CH

CX = attribute

DS:DX ASCIIZ

file specification

If error:
CP set

AX = error code

If no error:
CP clear

AX = handle

2.0

Delete file. 41H AH = 41H

DS:DX-^ ASCIIZ

file specification

If error:
CP set

AX = error code

If no error :
CP clear

2.0

Get/set file attributes. 43H AH = 43H

DS:DX ASCIIZ

file specification

To get attributes:
AL = OOH

To set attributes:

AL = 01H

CX = attributes

If error :
CP set

AX = error code

If no error :
CP clear

CX = attributes

(if called with
AL = OOH)

2.0

Rename file. 56H AH = 56H

DS:DX ̂ old

ASCIIZ file

specification
ESiDI -> new

ASCIIZ file

specification

If error:
CP set

AX = error code

If no error :
CP clear

2.0 May be used to
move a file

from one

directory to
another.

Get/set file date

and time.

57H AH = 57H

BX = handle

To get date and time:
AL = OGH

To set date and time:

AL = 01H

CX = time

DX = date

If error :
CP set

AX = error code

If no error:
CP clear

If called with
AL = OOH:

CX = time

DX = date

2.0

(continued)

405

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function Register

(hex) Input Output
DOS

Version Notes

Create temporary
file.

5AH AH = 5AH

CX = attribute

DS:DX ̂ ASCIIZ

path followed by
13 empty bytes

If error: 3.0
CF set

AX = error code

If no error :
CF clear

AX = handle

DS:DX ̂ ASCIIZ

file specification

Create new file. 5BH AH = 5BH

CX = attribute

DS:DX ASCIIZ

file specification

If error:
CF set

AX = error code

If no error:
CF clear

AX = handle

3.0

File HO Functions

Open file. OFH AH = OFH

DS:DX ̂ FCB

AL = result code 1.0 Obsolete: Use

function 3DH

instead.

Close file. lOH AH=10H

DS:DX -> FCB

If no error : 1.0
AL = result code

Obsolete: Use

function 3EH

instead.

Sequential read. 14H AH = 14H

DS:DX ̂ FCB

AL = result code 1.0

DTA contains

data read.

Obsolete: Use

function 3FH

instead.

Sequential write. 15H AH=15H

DS:DX ̂ FCB

DTA contains data

to write.

AL = result code 1.0 Obsolete: Use

function 40H

\ instead.

Read random

record.

21H AH = 21H

DS:DX FCB

AL = result code

DTA contains

data read.

1.0 Obsolete: Use

function 3FH

instead.

(continued)

406

Figure 18-4. continued

Chapter 18: DOS Functions Summary

Service

Function Register

(hex) Input Output
DOS

Version Notes

Write random

record.

22H AH = 22H

DS:DX ̂ FOB

DTA contains data

to write.

AL = result code 1.0 Obsolete: Use

function 40H

instead.

Set FCB random

record field.

24H AH = 24H

DS:DX FCB

AL = OOH

FCB contains

updated random
record field.

1.0 Obsolete: Use

function 42H

instead.

Read random

records.

27H AH = 27H

CX = record count

DS:DX FCB

AL = result code

CX = number of

records read

DTA contains

data read.

1.0 Obsolete: Use

function 3FH

instead.

Write random

records.

28H AH = 28H

CX = record count

DS:DX ̂ FCB

DTA contains data

to write.

AL = result code

CX = number of

records written

1.0 Obsolete: Use

function 40H

instead.

Open handle. SDH AH = SDH If error:
AL = file access code CF set

DS:DX ̂ ASCIIZ AX = error code

file specification If no error :
CF clear

AX = handle

2.0

Close handle. SEH AH = SEH

BX = handle

If error:
CF set

AX = error code

If no error:
CF clear

2.0

(continued)

407

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function Register

(hex) Input Output
DOS

Version Notes

Read from file

or device.

3FH AH = 3FH

BX = handle

CX = number of

bytes to read
DS:DX buffer

If error:
CF set

AX = error code

If no error:
CF clear

AX = number of

bytes read
DS:DX ̂ buffer

2.0

Write to file

or device.

40H AH = 40H

BX = handle

CX = number of

bytes to write
DS:DX buffer

If error:
CF set

AX = error code

If no error :
CF clear

AX = number of

bytes written

2.0

Move file pointer. 42H AH = 42H If error:
BX = handle CF set

CX:DX = offset AX = error code

to move pointer If no error :
Move relative to CF clear

start of file: DX:AX = new file

AL = OOH pointer

Move relative to

current location:

AL = 01H

Move relative to

end of file:
AL = 02H

2.0

Duplicate file 45H AH = 45H If error: 2.0 See Chapter 17
handle. BX = handle CF set for details.

AX = error code

If no error:
CF clear

AX = new handle

(continued)

408

Figure 18-4. continued

Chapter 18: DOS Functions Summary

Service

Function Register

(hex) Input Output
DOS

Version Notes

Force duplicate
file handle.

46H AH = 46H

BX = handle

CX = handle to

be forced

If error :
CF set

AX = error code

If no error:
CF clear

2.0 See Chapter 17
for details.

3.0 Use with

SHARE or in

network

environment.

Lock/Unlock 5CH AH = 5CH If error:
file region. BX = handle CF set

CX:DX = start of AX = error code

region to lock/unlock If no error'
SI:DI = sizeof CFdear
region to lock/unlock

To lock region:
AL = OOH

To unlock region:
AL = 01H

Set handle count. 67H AH = 67H

BX = number of

handles

If error:
CF set

AX = error code

If no error:
CF clear

3.3

Commit file. 68H AH = 68H

BX = handle

If error:
CF set

AX = error code

If no error :
CF clear

3.3

Directory Functions

Find first matching
directory entry.

IIH AH=11H

DS:DX FCB

If error:
AL = FFH

If no error:
AL = OOH

DTA contains

directory
information.

1.0 Obsolete: Use

function 4EH

instead.

(continued)

409

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function Register

(hex) Input Output
DOS

Version Notes

Find next matching
directory entry.

12H AH=12H

DS:DX ̂ FOB

If error:
AL=FFH

If no error:
AL = OOH

DTA contains

directory
information.

1.0 Obsolete: Use

function 4FH

instead.

Create directory. 39H AH = 39H

DS:DX ASCIIZ

path

If error:
CF set

AX = error code

If no error:
CF clear

2.0

Remove directory. 3AH AH = 3AH

DSrDX ̂ ASCIIZ

path

If error:
CF set

AX = error code

If no error :
CF clear

2.0

Change current
directory.

3BH AH = 3BH

DS:DX ASCIIZ

path

If error:
CF set

AX = error code

If no error:
CF clear

2.0

Get current

directory.
47H AH = 47H

DL = drive ID

DS:SI —> empty
64-byte buffer

If error:
CF set

AX = error code

If no error:
CF clear

DS:SI ̂ ASCIIZ

path

2.0

Find first matching
directory entry.

4EH AH = 4EH

CX = attribute

DS:DX ̂ ASCIIZ

file specification

If error :
CF set

AX = error code

2.0

(continued)

410

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Function

Service (hex)

Register

Input Output
DOS

Version Notes

Find first matching
directory entry.
(continued)

If no error :
CF clear

DTA contains

directory
information.

Find next matching
directory entry.

4FH AH = 4FH

DTA contains

information from

previous call to
function 4EH

or4FH.

If error :
CF set

AX = error code

If no error :
CF clear

DTA contains

directory
information.

2.0

DatelTime Functions

Get date. 2AH AH = 2AH AL = day of week
CX = year
DH = month

DL = day

1.0

Set date. 2BH AH = 2BH

CX = year
DH = month

DL = day

If error:
AL=FFH

If no error:
AL = OOH

1.0

Get time. 2CH AH = 2CH CH = hours

CL = minutes

DH = seconds

DL=100ths

of seconds

1.0

Set time. 2DH AH = 2DH

CH = hours

CL = minutes

DH = seconds

If error :
AL=FFH

If no error :
AL = OOH

1.0

DL = lOOths

of seconds

(continued)

411

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function Register

(hex) Input Output
DOS

Version Notes

Miscellaneous Functions

Set interrupt vector. 25H AH = 25H

AL = interrupt number
DS:DX = segmented
address for specified
interrupt vector

1.0

Get DOS version

number.

30H AH = 30H AH = minor

version number

AL = major
version number

BX, CX = serial

number

2.0 DOS version

1.0 returns

AL = OOH.

OS/2 com

patibility
box returns

AL = OAH.

Get interrupt vector. 35H AH = 35H

AL = interrupt
number

ES:BX = contents 2.0

of specified
interrupt vector

Get/set country- 38H
dependent
information.

AH = 38H

AL = country code
^?rFFH

BX = country code
(ifAL = FFH)

To get country
information:
DS:DX empty
34-byte buffer

To set country
information:
DX = FFFFH

If error : 2.0
CF set

AX = error code

If no error:
CF clear

If called with
DX <> FFFFH:

BX = country code
DS:DX —> country
information

Calls with

DX = FFFFH

orAL = FFH

are supported
only in DOS
versions 3.0 and

later. See also

function 65H.

lOCTL. 44H AH = 44H

AL = subfunction

number

If error:
CF set

AX = error code

2.0 See Chapter 17
for details.

(continued)

412

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Function Register
DOS

Service (hex) Input Output Version Notes

lOCTL. (Other registers If no error:
(continued) depend on CF clear

subfunction.) (Other registers
depend on
subfunction.)

Get extended error 59H AH = 59H AX = extended 3.0 Alters CL,
information. BX = OOH error code DX, SI, DI,

BH = error class ES, and DS.
BL = suggested See Chapter 17
action for details.

CH = location

of error

Network machine 5EH AH = 5EH If error: 3.1 Use in network
name and printer AL = subfunction CF set environment
setup. number AX = error code only. See

(Other registers If no error : Chapter 17 for
depend on CF clear details.

subfunction.) (Other registers
depend on
subfunction.)

Network redirection. 5FH AH = 5FH If error: 3.1 Use in network

AL = subfunction CF set environment

number AX = error code only. See
(Other registers If no error : Chapter 17 for
depend on CF clear details.

subfunction.) (Other registers
depend on
subfunction.)

Get extended 65H AH = 65H If error: 3.3 See Chapter 17
country information. AL = information CF set for details.

ID code AX = error code

BX = code page If no error:
number CF clear
CX = buffer length ESrDI —> extended
DX = country ID country information
ES:DI —> buffer

(continued)

413

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure 18-4. continued

Service

Function Register

(hex) Input Output
DOS

Version Notes

Get/set global
code page.

66H AH = 66H

To get current
code page:
AL = 01H

To set code page :
AL = 02H

BX = code page
number

If error :
CP set

AX = error code

If no error :
CP clear

If called with
AL = OIH:

BX = current

code page
DX = default

code page

3.3

Memory Functions

Allocate memory
block.

48H AH = 48H

BX = size of block

in paragraphs

If error: 2.0
CP set

AX = error code

BX = size of largest
available block

If no error:
CP clear

AX = paragraph
address of allocated

block

Pree memory block. 49H AH = 49H If error: 2.0
ES = paragraph CP set

address of AX = error code

memory block If no error :
CP clear

Resize memory 4AH AH = 4AH If error: 2.0
block. BX = new size CP set

of memory block AX = error code

in paragraphs BX = size of largest
ES = paragraph available block (if
address of increased size was

memory block requested)

(continued)

414

Chapter 18: DOS Functions Summary

Figure 18-4. continued

Function Register DOS

Service (hex) Input Output Version Notes

Resize memory block. If no error:
(continued) CP clear

Get/set memory 58H AH = 58H If error: 3.0 See Chapter 17
allocation strategy. To get allocation CP set for details.

strategy: AX = error code

AL = OOH If no error:

To set allocation CP clear

strategy: If called with
AL = 01H AL = OOH:

BX = strategy code AX = strategy code

415

Chapter 19

Pr(^ram Building

Structure of an Executable Program 418

The Memory Map 418

The Use of Registers 419

Memory Models 420

Subroutine Interfaces 421

Combining Program Modules 423

Step 1: Writing the Source Code 424

Step 2: Translating the Source Code 424

Step 3: Linking 425

Step 4: Converting File Formats 425

Step 5: Creating Object Libraries 426

Using LINK 427

Linking a Self-contained Program 428

Linking a Program to a Library 428

Linking Object Files 429

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

As we've mentioned before, the wisest approach to programming the PC
family is to write nearly all your programs in a high-level language (such as
BASIC, Pascal, or C) and when necessary use the DOS or ROM BIOS services
for whatever the high-level languages don't provide. On occasion, you may
also want to create your own assembly-language routines to perform spe
cialized tasks not available through your programming language or system
services.

When creating programs within the confines of a single programming
language, you really don't need to know anything more about a language
than what you can find in the manuals that come with it. However, if you
need to break out of the bounds of a single language to access DOS or ROM

BIOS routines, or perhaps to tie into a program that's written in a different
language, you'll need to dig deeper into the technical aspects of both DOS
(to learn how to link programs together) and the programming languages
(to learn the requirements for program interfaces, which let the different
languages communicate with each other).

This chapter presents some overall considerations that apply to the ad
vanced use of most programming languages. We'll start by describing the
structure of the executable programs generated by compilers and assem
blers. Later we'll consider the details of combining separate program mod
ules into a unified program.

Structure of an Executable Program
Every language translator imposes a certain structure on each executable
program it generates. This structure is partly determined by the structure of
the source code, but it also reflects the way the 8086 addresses memory.

The Memory Map
DOS loads an executable program by reading the contents of a .COM or .EXE
file directly into an area of free memory. The layout of executable code and
data in memory—the memory map—reflects the structure of the execut
able file, which in turn is primarily determined by the language translator
you use to compile or assemble your program. Although language transla
tors differ, most of them produce executable programs in which logically
separate portions of the program are mapped in different blocks of
memory. (See Figure 19-1.)

This memory map fits comfortably into the addressing schemes that
are natural to the 8086: The executable code is addressed through the CS
register; the program data is accessed through the DS and ES registers; and
the SS register points to the stack.

418

Chapter 19: Program Building

Higher addresses

Lower addresses

Stack

Uninitialized data

Program data

Executable code

Program Segment Prefix

Figure 19-1. Memory usage in a typical DOS program.

□ NOTE: This memory map is also practical because it conforms
to the memory conventions for programs that run in a protected-
mode environment like 0SI2. In protected mode, the 80286 and 80386
require you to use particular segment registers to address execut
able code and data. When you write a program to run in protected
mode, you must avoid storing data values in a code segment or
branching to executable code in a data segment.

The Use of Roisters
An executable program whose code, data, and stack are mapped to distinct
areas of memory can make efficient use of the 8086 registers. This is
because the 8086's segment registers can each address a different portion of
the memory map:

• The CS and IP registers point to the currently executing
instruction.

• The DS register is used in combination with BX, SI, or DI to access
program data.

• The SS register is used in combination with the SP and BP registers
to point to data in the program's stack. The SS:SP combination
points to the top of the stack, and SSrBP can be used to access data
above or below the top of the stack.

These aren't hard-and-fast rules for register usage. They are a natural
consequence of the way the 8086 register set is designed.

419

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Memory Models
There are various ways to produce an executable program whose memory
map comprises separate code, data, and stack segments. The way a particu
lar program addresses the different areas of its memory map is determined
by the program's memory model

A memory model specifically describes how executable code and data
are addressed within a program. For example, the 8086 imposes a limit of 64
KB in any given segment, so a program with more than 64 KB of executable
code must be mapped into more than one executable code segment. Simi
larly, a program with more than 64 KB of data must store that data in at least
two different data segments. Thus the simple memory model shown in
Figure 19-1 can be elaborated upon—into four different memory models.
(See Figure 19-2.)

The memory model you use affects how your program uses segment
registers. In a small-model program, the CS and DS registers can be initial
ized at the start of a program and left undisturbed for the duration. Contrast
this with a large-model program, where the CS register must be changed
whenever the program branches from one code segment to another, and the
DS or ES registers must often be updated whenever data from different seg
ments must be accessed.

Some high-level language compilers let you specify which memory
model to use. (See your compiler documentation for more information.) If
you know your program contains fewer than 64 KB of executable code and
fewer than 64 KB of data, you can explicitly request such a compiler to gen
erate a small-model executable program. (This is the memory model we
have used in all the assembly-language examples in previous chapters.)
Other compilers can use a compact, medium, or large model, regardless of
the program size. Whatever the case, you should know what memory model
your compiler uses if you want to understand how the different parts of an
executable program fit together.

Model Number of Code Segments Number of Data Segments

Small 1 1

Compact 1 More than 1

Medium More than 1 1

Large More than 1 More than 1

Figure 19-2. Four common memory models.

420

Chapter 19: Program Building

Subroutine Interfaces

A subroutine interface is a layer of assembly-language code that lets a pro
gram written in a high-level language communicate with an assembly-

language subroutine. A subroutine interface has two main parts: a control
interface and a data interface.

The control interface handles the business of calling and returning;
that is, of passing control of the computer from the calling program to a
subroutine and back again. The control interface, by the way, can be tricky
to program. It is remarkably simple if you know how to program properly,
but you can create incredible messes if you make even minor programming

errors.

The data interface lets the calling program and a subroutine share

data. In order to share successfully, you need to know how each side of the

interface finds and works with data, and you must understand how data is

formatted so that each side can interpret it in the same way. We'll be cover
ing these topics in more detail in the next chapter.

All three program elements—the calling program, the called subrou
tine, and the interface—must accomplish the following in order to work
together successfully:

The program must be able to find its way to the subroutine. In the
8086-based system of the standard PC family, a subroutine is called through

a CALL instruction. There are two kinds of CALL instruction:

• The near CALL locates a subroutine within the current 64 KB code

segment (CS) and does not require the CS register to be changed.

• The far CALL locates a subroutine outside the current CS using a
complete segmented address in the CALL instruction (which
changes the CS setting). Because it needs to access only one exe
cutable code segment, a small-model or compact-model program

uses near CALLs to call subroutines. A medium-model or large-
model program uses far CALLs so that it can change CS and access
multiple code segments.

The subroutine must know what to do when finished. A subroutine

typically returns to the calling program with an instruction that corre

sponds to the way it was called (that is, with a near or far RET instruction).
Occasionally, however, a subroutine does something unusual—for ex
ample, you may want to terminate a program and return to DOS from a

subroutine.

421

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The subroutine must know what supporting framework is provided
by the caller. A typical supporting framework describes how the segment
registers are set and whether a stack is available for use. In general, the seg
ment registers are exactly as they should be: CS has the right code segment,
DS points to the location of the calling program's data, and SS and SP are set
up with the caller's stack.

The called subroutine usually can continue to use the caller's stack,
but there is no practical way to know how much working space is available.
If the subroutine's needs are reasonable—say, fewer than 64 bytes—the
caller's stack space should be adequate. However, if the subroutine should
need more working space, it can set up its own stack space in memory.

If the program needs to pass information (parameters) to the sub
routine, both the program and the subroutine must know how many
parameters exist, where they are, and what they are. Programs and sub
routines typically work with a fixed number of parameters, although some
languages, including C, can handle a variable number of parameters. The
parameters are usually passed to the subroutine through the stack, either di
rectly or indirectly. The direct method, known as pass-by-value, passes the
actual value of the parameter through the stack; the indirect method, known
as pass-by-reference, passes the parameter's address through the stack.

The parameter-passing method used depends primarily on the lan
guage; some languages place only addresses—never parameter values —
on the stack. With languages that can handle both addresses and values, you
have a lot more freedom to decide which method to use, and the method you

use lets you control how the parameters are dealt with as they are passed
from one program to another.

For example, if you want to protect a caller's parameter from being
changed by the called subroutine, you'll use the pass-by-value method to
pass a copy of the parameter's value on the stack. But if you want the
parameter's value to be changed by the called subroutine, you must use the
pass-by-reference method so that the subroutine can change the parameter's
value by modifying the contents of memory at the specified address.

Parameter passing is the most complicated part of the subroutine in
terface, made even more complicated by the different ways programming
languages deal with data and stack information. Because of its complexity
and variability from one language to another, parameter passing is the main
issue we'll discuss in our language comparisons in the next chapter.

The subroutine must preserve certain information. Although re
quirements may vary in different situations, a few ground rules govern what

422

Chapter 19: Program Building

information should be preserved, and what can and cannot be done when
calling a subroutine.

• Interrupts can be suspended briefly when segment registers are
changed; they must be turned back on before returning. (See
page 52.)

• The contents of any CPU registers used by the calling program as
well as the subroutine are preserved by being pushed on the stack.

• The BP and DS registers should usually be saved and restored if

they are changed within a subroutine.

Register usage varies: One compiler may rely on the contents of ES
being constant, and another might require you to preserve SI and DI if you
use them in a subroutine. See your compiler manual for specific
information.

The stack must be cleaned up after the subroutine is finished. Four
things might clutter the stack when a subroutine is finished: some parame
ters, the return address from the CALL instruction, register values saved
from before the CALL, and some working storage from the subroutine.

Three of these leftovers are not problems: Subroutines are expected to
remove their own working storage from the stack, saved registers are
removed by POP instructions, and the return address is removed by the RET
instruction. The parameters, however, usually complicate the clean-up
process, because the method of removal varies in different languages. Some
languages expect the subroutine to remove the parameters by specifying in
the RET instruction the number of bytes to remove from the stack. Other

languages expect the caller to remove them. We'll point out these differ
ences as we discuss some languages in detail in Chapter 20.

With all these program design elements in mind, let's step back a bit
farther and see how the whole process works—from creating a program or
subroutine to combining it with others.

Combining Program Modules
In this section, we're going to describe the general process of putting a pro
gram together from two or more program modules. Programming lan
guages—and programmers—vary in the way they perform this process,
but in general, the tools you use and the sequence of operations you carry
out are the same for most language translators. (See Figure 19-3.)

423

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Source code

Language translator
r

Object code (.OBJ) Library manager Object library

(or other intermediate code)
% w

(.LIB)

Linker

Executable program

(.EXE)

EXE2BIN

T

Executable program

(.COM)

Figure 19-3. Building an executable program. By convention, object filenames use the
.OBJ extension; object libraries use .LIB; executable files use .EXE or .COM.

Step 1: Writing the Source Code
To begin with, you have to write your program using the commands and
syntax of your programming language. This form of the program is known
as the source code. For programming languages that use the standard DOS
conventions, the source code must be in the form of an ASCII text file. (See

Appendix C.) Interpreted BASIC does not normally use the ASCII text file
format for its source files, but it can. (To create ASCII text files with the

BASIC interpreter, use the A option of the SAVE command.)
By convention, source-code files have a filename extension that

reflects the name of the programming language used, such as BAS or C.

step 2: Translating the Source Code
The next step in creating an executable program is to process the source
code with a language translator. For assembly language, the translator is
called an assembler; for high-level languages like Pascal and C, the transla
tor is called a compiler, A translator converts source code into machine-
language instructions, in a form known as object code. Object code contains
executable machine code, but also includes additional information about the

structure of the executable program. The object-code format is designed so
that separate object modules can be combined into a single, unified pro
gram. Object-code files, by convention, have a filename extension of .OBJ.

424

Chapter 19: Program Building

You can also use an interpreter to translate a program built from sepa
rate source-code modules. Interpreters, however, are rarely capable of
generating object code, so binding separate program modules together gen

erally relies on improvised language-specific programming, as we'll see in
Chapter 20.

Step 3: Linking
The next basic step is to link the object modules together. The linker, or
link-editor program (known as LINK in DOS) performs two main tasks: It

combines separate object modules (as needed), making all the necessary
connections between them; and it converts the modules from an object-code

format to a loadable program in the .EXE format.
The actual combining, or linking, of program modules to create an

.EXE file is the most important aspect of this discussion. We'll take it up
again later in this chapter, after we've covered two other steps that are in

volved in preparing programs.

Step 4: Converting File Formats
A program that uses one of the memory models we described earlier is

ready to run after you use LINK to create an .EXE file. But if you have a

fairly simple program, or if you long for the good old days of CP/M com
patibility and an absolute maximum program size of 64 KB, you can convert
your .EXE program into a .COM file. Before you do, however, be sure your
program conforms to the restrictions imposed by the .COM format.

The memory model used in a .COM file places everything—execut

able code, program data, uninitialized memory, stack, and PS?—into the
same segment. Consequently, the source code for a .COM program is
simpler than the source code for an .EXE program. There is only one seg

ment, with code and data at the bottom (starting at offset lOOH). A .COM

program doesn't contain a stack segment; instead, DOS automatically loads
the .COM program into 64 KB of memory and locates the stack at the top.

If your program is constructed in .COM format, you can run the DOS
EXE2BIN utility to transform the .EXE file generated by LINK into a .COM
file. Be forewarned, however: Few high-level language compilers use the

.COM format because of its limitations. You can very simply and safely find
out if a program can be converted from .EXE format to .COM format by try
ing to do it. If it works, it works. If EXE2BIN says it can't be done, however,

it can't be done.

425

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Step 5: Creating Object Libraries
Most high-level programming languages use dozens of prepared subrou
tines that support the operation of your programs. Naturally, these
subroutines are in the translated, object-code form. It is very inconvenient,
however, to have dozens or hundreds of these object files taking up space on
your disks. It is also inconvenient to have to determine which ones need to
be combined with your own program's object files. To solve this problem,
we have object libraries, which are collections of object modules gathered
together into one file. By convention, libraries have the filename extension
■LIB.

Most high-level programming languages come with a ready-to-use li
brary of standard supporting subroutines. Some compilers have several
libraries that provide different versions of standard routines. For example, a
compiler might have two libraries of equivalent floating-point math rou
tines: one with subroutines that use the 8087 coprocessor and the other with
subroutines that emulate the same floating-point operations in software.

The DOS linker can search through a library to find and use the sub
routines it needs in order to create a complete, executable program. Without
this library mechanism, you would be faced with the annoying task of tell
ing the linker which object files were needed. If you omitted any, the link-
editing would fail; if you included any unnecessarily, your program would
become too large. Libraries let you avoid these problems.

To manipulate the contents of an object library, you need a special
utility program called a library manager. (DOS version 3.3. is distributed
with a library manager called LIB, but earlier versions did not include this
utility.) Luckily, when you purchase a language translator that relies on ob
ject libraries, you'll almost always find that a library manager accompanies
the compiler. The following discussion pertains to the Microsoft/IBM li
brary manager, LIB.

You can use LIB for three main purposes: simply to explore the con
tents of existing libraries (which can be a very illuminating experience), to
selectively replace modules in existing libraries, or to create new libraries.

The documentation for LIB in the IBM and Microsoft manuals will
fully explain its operation, but to give you a taste of the ways LIB can be
used, we have included a few examples to try out. To create a new library
named TESTLIB, enter this command:

LIB TESTLIB:

426

Chapter 19: Program Building

To list the contents of an existing library, directing the listing to the
printer LPTl:, enter the following command:

LIB TESTLIB.LPTl;

To add the module X.OBJ to a library, enter the following:

LIB TESTLIB +X;

To replace an existing module with a new version, enter the following:

LIB TESTLIB -+X;

To extract a module for disassembly or other separate use, enter the
following:

LIB TESTLIB M *X;

Most programs call a number of subroutines. The way you organize
these subroutines determines how much value youTl obtain from LIB:

• If you prefer to combine the source code for your subroutines into
one source file, which means they will all be compiled together,

then you have little need for LIB.

• If you prefer to compile your subroutines separately into separate
object files, then LIB performs a valuable service: It gathers
together and organizes your object files. We have no absolute
recommendation for either style of operation, although many pro

grammers prefer to break a large program into separate source
code files that can be compiled into separate object files and
linked together. Such a modular approach can be more convenient
than maintaining one large source code file that must be com
pletely recompiled with each change.

Using LINK
We're now ready to return to our discussion of combining program modules
and using the LINK program. The LINK documentation in the IBM DOS
Technical Reference Manual fully explains its operation, including the com
plexity of its control switches. Here we'll summarize the most common and
useful operations, particularly where they pertain to the programming lan
guages discussed in the following chapter.

427

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Just to give you some background information, the LINK program
command might be written like this:

LINK 1.2.3,4;

The first parameter lists object modules (such as PROGl + PR0G2 +
PR0G3), the second contains the name of the finished program, the third
tells where to send the linker's display output (for example, to the printer or
display screen), and the fourth lists libraries, if they are used.

Linking a Self-contained Prt^ram
Now for some practical examples. To start with, let's consider a completely
self-contained program, such as the BEEP program shown on page 437. To
link it, simply type

LINK BEEP;

Linking a single program such as this creates an .EXE file.

Linkii^ a Prt^ram to a Library
Next, let's consider what is surely the most common linking circumstance.
Say you've compiled a program in a high-level language, such as Microsoft
C. As you know, every compiled C program needs to be linked with one or
more standard object libraries that contain all the usual C functions.

Consider what happens when you compile even a simple C program like
this one:

main()

{

printf("Hello, world");

}

If your source code is stored in a file called HELLO.C, the compiler
generates an object file called HELLO.OBJ. This object module isn't yet
ready to execute. You must use LINK to combine HELLO.OBJ with another

object module that contains the printfO function. The printfO object module
is in one of the C compiler's standard libraries; if you use the C compiler's
small memory model, the name of the standard subroutine library is
SLIBC.LIB.

428

Chapter 19: Program Building

To link the two object modules and generate an executable file,
simply specify the name of the program's object module and the name of
library that contains printfO's object module:

LINK HELLO,,,SLIBC;

LINK then searches through SLIBC.LIB for printfO, links printfO to

HELLO.OBJ, and leaves the resulting executable file in HELLO.EXE.
Even this simple example is more complicated than it has to be. Most

modern compilers, including the Microsoft C compiler in this example, can
include the names of their standard libraries in the object modules they

generate. This means that LINK can do its job without being told explicitly
about standard libraries:

LINK HELLO;

Of course, if you want LINK to use a nonstandard library, you still
need to specify its name.

Linkii^ Object Files
You can use LINK to combine two or more object files as well as to use

object libraries. Do this by listing each object filename:

LINK ALPHA+BETA+GAMMA;

You can also link several object files and one or more object libraries

at the same time:

LINK HELLO+GOODBYE,,,MYLIB;

Thus, the exact method you use to link a program depends on your

language translator as well as on how many object files and object libraries
you need to build a complete executable program.

429

Chapter 20

Pr(^ramming
Languages

Language Specifics 432

Assembly Language 433

Logical Organization 434

Learning About Interface Conventions 434

Writing and Linking Assembler Programs 436

The C Language 438

Parameter Passing 440

Memory Model Variations 441

Naming Conventions 444

Data Representation 444

Interpreted BASIC 445

The Subroutine Interface 445

Data Representation 448

Compiled BASIC 450

The Subroutine Interface 450

Data Representation 452

Turbo Pascal 452

The Subroutine Interface 453

Data Representation 455

A Parting Comment 456

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

In the last chapter, we briefly discussed the general principles of building
and linking program modules. In this chapter, we're going to discuss some
specific programming languages. We'll focus on those aspects of the lan
guages that you need to be concerned with when you link modules written
in high-level languages to assembly-language subroutines.

The title of this chapter implies that we are going to discuss program
ming languages in general, but that's really not the case. It's all very well to
discuss any topic in the abstract, but to get anything done, you have to get
down to specifics. If you want to create computer programs, you have to
work with a specific programming language—and a programming lan
guage is much more specific than many people are led to believe.

First of all, there is no such thing as a generic programming language.
You can create working programs only with a compiler or interpreter for a
programming language designed for a particular machine. Although
academic experts on computers would like to pretend otherwise, the general
definitions of programming languages lack many of the essential features
that you need to create real programs that work on real computers. So, when
a compiler or an interpreter is created for a particular programming lan
guage (such as BASIC) to run on a particular computer (such as the IBM PC),
the fundamental language is altered and extended to provide specific fea
tures. The alterations are often quite significant, and in every case, they
create a programming language that is related to, but distinct from, all other
programming languages of the same name.

What we're trying to say is that this chapter does not and could not
possibly cover every PC programming language that exists or that might be
created in the future. Because each compiler, in effect, creates a unique pro
gramming language, we've chosen not to discuss programming languages
in general. Instead, we will examine several real-world implementations:
Microsoft/IBM Macro Assembler, Microsoft C, IBM interpreted BASIC,
Microsoft QuickBASIC, and Borland's Turbo Pascal.

Language Specifics
The five programming languages that we chose are really families in them
selves. Various versions of each exist, and most are available from several

sources. Fortunately, the differences between the versions are minor—
minor enough that we don't need to think of them as separate languages in
the same sense that BASIC and Pascal are separate languages.

Assembly language. Our discussion of assembly languages will be
based on version 5.0 of Microsoft's Macro Assembler. A number of other

432

Chapter 20: Programming Languages

versions are available from Microsoft, from IBM, and from other computer

manufacturers who have licensed the use of Microsoft's basic assembler.

Newer versions of the assembler have many features not implemented in
earlier versions, but in our discussion we'll stick to the fundamental fea
tures common to most, if not all, versions of this assembler.

The C language. For our discussion of C, we will use the Microsoft C
compiler version 5.0.

Interpreted BASIC. The interpreted BASIC described in this chapter
has taken on a thousand faces and minor variations. To IBM PC users, the

version we'll discuss is known simply as BASIC or BASICA, and is further
defined by version names associated with a DOS version number (such as
Cl.lO, A2.10, or A3.30). Outside the IBM world, it may be known as BASIC,
Microsoft BASIC, or GW-BASIC. We're not concerned with the differences

here; we're concerned with the common elements.
Compiled BASIC. For our discussion of compiled BASIC, we'll be

guided by version 4.0 of Microsoft QuickBASIC.
Pascal. For Pascal, we'll use Borland's Turbo Pascal version 4.0, a

popular load-and-go Pascal compiler.

Assembly Language
As with any programming language, you can use assembly language in two
different ways; to write stand-alone programs and to write subroutines that
can be called by other programs. Subroutines depend largely on the calling
program to provide their structure and support, but a stand-alone assembly-
language program must provide its own structure and support and must
cope with all the fundamental operating issues that stand-alone programs
face. Assembler subroutines are relatively easy to construct, but stand-alone
assembler programs can be quite complicated. Subroutines have more im
mediate appeal to those who need to build interface routines between a
high-level language and some of the system's ROM BIOS or DOS services,
but stand-alone programs appeal to programmers who must accomplish a
task that neither conventional programming languages nor system services
provide.

In this brief discussion of assembly language, we'll demonstrate

techniques that will help you figure out the high-level-language interface
conventions for your assembly-language subroutines. We'll also lead you
through the process of creating a stand-alone assembler program. However,
we will not even try to teach you how to use assembly language—that is far
too large and complex a subject.

433

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

If you are not particularly proficient at assembly language, one way to
learn about it is to study some of the readily available sources of assembly-
language coding. One place to look is in the ROM BIOS listings that are part
of IBM's technical reference manuals. Another source, available with most

compilers, is the assembler-like listing that many compilers can be asked to
produce. This is useful both for learning how the compiler handles particu
lar coding problems (which you can control by selecting appropriate state
ments in the high-level language) and for learning the subroutine interface
conventions the compiler uses. A related, but less useful, way to learn about
assembly language is to load an existing program using the DOS DEBUG
program and then use DEBUG's U (Unassemble) command to look through
sections of the program. Each method can help you learn different program
ming techniques and tricks.

Logical Organization
The elements of an assembly-language subroutine are easy to understand if
they are laid out in the order they occur. As you may recall, the logical
organization was fully explained in Chapter 8, where we described an inter
face routine as five nested parts:

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke ROM BIOS service

Level 4: Pass results back to caller

Level 3: Exit code

Level 2: Finishing subroutine assembler overhead
Level 1: Finishing general assembler overhead

You can follow this basic organization for most interface routines written
for system services or conventional assembly-language subroutines, but be
aware that the actual coding will vary with every programming language.

Learning About Interface Conventions
Once you have your assembly language in hand, you'll need to examine the
assembly-language conventions and interface customs that apply to your
programming language. Your assembly-language interface will have to
know how to gain access to the parameters passed by the calling program.

434

Chapter 20: Programming Languages

how to interpret the data format, and how to send the parameters back—
among other things. Even if your language documentation doesn't provide
such information, you can obtain it from the language itself.

To learn the conventions for both a calling and a called program—

that is, to see both sides of the program-call interface—you can study your
compiler's assembler-style listing, as we mentioned earlier. You can also
study the assembly-language subroutines provided with the language
compiler for a somewhat different perspective. This technique not only
provides the interface conventions for assembly-language routines but also
gives you specific programming examples that can serve as models.

The most accessible subroutines are often part of the libraries that
accompany your compiler. Usually, it is easiest to simply choose a compiler
feature that you're interested in, such as I/O, screen control, or arithmetic,
and then determine which subroutines are invoked for that feature.

A few compiler vendors sell source code for their subroutine libraries.
If source code isn't available, however, you'll have to resort to disassem
bling the actual subroutines by extracting them from your compiler's object
libraries. You can locate a particular subroutine in an object library by
using a library manager like LIB to list the contents of the library. Let's
assume there's a library named SLIBC.LIB on your disk. You can direct the
library listing to another file named LISTING.TXT with the following DOS
instruction:

LIB SLIBC,LISTING.TXT:

Look over the library listing to find the subroutine you're interested
in and the name of the module that it's a part of; let's say the subroutine's
name is _abs and the name of the library module containing it is ABS. You
can use LIB to extract ABS from the library and create a separate object file,
ABS.OBJ:

LIB SLIBC *ABS:

At this point, you could try to look inside ABS.OBJ. But because this
file contains extraneous link-editor information that would only get in your
way, it's easier to convert the object module into an executable file (even
though it's only a subroutine and not a complete program). Use the linker
utility, LINK, to do this:

LINK ABS:

435

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

LINK generates an executable file, ABS.EXE. In the process, you'll
probably see a few error messages, because the subroutine you're linking
isn't a complete program and lacks such necessities as a stack. That's not
important in this case, because you really only want to examine the sub
routine's executable code.

To disassemble the subroutine, use DEBUG:

DEBUG ABS.EXE

You can now use DEBUG's U command to convert the executable code

into readable assembly-language instructions. First, note the size of your
.EXE file, and subtract 512 bytes to determine the actual size of the
subroutine. (The 512 bytes contain information that is used by DOS to load
an executable program, but that is not part of the subroutine itself.) For
example, if the size of ABS.EXE is 535 bytes, the size of the subroutine is
actually only 23 (hexadecimal 17) bytes. The DEBUG command to use
would then be

U 0 L17

These steps may seem overly elaborate and cumbersome, but once you
learn them, you can perform them quickly and easily, and they will give
you an inside look at how your own programming language uses assembly-
language interface routines.

The next section will repeat the key steps of this exercise as we
demonstrate the mechanics of creating a small but complete assembly-
language program.

Writing and Linking Assembler Pr(^rams
To illustrate the process involved in writing and linking an assembler
program, we will show you how to create an incredibly simple and yet
useful program that sounds a tone on the computer's speaker. To do this on
any PC-family computer or any DOS computer, you write the bell character,
ASCII 07H, to the screen. In this example, we do this by using DOS interrupt
21H, function 02H. Then we end the program and return program control to
DOS using interrupt 21H, function 4CH. Follow this example and you'll
learn quite a bit about creating self-contained assembly-language programs.
The source code for this little program is on the following page.

436

Chapter 20: Programming Languages

; DOS generic beep program

CodeSeg SEGMENT byte

ASSUME csiCodeSeg

Beep PROG

mov dl ,7 bell character

mov ah,2 Interrupt 21H function number

int 21h call DOS to write the character

mov ax,4C00h AH = 4CH (interrupt 21H function number)

AL = OGH (return code)

int 21h call DOS to terminate the program

Beep ENDP

CodeSeg ENDS

END Beep

As you see, the program is only five instructions long, filling only 11
bytes. If you save this program's source code in a file named BEEP.ASM,
you can use the assembler to translate it into object code with a simple
command:

HASM BEEP:

The resulting object file is ready for linking. In this case, you can link
the program without subroutines, libraries, or other object files, like this:

LINK BEEP;

The linker program usually expects to find a stack segment in the
programs it links, but our very simple program doesn't have one—a key
characteristic that requires us to convert it into a .COM file, as we shall soon
see. The linker will complain about the missing stack, but you can ignore
its complaint.

Linking will give you an executable program called BEEP.EXE. If you
run BEEP.EXE, however, DOS won't know where to locate the program's
stack. You can solve this problem by converting BEEP.EXE into a .COM
program with EXE2BIN:

EXE2BIN BEEP BEEP.COM

437

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When you run BEEP.COM, DOS automatically locates the stack for
you. Now you have a finished beeper program that can be used on any
computer that runs DOS. You can safely delete the intermediate files
BEEP.OBJ and BEEP.EXE.

Note what happens to the size of the BEEP program as it is
transformed from an idea to an executable .COM file. The source code for

this program is approximately 400 bytes (depending on such factors as the
use of spaces in the comments). When you assemble and link it, you'll
discover that only II bytes of working machine-language instructions are
created. However, the object file, which includes some standard linker
information as overhead, is 71 bytes—much smaller than the source file,
but much larger than the 11 bytes of actual machine code. After linking, the
71-byte object file swells to a 523-byte .EXE file. (Remember, the .EXE file
contains a 512-byte header that contains program-loading information.)
Converting the program to .COM format eliminates the 512 bytes of
overhead, and you end up with a .COM file that's only 11 bytes of pure
machine code.

The C Language
We'll start our discussion of specific high-level languages with the C
language. In previous chapters we've already shown you several examples
of the C subroutine interface. Now we'll show how to adapt that interface to
different parameter-passing methods and memory models. Although the
examples we'll give you here pertain specifically to the Microsoft C
compiler, you'll find that essentially the same subroutine interface design
can be used not only in other vendors' compiler implementations, but in
other programming languages as well.

The C subroutines presented in previous chapters used a small
memory model and the pass-by-value convention. The subroutine on the
following page which computes the absolute value of an integer, uses the
same conventions.

The subroutine uses a near call-return sequence because the program
uses a small memory model with all executable code in the same segment.
The parameter value is passed to the subroutine on the stack and accessed
through BP in the usual way. The parameter value is found at [BP + 4]
because the first 4 bytes of the stack are used by the calling program's
return address (2 bytes) and the saved value of BP (2 bytes).

438

Chapter 20: Programming Languages

-TEXT

-AbsValue

-AbsValue

-TEXT

SEGMENT byte public 'CODE*

ASSUME cs:_TEXT

PUBLIC -AbsValue

PROC near :

push bp

mov bp.sp

mov ax,[bp+4] ;

cwd

xor ax.dx

sub ax,dx ;

pop bp

ret
'

ENDP

ENDS

;

;

call with near CALL

AX = value of 1st parameter

 leave result In AX

 near RETurn

The subroutine uses register AX to return its result to the calling
program. If the return value had been a 4-byte value, the register pair
DX:AX would have been used, with the high-order word of the value in DX.

If this subroutine had used more than one parameter, the second and
subsequent parameters would have been found at higher addresses on the
stack. For example, the second parameter would have been located at
[BP + 6]. (See the WeekdayO subroutine in Chapter 16 for an example.) In
effect, the C compiler pushes parameters on the stack in reverse of their
declared order. Because of this, a subroutine always knows where to find
the first parameter on the stack. A C function like printfO can use a variable
number of parameters if the first parameter specifies the actual number of
parameters.

When it returns, the subroutine leaves the value of the parameter

on the stack. In C, the calling program must clean up the stack after a
subroutine call. For example, consider the way a C compiler generates
executable code for a simple C statement that calls AbsValue():

X = AbsValue(y); /* X and y are integers */

439

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The executable code generated by the C compiler for this statement
looks something like this:

push Y

call -AbsValue

add sp,2

mov X.ax

push the value at address Y

call the subroutine (near call)

discard the value from the stack

store the returned value at address X

Parameter Passing
Let's look more closely at the difference between the pass-by-value and
pass-by-reference methods of parameter passing. The pass-by-value method
works by passing a copy of a parameter's current value to the subroutine. In
contrast, the pass-by-reference method passes a parameter's address. This
affects the subroutine interface in two different ways.

First, the value of a parameter passed by reference cannot be accessed
directly. Instead, you must first copy the parameter's address from the stack
and then obtain the parameter's value through the address. For example:

-TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

-Smal1Abs

PUBLIC -SmallAbs

PROG near call with near CALL

push

mov

bp

bp.sp

mov bx,[bp+4] ; BX •= address of 1st parameter

mov ax,[bx] ; AX = value of 1st parameter

cwd

xor

sub

ax.dx

ax.dx

pop

ret

[bx].ax

bp

leave result at parameter address

near RETurn

-Smal1Abs

-TEXT

ENDP

ENDS

440

Chapter 20: Programming Languages

SmallAbsO, which uses pass-by-reference, obtains the value of its
parameter in two steps. First, it copies the parameter's address from the
stack (MOV BX,[BP + 4]). Then it obtains the parameter's value from that
address (MOV AX,[BX]). Once the parameter's value is in AX, the compu
tation of its absolute value proceeds as before.

To pass a parameter from a C program to SmallAbsO, you need to pass
its address instead of its value:

SmallAbs(&x): /* pass the address of x */

The corresponding executable code would look something like this:

mov ax,offset X ; push the address of X

push ax

call -SmallAbs ; call the subroutine (near call)

add sp,2 ; discard the address from the stack

The way SmallAbsO returns its result points out the key reason to use
the pass-by-reference method: SmallAbsO actually changes the value of its
parameter. Instead of simply returning a result in AX, SmallAbsO stores its
return value at the parameter's address (MOV [BX],AX).

In high-level programming languages, both the pass-by-reference and
pass-by-value methods can be used. In some languages, the method of
passing parameters defaults to one method or the other. For example, BASIC
uses pass-by-reference by default, but C uses the pass-by-value method as
the default. In many languages, the default method can vary, depending on
a parameter's data type. You can usually determine which method is used to
call a subroutine by specifying a method in your source code (if your
compiler supports such specifications) or by using a data type associated
with a particular parameter-passing method.

Memory Model Variations
A simple rule of thumb can help you determine how a program's memory
model affects the design of its subroutines: If you have multiple segments,
use far (intersegment) addressing; if you have a single segment, use near
(intrasegment) addressing. Let's see how this simple rule can be applied in
a pair of real subroutines.

The following variation of our absolute-value subroutine is designed
for a medium-model C program. A medium-model program has multiple

441

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

code segments but only one data segment. Subroutines in separate segments
must be accessed through far jumps and far call-return sequences, but the
single data segment can be accessed with near addresses:

MEDABS-TEXT

-MedAbs

-MedAbs

MEDABS_TEXT

SEGMENT byte public 'CODE'

ASSUME cs:MEDABS-TEXT

PUBLIC -MedAbs

PROC far ;

push bp

mov bp.sp

mov bx,[bp+6] ;

mov ax,[bx]

cwd

xor ax,dx

sub ax,dx

mov [bx],ax ;

pop bp

ret
'

ENDP

ENDS

;

;

call with far CALL

BX = address of 1st parameter

 leave result at parameter address

 far RETurn

This medium-model version (MedAbs())^ looks very much like
SmallAbs(). In MedAbs(), the PROG statement declares that the routine is to

be called with a far CALL and instructs the assembler to generate a far
RETurn instruction instead of a near RETurn. Because MedAbsQ is called
with a far CALL, the stack contains a segmented return address (4 bytes) as
well as the saved value of BP (2 bytes), so the subroutine looks for its
parameter at [BP + 6] instead of [BP + 4].

A large-model program introduces one more variation in subroutine
design. Because a large-model program uses multiple data segments, the
addresses of subroutine parameters are far (segmented) addresses.

442

Chapter 20: Programming Languages

LARGEABS-TEXT SEGMENT byte public 'CODE*

ASSUME cs:LARGEABS-TEXT

-LargeAbs

-LargeAbs

PUBLIC -LargeAbs

PROG far ; call with far CALL

push bp

mov bp.sp

1 es bx,[bp+6] ; ES:BX = segmented address

; of first parameter

mov ax,es:[bx] ; AX = value of first parameter

cwd

xor ax,dx

sub ax,dx

mov es:[bx],ax ; leave result at parameter address

pop bp

ret ; far RETurn

ENDP

LARGEABS-TEXT ENDS

Because it conforms to a large memory model, LargeAbs() is designed
to obtain both segnient and offset from the stack (LES BX,[BP + 6]). The
segment part of the parameter's address goes into BS; the offset goes into
BX. The subroutine uses this register pair to obtain the parameter's value
(MOV AX,BS:[BX]) and to return a result (MOV BS:[BX],AX).

If you call LargeAbsO like this:

LargeAbs(&x);

a C compiler generates executable code that looks something like this:

push ds

mov ax,offset X

push ax

call -LargeAbs

add sp,4

push the parameter's segment

push the parameter's offset

call the subroutine (far call)

discard the address from the stack

443

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Naming Conventions
As we mentioned earlier, the parameter-passing and memory-model
methods used in your program determine how a subroutine interface is im

plemented, regardless of which language or compiler you use. Unfortu
nately, other differences between languages and compilers can make the

design of a subroutine interface tricky and somewhat tedious.

One problem is that different languages and compilers use different

names for the subroutines, segments, segment groups, and variables that
crop up in a program written in a high-level language. For example, the
names used in Microsoft C (_TEXT, _DATA, DGROUP, and so on) are dif

ferent not only in other vendors' C compilers, but also in earlier versions of
Microsoft's C compiler.

Other differences in naming appear when you compare different lan
guages. C is case-sensitive, but interpreted BASIC and Pascal convert all

lowercase letters to upper case. C compilers generally prefix all names
declared in a C program with an underscore, so a name like printf in C must
be referenced as ̂ printf in assembly language. The surest way to know
exactly what naming conventions your language translator uses is to look at
your compiler's manuals.

Data Representation
Before we leave our discussion of C, let's look at the way C represents
different data types. When you write a routine that shares data with a C
program, you must know how the C compiler stores data in memory.

The data types available in C can be divided into three general cate
gories: integer types, floating-point types, and other types.

• Integer types, including char, int, short, and long, are stored with
their low-order bytes first in the familiar "back-words" 8086 for
mat. In 8086 C implementations, char is 1 byte in size, int and short
are 2 bytes, and long is 4 bytes. The integer data types may be
specified as either signed or unsigned.

• In Microsoft C, representations of floating-point data types {float
and double) are based on the IEEE standard for floating-point data
representation used in the 8087 math coprocessor. With this repre
sentation, SL float value is 4 bytes long and a double is 8 bytes long.
Despite the difference in size, a simple relationship exists between
float and double: You can convert a. float to a double by appending
4 bytes of zeros.

444

Chapter 20: Programming Languages

• Other C data types include pointers and strings. Pointers are ad
dress values; near pointers are 2 bytes long and far pointers are 4
bytes long. Strings are defined as arrays of type char. However, all
strings in C are stored as ASCIIZ strings; that is, as a string of
bytes terminated with a single zero byte. In a C program, you must
accommodate the extra byte when you declare a string. For ex
ample, you would reserve storage for 64 bytes of string data plus
the terminating null byte like this:

char s[65];

In C, the value of the name s would be the address of the

string data associated with it. A subroutine called with ̂ as a

parameter can obtain the value of s (the address of the string data)
directly from the stack and access the string data by reference to
this address.

Interpreted BASIC
To be candid and blunt, let us admit right away that we can't give you ev
erything you need here. Working with BASIC and interfacing to BASIC are
very, very complicated subjects—complex enough to fill several books by

themselves. Frankly, interfacing with interpreted BASIC is a particularly
messy area, made even messier by the number of BASIC versions used with

the different models of the extended PC family. The specific techniques we
describe here apply to the most popular interpreted BASICs: the BASIC
distributed by IBM with every PC and PS/2; and Microsoft's GW-BASIC.

In this section we describe the interface between assembly-language

subroutines and interpreted BASIC programs. We discuss only those sub

routines accessed through BASIC'S CALL statement.

□ NOTE: Interpreted BASIC supports a second subroutine-call
mechanism through the USR statement^ but in our opinion^ USR
functions involve annoying and unnecessary complications. We
recommend that you stick to the CALL interface instead.

The Subroutine Interface
Interpreted BASIC uses a medium memory model, so subroutines are ac
cessed through a far call-return sequence, and data is accessed with near
addresses. Also, interpreted BASIC passes all parameters by reference.

445

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Knowing this, you can easily design assembly-language subroutines that
can be accessed within an interpreted BASIC program.

Be aware, however, that interpreted BASIC knows nothing about object

files, object libraries, or linkers: You must explicitly instruct BASIC to load
and link your subroutine. Although several loading techniques have been
developed, the most straightforward uses BASIC'S own BLOAD command to

make a subroutine accessible to a high-level interpreted BASIC program.
The BLOAD command loads binary data from a disk file into BASIC'S

default data segment. If you build a subroutine in the format that BLOAD

will recognize, you can use BLOAD to place the subroutine anywhere in

memory. In particular, you can load a subroutine into an integer array

whose address you can call with interpreted BASIC'S CALL statement.
BLOAD loads files that are prefixed with a 7-byte header containing a

signature byte (FDH), two words (4 bytes) of zeros, and a word that contains

the number of bytes of data to load. Simply adding this header to a medium-

model subroutine makes it loadable by BLOAD:

CodeSeg SEGMENT byte

ASSUME csrCodeSeg

; header for BASIC BLOAD

DB

DW

DW

OFDh

2 dup(O)

SubroutineSize

signature byte

two 16-b1t zeros

size of this subroutine

MedAbs PROG far call with far CALL

push

mov

bp

bp,sp

mov

mov

bx.Cbp+6]

ax,[bx]

BX address of first parameter

cwd

xor

sub

ax,dx

ax.dx

[bx],ax leave result at parameter address

pop

ret

bp

2 far RETurn, discard

parameter address

446

Chapter 20: Programming Languages

MedAbs ENDP

SubroutineSize EQU $-MedAbs

CodeSeg ENDS

Apart from the BLOAD header, the only difference between this
version of MedAbsQ and the earlier version is in the naming conventions:
Interpreted BASIC doesn't use symbolic names to link a subroutine loaded
with the BLOAD command, so you can use any names you choose.

To convert the assembly-language source code into a form readable by
BLOAD, use LINK and EXE2BIN. For example, if this subroutine's source
file is named MEDABS.ASM, the following two commands convert it into
MEDABS.BIN, a file that BLOAD can use:

LINK MEDABS.ASM;

EXE2BIN MEDABS;

To link the subroutine into a high-level BASIC program, do this:

1. Allocate a block of memory for the subroutine by using a DIM
statement to declare an integer variable.

2. Use the VARPTR function to store the memory block's address in a

variable.

3. Use BLOAD to copy the subroutine into memory.

4. Use the CALL statement to call the subroutine through the variable
that contains its address.

Here's an example:

ICQ DEFINT A-Z ' default all variables to Integer type

110 '

120 X = 0 : Y = 0 • reserve RAM for all variables used

130 SUBADDR = 0

140 •

150 DIM SUBAREA(16) ' reserve RAM for the subroutine

160 SUBADDR = VARPTR(SUBAREA(1)) ' save the address of the subroutine

170 BLOAD "medabs.bin".SUBADDR

180 •

190 FOR X—10 TO 10

200 Y = X

210 CALL SUBADDR(Y) * call the subroutine

220 PRINT"ABS(";X;")=";Y

230 NEXT

240 END

447

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Note how the four steps of linking are carried out. The statement DIM
SUBAREA(16) reserves 32 bytes of memory, more than enough for the
subroutine. Then SUBADDR = VARPTR(SUBAREA(1)) stores the address of

the memory block in the variable SUBADDR. At this point, the BLOAD
command can load the subroutine from the binary file, and the CALL

statement can call the subroutine through the variable SUBADDR.

There is one tricky thing to remember about this process: Interpreted
BASIC allocates variables and strings dynamically. Because of this, you
should define all variables in your BASIC program before you use BLOAD to
load the subroutine. (Lines 120 and 130 do this in our example.) If you don't,
you may find that the address returned by VARPTR doesn't reflect the final
location of the subroutine in memory.

If you pass more than one parameter to a BASIC subroutine through a
CALL statement, the parameters appear with the last parameter at [BP + 6],
the next-to-last at [BP + 8], and so on. This is the reverse of the order used in

C. The advantage to using this parameter order is that the subroutine can
clean up the stack with a single RET instruction. Instead of using a simple
far RETurn, a BASIC subroutine uses a return-and-pop instruction to discard

the parameters. In the BASIC version of MedAbs(), for example, the
instruction is RET 2; the value 2 is the number of bytes occupied by the

subroutine's parameter on the stack.

Data Representation
BASIC uses four data formats: integers^ variable-length strings, floating
point numbers in long and short form (known in BASIC terminology as
single-precision and double-precision numbers). BASIC variables can be

explicitly given one of these four format types by appending an identifying
suffix to the variable name: % for integer, $ for string,! for single-precision
(short floating point), and # for double-precision (long floating point).
Numeric constants can be similarly classified. Implicit typing can be

controlled with the DBF statement and defaults to single-precision. For
reference, here are some simple examples:

A% Integer variable

A! Single-precision variable

A# Double-precision variable

A$ String variable

1% Integer constant

1! Single-precision constant

1# Double-precision constant

"1" String constant

448

Chapter 20: Programming Languages

Interpreted BASIC supports one integer data format: 2-byte (16-bit)
integers. See page 23 for a general discussion of this data format.

The distinction between signed and unsigned integers in BASIC is a bit
blurry. BASIC regards integers as signed when it performs arithmetic,
compares integers, or displays them with the PRINT statement. However,
BASIC disregards the sign when it performs bitwise logical operations (AND,
OR, XOR, and so on) and when processing hexadecimal values (values
prefixed with &H or converted with the HEX$ function.)

If you want to display unsigned decimal integers, convert them to
floating-point:

IF U < 0 THEN D# - /« + 65536/1 ELSE M - 1%

where l% is an integer and D# is its equivalent in double-precision. To
convert values from double-precision to unsigned integers, you can use this
method:

IF W1 > 32767 THEN 1% - D# - 65536 ELSE 1% = 0/1

In interpreted BASIC, single-precision floating-point numbers are 4
bytes in size; double-precision values are 8 bytes. However, BASIC stores
floating-point values in its own peculiar format. Not only is interpreted
BASIC'S floating-point format different from that used by most other
programming languages for the PC family, it is also incompatible with the
formats used by the 8087 and 80287 math coprocessors.

String values in interpreted BASIC are stored in two parts: a string
descriptor that holds the length and address of the string; and the string
itself, which is a series of ASCII characters. (See Figure 20-1.)

The string descriptor is 3 bytes long. The first byte contains the string
length, which limits the maximum size of a string to 255 bytes. The next 2
bytes are the near address of the actual string data. String data has no
special format; it is simply stored as a series of bytes at the indicated
address.

String descriptor

String String
length address

T

H e 1 1 0 W 0 r 1 d

Figure 20-1. String data representation in interpreted BASIC.

449

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When the VARPTR function is applied to a string, it returns the
address of the string descriptor. From the string descriptor, you can obtain
the offset address of the string itself. The following program demonstrates
the process of finding and decoding this information:

too INPUT "Enter any string: ",OUR.STRING$

110 DESCRIPTOR.ADDRESS = VARPTR (OUR.STRING$)

120 PRINT "The string pointer is at hex

130 PRINT HEX$ (DESCRIPTOR.ADDRESS)

140 STRING.LENGTH = PEEK (DESCRIPTOR.ADDRESS)

150 PRINT "The length of the string is";

160 PRINT STRING.LENGTH

170 STRING.ADDRESS = PEEK (DESCRIPTOR.ADDRESS + 1)

+ 256 * PEEK (DESCRIPTOR.ADDRESS + 2)

180 PRINT "The string value is at hex ";

190 PRINT HEX$ (STRING.ADDRESS)

200 PRINT "The string value is; ";

210 FOR I = 0 TO STRING.LENGTH - 1

220 PRINT CHR$ (PEEK (I + STRING.ADDRESS));

230 NEXT I

240 PRINT : PRINT

250 GOTO 100

Compiled BASIC
When you use a BASIC compiler to translate your BASIC source code into
object files, you avoid all the improvised programming required to link a
subroutine to an interpreted BASIC program. A good example of a BASIC
compiler that generates object files is Microsoft's QuickBASIC.

The Subroutine Interface

QuickBASIC's default is a medium memory model, with multiple executable
code segments and one default data segment. As in interpreted BASIC, you
must design your subroutines to use a far call-return sequence, but you can
access the single default data segment with near addresses. Also, like
interpreted BASIC, compiled QuickBASIC passes parameters by reference in
the order they appear in the BASIC source code.

The BASIC source code to call an assembly language subroutine is
much simpler in QuickBASIC than in interpreted BASIC, as you'll see when
you examine the sample code on the following page.

450

Chapter 20: Programming Languages

DEFINT A-Z

DECLARE SUB MEDABS (A%)

default all variables to integer type

declare the assembler subroutine

FOR X = -10 TO 10

Y = X

CALL MEDABS(y)

PRINT "ABS("; X; ")=";Y

NEXT

END

call the subroutine

The subroutine itself, however, is nearly identical to the version called

from interpreted BASIC:

MEDABS-TEXT SEGMENT byte public 'CODE'

ASSUME cs:MEDABS-TEXT

MEDABS

PUBLIC MEDABS

PROC far ; call with far CALL

push

mov

bp

bp,sp

mov

mov

bx, [bp-i-6]

ax.[bx]

BX = address of first parameter

cwd

xor

sub

ax.dx

ax.dx

[bx],ax leave result at parameter address

pop

ret

bp

2 far return, discard parameter value

MEDABS ENDP

MEDABS-TEXT ENDS

The only differences between this version of MedAbs() and the version

used with interpreted BASIC are related to the way the subroutine is linked

to the BASIC program. The compiled-BASIC version does not contain a
BLOAD header because BLOAD isn't used to link the subroutine. Instead it

contains a PUBLIC declaration for the name of the subroutine. When you
use the linker to generate an executable program, the linker associates the

PUBLIC name with the same name used in the BASIC program.

451

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

□ NOTE: QuickBASIC provides two different to link an
assembly-language subroutine to BASIC programs. One is to use the
BC compiler to compile your BASIC source code, and then to link
the resulting object (OBJ) file with the assembled subroutine's
object file. The other technique is to use LINK and LIB to create a
Quick library so that the subroutine can be accessed within the
QuickBASIC environment. The QuickBASIC manuals describe both
techniques in detail.

Data Representation
QuickBASIC's data representations resemble those used in interpreted
BASIC. QuickBASIC supports interpreted BASIC'S 2-byte integers and an
additional 4-byte LONG data type that is represented by a variable name
with a terminal ampersand (for example, X<6). Floating-point values are the
same size as in interpreted BASIC (4 bytes for single-precision; 8 bytes for
double-precision), but the floating-point representation follows the 8087-
compatible, IEEE standard instead of the unique representation used in
interpreted BASIC.

Like interpreted BASIC, QuickBASIC dynamically allocates memory
for strings, so strings are represented by a two-part string descriptor.
QuickBASIC's string descriptor is 4 bytes in size compared to 3 bytes in
interpreted BASIC. Because the string length is represented in 2 bytes
instead of 1, the maximum length of a QuickBASIC string is 65,535 bytes.

Turbo Pascal
We'll conclude this chapter with a look at Borland's widely used Turbo
Pascal compiler. Turbo Pascal's data formats and support for assembly-
language subroutines are different from those found in traditional Pascal
compilers like IBM's or Microsoft's. However, you can use the same
principles of subroutine interface design in Turbo Pascal that you use in any
other language.

□ NOTE: Our description of the subroutine interface applies to
version 4.0 of Turbo Pascal. Versions 3.0 and earlier used a
somewhat different interface that isn't compatible with the one
we're about to cover.

452

Chapter 20: Programming Languages

The Subroutine Interface

Turbo Pascal version 4.0 uses a large memory model, with multiple exe
cutable code segments and multiple data segments. However, Turbo Pascal
compiles all the executable code in the body of a program into a single seg
ment, so assembly-language subroutines that you declare within the main
body of a program should use a near call-return sequence. In contrast.
Turbo Pascal uses separate segments for subroutines declared in the INTER
FACE section of a Turbo Pascal UNIT. (A UNIT in Turbo Pascal is a collec

tion of predefined subroutines and data items.) Such subroutines must be
accessed through a far call-return sequence; data is accessed using far
addresses. When you write an assembly-language subroutine for Turbo
Pascal, be sure you use the right call-return sequence.

The following example is a Turbo Pascal variation of our absolute-
value function. Because it is designed to be called from the main body of a
Pascal program, it uses a near call-return sequence.

CODE

AbsFunc

AbsFunc

CODE

SEGMENT byte public

ASSUME cszCODE

PUBLIC AbsFunc

PROC near ; call with near CALL

push bp

mov bp.sp

mov ax,[bp+4] ; AX = value of parameter

cwd

xor ax.dx

sub ax,dx ; AX contains the result

pop bp

ret 2 ; near return

ENDP

ENDS

If you assemble this subroutine into the object file ABSFUNC.OBJ, you
can link it into a Turbo Pascal program by using the $L compiler directive
and declaring AbsFunc() as an EXTERNAL function:

{$L absfunc} { object filename }

FUNCTION AbsFunc(x: INTEGER): INTEGER; EXTERNAL;

453

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Turbo Pascal uses a large memory model, so data pointers are always

passed to subroutines as 32-bit addresses. You can see this by writing the
same subroutine as a PROCEDURE instead of a FUNCTION and declaring x

as an integer variable. The VAR keyword in the parameter list instructs the
Turbo Pascal compiler to pass the parameter by reference, that is, to pass
the parameter's address instead of its value:

{$L absproc) { object filename }

PROCEDURE AbsProc (VAR x:INTEGER): EXTERNAL:

The subroutine differs from the previous one in that it must obtain the
32-bit address of x from the stack in order to obtain the actual value of x:

CODE

AbsProc

AbsProc

CODE

SEGMENT byte public

ASSUME csiCODE

PUBLIC AbsProc

PROC near ; call with near CALL

push bp

mov bp.sp

les bx,[bp+4] ; ES:BX = segmented addr

mov ax.es:[bx] ; AX = value of x

cwd

xor ax.dx

sub ax.dx

mov es:[bx].ax ; leave result In x

pop bp

ret 4 ; near return

ENDP

ENDS

This subroutine resembles LargeAbs(), our large-model example for
Microsoft C. The important difference is that Turbo Pascal's subroutine-
calling convention requires a near subroutine call because the subroutine
was declared in the body of a Pascal program. Had we declared AbsProc() in
the INTERFACE portion of a UNIT, the subroutine would have used a far
call-return sequence.

454

Chapter 20: Programming Languages

Data Representation
Like the other languages discussed in this chapter, Turbo Pascal supports
integer, floating-point, and string data types. Integers are stored in the
familiar 2-byte format, but floating-point and string representations present
some novelties.

Turbo Pascal version 4.0 supports five types of floating-point (real)
numbers. The REAL type is a 6-byte, floating-point representation designed
by Borland. The other four (SINGLE, DOUBLE, EXTENDED, and COMP) are

representations used by the 8087 math coprocessor.

Turbo Pascal stores strings in a simple data structure: a 1-byte count
that is followed by the string data itself. (See Figure 20-2.) The count byte is
treated as an unsigned value, so the maximum length of a string is 255
(FFH) bytes.

String length -

String data

11 H e 1 1 0 ,
W 0 r 1 d

Figure 20-2. String data representation in Turbo Pascal.

* Turbo represents other Pascal data types in equally reasonable ways.
For example. Boolean values are represented in a single byte (OIH = true,
OOH = false). Sets are represented as bit strings in which the position of each

bit corresponds to the ordinal value of one member of the set. (See Figure
20-3.) The low-order bit in each byte corresponds to an ordinal value that is
evenly divisible by 8. The compiler stores only as many bytes as are needed

to represent the set.

TYPE LETTERS = 'a'.. 'z'; {ordinal values 97 through 122}

VAR X iSET OF LETTERS;

X := [V, V, 'c', y, 'z'];

c b a z y

Figure 20-3. Representation of a set in Turbo Pascal. The set X is represented as a 4-byte
bit string in which each bit corresponds to one of the ordinal values 'a' through 'z* (deci
mal 97 through 122). The bits are aligned so that ordinal values evenly divisible by 8 are
represented in bit 0 of each byte.

455

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

A Parting Comment
In this chapter we examined five programming language translators. We

covered the major design issues involved in building an executable program
that calls subroutines. Figures 20-4, 20-5, and 20-6 summarize some charac

teristics of the language translators we discussed.

Language Default Memory Model

Interpreted BASIC Medium

QuickBASIC Medium

Microsoft C Small

Turbo Pascal Large

Figure 20-4. Default memory models for several popular programming languages.

Language
Default Parameter-
Passing Method Parameter Order

Interpreted BASIC Reference Forward

QuickBASIC Reference Forward

Microsoft C Value Reverse

Turbo Pascal (Varies) Forward

Figure 20-5. Parameter-passing conventions for several popular programming languages.

Language Registers Used by Language Translator

Interpreted BASIC DS, ES, SS, BP

QuickBASIC DS, SS, BP, SI, DI

Microsoft C DS, SS, BP, SI, DI

Turbo Pascal DS, SS, BP

Figure 20-6. Register usage conventions followed by several popular programming
languages. Preserve these registers if you change them in a subroutine.

Even if you never plan to write an assembly-language program or link
subroutines written in different languages into the same program, we hope
you've found it interesting to see how these different language translators

do their work.

456

Appendix A

Installable

Device Drivers

Overview 458

How Device Drivers Work 459

The ANSI Driver 460

ANSI Screen Control 461

ANSI Keyboard Control 462

The Pros and Cons of the ANSI Driver 462

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Two features introduced with DOS version 2.0 require special discussion: in
stallable device drivers and the ANSI driver (ANSI.SYS). Although these fea
tures are related by their common introduction in DOS version 2.0 (and by
the fact that the ANSI driver is itself an installable device driver), they are
radically different topics from a programming perspective. We'll begin by
looking at device drivers in general, give you some details about how DOS
device drivers are implemented, and then review how a typical DOS device
driver, ANSI.SYS, can be used in DOS applications.

Overview

DOS can work with most common computer devices, such as ordinary disk

drives, serial communications lines, printers, and, of course, the keyboard

and display screen. However, many other kinds of devices can be attached
to PCs and PS/2s. Most of these devices require additional software sup
port—device drivers—to connect to DOS and to DOS programs.

Since the release of version 2.0, DOS has been able to incorporate into

its own operations any device driver that follows a standard set of integra
tion rules. During start-up, a disk file named CONFIG.SYS tells DOS when
there is a device driver to be loaded. The name and file location of each

device driver are identified by the command line DEVICE =filespec in the
CONFIG.SYS file. For each DEVICE = command line, DOS locates the pro

gram file, loads it into memory, and goes through the series of steps neces
sary to welcome the device driver into the DOS fold.

Typically, a device driver supports a new kind of device in an old
way. For example, a device driver that supports a disk drive whose detailed
control commands are new to DOS but whose overall features are similar to

other kinds of disk drives will most likely follow the program format laid
down by its more common predecessors. Likewise, a device driver that sup

ports the addition of a mouse or joystick may treat them as keyboard-like
devices.

On the other hand, device drivers can perform functions that have

little or nothing to do with the addition of new hardware devices to the com
puter; witness the ANSI device driver, which we'll be discussing in the fol
lowing section. The ANSI device driver doesn't add new hardware to the
computer; instead, it modifies the operation of the computer's standard hard
ware (the keyboard and the display screen).

All the technical details of writing a device driver really belong in a
book specializing in DOS systems programming, but we can give you the
main points here.

458

Appendix A: Installable Device Drivers

How Device Drivers Work

There are two kinds of device drivers: those for character devices, which,

like the keyboard, printer, and communications port, work with a serial
stream of characters, and those for block devices, which, like a disk drive,

read and write blocks of data identified by some form of block address.

Character devices are identified by their own names (similar to the names
LPTl and COMl). Block devices are identified by a drive letter that DOS

assigns (D:, E:, F:, and so on).
In a program, you generally treat character devices like files. A char

acter device can be opened using its name and then read from or written to.
On the other hand, your program sees block devices as if they were disk
drives. This is the point of using installable device drivers—the usual DOS
interrupt 21H function for files and disks let you access any device as long
as the device driver conforms to DOS's format.

DOS maintains a chained list of device drivers in which each device

driver contains the address of the next device driver in the list. The chain

starts in the heart of the DOS kernel, beginning with the NUL device. When
you use an interrupt 21H function to identify a character device, DOS
searches the list of device driver names before it searches disk directories.

Every installable device driver consists of three main structural ele
ments; a device header, a strategy routine, and an interrupt routine. The
device header is a data structure that contains a device attribute word as

well as the addresses of the strategy and interrupt routines. DOS communi
cates with a device driver through a data structure called a request header.

DOS uses the request header to pass I/O function numbers and buffer ad
dresses to the device driver. The device driver uses the same data structure

to return status and error codes to DOS.

To initiate an I/O request, DOS builds a request header, calls the device
driver's strategy routine to pass it the request header's address, and then
calls the driver's interrupt routine. The interrupt routine examines the re

quest header, initiates the data transfer to or from the hardware device,
waits for the completion of the data transfer, and updates the request header
with a status code before it returns to DOS.

□ NOTE: It may seem curious that DOS actually makes two sepa
rate calls to a device driver for each input!output request. This
somewhat redundant design is actually similar to that used in
device drivers in multitasking operating systems like UNIX (after
which the DOS design is modeled) and 0SI2.

459

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

In a multitasking system^ the two-part design makes good
sense because it allows HO operations to take place in parallel with

other system functions. The strategy routine starts the HO operation

and then returns control to the operating system^ which can per

form other tasks without waiting for the hardware device to transfer
data. When the data tranter is complete, the interrupt routine gains

control and cleanly terminates the operation.

Writing a device driver is similar to writing the I/O service programs
that are at the heart of DOS and at the heart of the computer's built-in ROM

BIOS. It is among the most sophisticated and intricate programming that
you can do.

The ANSI Driver

One example of an installable device driver that comes as an optional part
of DOS is the ANSI driver, a program that enhances the handling of keyboard
input and screen output. As with any installable device driver, the ANSI
driver is active only when you load it into DOS through the CONFIG.SYS
file. The following CONFIG.SYS command activates the ANSI driver:

DEVICE = ANSI.SYS

Although the ANSI driver is an optional part of the IBM versions of
DOS, it is an integral part of the DOS used on some computers similar to
(but not fully compatible with) the IBM PC family. In such computers, the
ANSI driver isn't installable—it's built into DOS, like the CON and PRN

drivers.

The ANSI driver monitors both the screen output and the keyboard
input that pass through the standard DOS screen and keyboard services.
(Keyboard or screen data that bypasses DOS is never seen or processed by
the ANSI driver.)

In monitoring the screen output, the ANSI driver looks for special
codes that identify commands for the driver. The driver takes note of and
then removes these commands so that the special command codes do not
appear on the display screen. Instead, these driver command codes are sent
to the command processor.

460

Appendix A: Installable Device Drivers

Commands for the ANSI driver are identified by a special 2-byte code:
The first byte is the "escape" character, ASCII IBH (decimal 27), and the
second is the left-bracket character [, ASCII 5BH (decimal 91). Following
these identifying bytes are the command parameters and finally the
command code itself. The command parameters are either numbers (in the
form of ASCII numeric characters interpreted as decimal digits) or strings
of ASCII characters enclosed in quotes, like this: "a string parameter."
Multiple parameters are separated by semicolons. The command code
itself, which completes the ANSI driver command, is always a single
alphabetic character. Commands are case-sensitive; for example, lowercase
h is one command, and uppercase H is an entirely different one.

To show what these commands look like, here are two examples, one
simple and one complex (the caret stands for the escape character, IBH):

-^cic

''[65;32;66;"Re-inapped B"p

The ANSI driver recognizes a large number of commands, but they all
fall into two broad categories: screen control commands and keyboard
translation commands. Let's look at screen control first.

ANSI Screen Control

Although the ROM BIOS services for the PC let you move the cursor any
where on the screen and basically give you full-screen control, the standard
DOS services do not. In fact, the DOS screen output services are completely
oriented to "glass teletype" output—output that encompasses only what
can be done with a printer. This, of course, ignores the richer potential of a
display screen. This lack of full-screen output in DOS forces most programs
to bypass the DOS services and use lower-level services, such as the ROM
BIOS services.

The screen control commands of the ANSI driver remedy this situation
by providing a set of full-screen commands that can be used to do nearly
anything that the display screen is capable of doing. The commands include
moving the cursor, clearing the screen, setting the display attributes (color,
underscore, blinking, and so on), and changing the mode from text to
graphics and vice versa. As an additional level of sophistication, some
commands can save the current cursor location so that you can move the
cursor to display information and then return it to its original position.

461

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

ANSI Keyboard Control
The other type of command accepted by the ANSI driver is a keyboard
translation command. When one of these commands is given to the driver,
the driver monitors keyboard input and replaces one key character with
another single character or even a whole string of characters. This allows
the ANSI driver to act as a crude but effective keyboard-enhancer program.

The two ANSI driver commands are very different in their purpose
and use, but they are both passed to the driver in the same way—through a
stream of screen output characters.

The Pros and Cons of the ANSI Driver

You can look at ANSI driver commands in two ways: from the perspective
of the user, who can use the ANSI driver to perform a few beneficial tricks,
and from the perspective of the programmer, who can use it as an aid to
program development.

Many users often regard the ANSI driver as a poor man's keyboard
enhancer. By using the keyboard translation commands, as we mentioned
earlier, you can roughly simulate the keyboard "macro" features of com
mercial keyboard-enhancer programs.

You can also use the ANSI driver as a DOS command-prompt
enhancer. Usually the keyboard commands are activated by placing them in
a text file and sending them to the screen (and therefore to the ANSI driver)
with the TYPE command. By embedding ANSI driver commands into the
prompt string, however, you can move the cursor to the top of the screen,
display the date and time in reverse video, and then return the cursor to its
regular position, or you can even clear the screen and then paint a complete
menu display. The possibilities are endless.

From a programmer's point of view, the ANSI driver has two main
benefits to offer:

• It makes the most crucial BIOS-type services available to any pro
gramming language.

• It lets you write programs for any DOS computer (not just the PC
family) that uses the ANSI driver.

Despite these apparent advantages, we generally believe that relying
on ANSI driver commands in your programs is not a good idea. For one
thing, it requires that the ANSI driver be installed in any computer that your
programs are used on, which complicates the instructions that you have to

462

Appendix A: Installable Device Drivers

prepare to accompany the programs. It is difficult enough trying to explain
the setup and use of your programs to both novices and experts without
adding extra layers of complexity, such as the explanation of how to install
the ANSI driver.

More important, however, is the fact that, compared to other methods
that are available, the ANSI driver is pathetically slow in generating full
screen output. For a direct comparison of the relative speed of the ANSI
driver, the ROM BIOS services, and direct-to-memory screen output, play
with the NU program in the Norton Utilities set. The NU program contains
three screen drivers that use these three output methods. If you try them all,
you'll quickly see how much slower the ANSI driver is. Unless little screen
output will be displayed, the ANSI driver is too slow to be satisfactory.

463

Appendix B

Hexadecimal

Arithmetic

Bits and Hexadecimal 467

Segmented Addresses and Hexadecimal Notation 468

Decimal-Hexadecimal Conversion 469

Using BASIC for Hex Arithmetic 472

Hex Addition 473

Hex Multiplication 474

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Hexadecimal numbers crop up in computer work for the simple reason that
everything a computer does is based on binary numbers, and hexadecimal
notation is a convenient way to represent binary numbers.

Hexadecimal numbers are built on a base of 16, exactly as ordinary
decimal numbers are built on a base of 10; the difference is that hex num
bers are written with 16 symbols whereas decimal numbers are written with
10 symbols (0 through 9). (From here on, we'll use the terms "hexadeci
mal" and "hex" interchangeably.) In hex notation, the symbols 0 through 9
represent the values 0 through 9, and the symbols A through F represent the
values 10 through 15. (See Figure B-1.) The hex digits A through F are
usually written with capital letters, but you may also see them with the
lowercase letters a through/; the meaning is the same.

Hex numbers are built out of hex digits the same way that decimal
numbers are built. For example, when we write the decimal number 123, we
mean the following:

1 times 100 (10 times 10)

+ 2 times 10

+ 3 times 1

If we use the symbols 123 as a hex number, we mean the following:

1 times 256 (16 times 16)

+ 2 times 16

+ 3 times 1

There does not seem to be a standard way to write hex numbers, and
you may find them expressed differently in different places. BASIC uses the
prefix &H to identify hex numbers, and this notation is sometimes used

Hex Dec Hex Dec Hex Dec Hex Dec

0 Zero 4 Four 8 Eight C Twelve

1 One 5 Five 9 Nine D Thirteen

2 Two 6 Six A Ten E Fourteen

3 Three 7 Seven B Eleven F Fifteen

Figure B-1. The decimal value of the 16 hex digits.

466

Appendix B: Hexadecimal Arithmetic

elsewhere, as well. In C, hexadecimal numbers start with the characters Ox
(zero followed by lowercase x). Occasionally, the prefix # orl6# is used, but
more often (and throughout this book) a hex number is simply followed by
an upper- or lowercase H. Another common way to express hex numbers,
especially in reference information, is without any special notation at all.
You are expected to understand from the context when a number is written
in decimal notation and when it is written in hex. When you see a number
in any technical reference information that seems to be a decimal number,
check carefully; it may actually be in hex.

When you need to work with hex numbers, you can use interpreted
BASIC as an aid (see page 445), or you can work with them by hand.
Whichever method you choose, you may find the conversion and arithmetic
tables located toward the end of this appendix helpful. But before we get to
the tables, we'll first explain why hex numbers and binary numbers are so
compatible. Then we'll describe one of the most common uses of hex num
bers in PC and FS/2 programming: segmented addressing.

Bits and Hexadecimal
Hex numbers are primarily used as a shorthand for the binary numbers that
computers work with. Every hex digit represents 4 bits of binary informa
tion. (See Figure B-2.) In the binary (base 2) numbering system, a 4-bit
number can have 16 different combinations, so the only way to represent

each of the 4-bit binary numbers with a single digit is to use a base-I6 num
bering system. (See Figure B-3.)

When you're using 2-byte words, remember the reverse, or "back-
words," order in which they are stored in memory. See Chapter 2, page 24.

Hex Bits Hex Bits Hex Bits Hex Bits

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F nil

Figure B-2. The bit patterns for each of the 16 hex digits.

467

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit Word Byte
Value

Dec Hex

0 1 1 1 OIH

1 1. 1. 2 02H

2 1. . 1. . 4 04H

3 1. 1. . . 8 08H

4 1 .. . 1.. . . 16 lOH

5 1 . . 1 32 20H

6 1 . 1 64 40H

7 1 1 128 80H

8 1 256 lOOH

9 1 512 200H

10 1 1024 400H

11 1 2048 800H

12 . . . 1 4096 lOOOH

13 . . 1 8192 2000H

14 . 1 16,384 4000H

15 1 32,768 8000H

Figure B-3. The hexadecimal and decimal equivalents of each bit in a byte and each bit in
a 2-byte word.

Segmented Addresses and Hexadecimal Notation
One of the most common uses of hex numbers is for memory addressing.
You may recall from Chapters 2 and 3 that a complete 8086 address is 20
bits, or 5 hex digits, wide. Since the 8086 microprocessor can work only with
16-bit numbers, addresses are broken into two 16-bit words, called the seg
ment and the relative offset. The two parts are written together as 1234:ABCD.
The segment is always written first, and both segment and offset are given
in hexadecimal form.

The 8086 treats the segment of an address as if it were multiplied by
16, which is the same as if it had an extra hex 0 written after it. The two

parts, added together, yield the actual 20-bit address that they represent. For
example, the segmented address 1234:ABCD converts into a complete ad
dress like that shown on the following page.

468

Appendix B: Hexadecimal Arithmetic

2 3 4 0 (note the zero added on the right)

A B C D

1 C F 0 D

If you need to calculate the actual address that a segmented address refers
to, follow this formula. The addition tables on page 473 may also help.

On the 8086, many different segmented addresses correspond to the
same location in memory. For example, the address 00400H (where the ROM

BIOS keeps its status information) is equally well represented as 0000:0400H
and 0040:0000H. (Of course, this does not hold true in protected mode on an

80286 or 80386, as we saw in Chapter 2.)
There is no one best way to break an actual 8086 address into its

segmented format. One simple way is to take the first digit of the actual 20-

bit address followed by three zeros as the segment-paragraph part, and the
remaining four digits as the relative part. Following this rule, the address

above, ICFOD, would be separated out as lOOOrCFOD. IBM's listing for the
ROM BIOS in the IBM PC Technical Reference Manual follows this

convention, so all relative addresses appearing there have the (unshown)

segment of FOOO.

When you are working with real segmented addresses, the segment
will represent the actual contents of one of the segment registers and could
point to nearly anywhere in memory. The relative offsets typically vary

with usage. Information in executable code and data segments generally
starts at a low relative offset. For example, the first instruction of a COM

program is always at offset lOOH in its segment. In contrast, stack segments
usually use high relative offsets because stacks grow toward lower

addresses.

To see the sort of segmented addresses in use when a program is

executed, run the DOS DEBUG program. When DEBUG begins, it will give

you a command prompt of -. When you enter the single-letter command D,

DEBUG will display part of memory; the addresses on the left are typical

segmented addresses.

Decimal-Hexadecimal Conversion
The in Figure B-4 show the decimal equivalent of each hex digit in
the first five digit positions, which covers the complete address-space
arithmetic used in the 8086. As we'll demonstrate, you can use these tables

to convert between hexadecimal and decimal numbers.

469

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

First Position Second Position
Hex Dec Hex Dec Hex Dec Hex Dec

. . . . 0 0 8 8 . . . 0 . 0 . . . 8 . 128

. . . . 1 1 9 9 . . . 1 . 16 . . . 9 . 144

. . . . 2 2 A 10 . . . 2 . 32 . . . A. 160

. . . . 3 3 B 11 . . . 3 . 48 . . . B . 176

. . . . 4 4 C 12 . . . 4 . 64 . . . C. 192

. . . . 5 5 D 13 . . . 5 . 80 . : . D. 208

. . . . 6 6 E 14 . . . 6 . 96 . . . E . 224

. . . . 1 7 F 15 . . . 7 . 112 . . . F . 240

Hex

Third Position

Dec Hex Dec Hex

Fourth Position

Dec Hex Dec

. . 0 . . 0 . . 8 . . 2048 . 0 . . 0 . 8 . . . 32,768

. . 1 . . 256 . . 9 . . 2304 . 1 . . 4096 . 9 . . . 36,864

. . 2 . . 512 . . A. . 2560 . 2 . . 8192 . A. . . 40,96Q

. . 3 . . 768 . . B . . 2816 . 3 . . 12,288 . B . . . 45,056

. . 4 . . 1024 . . C . . 3072 . 4 . . 16,384 . C . . . 49,152

. . 5 . . 1280 . . D. . 3328 . 5 . . 20,480 . D. . . 53,248

. . 6 . . 1536 . . E . . 3584 . 6 . . 24,576 . E . . . 57,344

. . 7 . . 1792 . . F . . 3840 . 7 . . 28,672 . F . . . 61,440

Hex

Fifth Position
Dec Hex Dec

0 . . 0 8 . . . 524,288

1 . . 65,536 9 589,824

2 . . 131,072 A. . . 655,360

3 . . 196,608 B . . . 720,896

4 . . 262,144 C. . . 786,432

5 . . 327,680 D. . . 851,968

6 . . 393,216 E . . . 917,504

7 . . . 458,752 F . . . 983,040

Figure B-4. The decimal equivalent of each hex digit position.

470

Appendix B: Hexadecimal Arithmetic

Here is how you use these tables to convert a hex number to a decimal
number. We'll use number A1B2H as an example. Look up each hex digit in

the table corresponding to its position and then add the decimal values:

2 in the first position is 2

B in the second position is 176

1 in the third position is 256

A in the fourth position is 40,960

The total is 41,394

To use these tables to convert a decimal number to hex, the process is

equally simple to perform, but slightly more complicated to describe. Once
again, we'll work through an example. We'll use the decimal number 1492.

Work from the table for the fifth position to the table for the first
position. In the fifth-position table, find the biggest hex digit with a value
that isn't greater than 1492, write down the hex digit, subtract its decimal
value from 1492, and continue to the next table with the new value (that is,

the difference after subtracting). Go from table to table until the number
remaining is 0. The process is shown in Figure B-5. The result is 005D4H, or
5D4H without the leading zeros.

Largest Decimal Remaining
Position Hex Digit Value Decimal Number

Starting 1492

5 0 0 1492

4 0 0 1492

3 5 1280 212

2 D 208 4

1 4 4 0

Result 005D4

Figure B-5. Converting the decimal number 1492 into a hexadecimal number.

471

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Using BASIC for Hex Arithmetic
One easy way to manipulate hex numbers is to let interpreted BASIC do the
work. To do this, activate the BASIC interpreter and use the command mode

(without line numbers) to enter any operations you want to perform.
To display the hexadecimal equivalent of a hex number, such as 1234H,

you can simply do this:

PRINT &H1234

Be sure to prefix any hex number with &H so that BASIC knows it is a
hex number. To get the best display of decimal numbers, particularly large
numbers, use the PRINT USING format, like this:

PRINT USING "iHHhmMri &H1234

To display the hexadecimal equivalent of a decimal number, such as
1234, you can simply do this:

PRINT HEX$(1234)

The examples so far have used only decimal and hex constants. You

can as easily have BASIC perform some arithmetic and show the result in

decimal or hexadecimal. Here are two examples:

PRINT USING &H1000 - &H3A2 + 16 * 3

PRINT HEX$(17766 - 1492 + &H1000)

By using variables to hold calculated results, you can avoid having to
retype an expression or a complicated number. Variables that hold hex

numbers should always be written as double-precision variables (with a # at
the end of the variable name) so that you get the maximum accuracy. For
example:

X# = 1776 - 1492 + &H100

PRINT USING X#. 2 * X#. 3 * x#

472

Appendix B: Hexadecimal Arithmetic

Hex Addition

To add hex numbers, you work digit by digit, exactly as you do with deci
mal numbers. To make addition easier, use Figure B-6, which shows the sum

of any two hex digits. To use this table, find the row for one hex digit and
the column for the other. The hex number located at the intersection of the

row and column is the sum of the two digits.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 2 3 4 5 6 7 8 9 A B C D E F 10

2 4 5 6 7 8 9 A B C D E F 10 11

3 6 7 8 9 A B C D E F 10 11 12

4 8 9 A B C D E F 10 11 12 13

5 A B C D E F 10 11 12 13 14

6 C D E F 10 11 12 13 14 15

7 E F 10 11 12 13 14 15 16

8 10 11 12 13 14 15 16 17

9 12 13 14 15 16 17 18

A 14 15 16 17 18 19

B 16 17 18 19 lA

C 18 19 lA IB

D lA IB IC

E IC ID

F IE

Figure B-6. Addition of two hex numbers.

473

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Hex Multiplication
To multiply hex numbers, you work digit by digit, as you do with decimal
numbers. To make multiplication easier, use Figure B-7, which shows the
product of any two hex digits. To use the table, find the row for one hex
digit and the column for the other. The hex number located at the intersec

tion of the row and column is the product of the two digits.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 2 3 4 5 6 7 8 9 A B c D E F

2 4 6 8 A C E 10 12 14 16 18 lA IC IE

3 9 C F 12 15 18 IB IE 21 24 27 2A 2D

4 10 14 18 IC 20 24 28 2C 30 34 38 3C

5 19 IE 23 28 2D 32 37 3C 41 46 4B

6 24 2A 30 36 3C 42 48 4E 54 5A

7 31 38 3F 46 4D 54 5B 62 69

8 40 48 50 58 60 68 70 78

9 51 5A 63 6C 75 7E 87

A 64 6E 78 82 8C 96

B 79 84 8F 9A A5

C 90 9C A8 B4

D A9 B6 C3

E C4 D2

F El

Figure B-7. Multiplication of two hex numbers.

474

Appendix C

About Characters

The Standard and Extended Character Sets 476

The Character Format 480

The First 32 ASCII Characters 483

The Box-Drawing Characters 484

The Graph and Block Characters 485

Text File Formatting Conventions 485

Ordinary Text File Formats 486

Word-Processor Text Formats 487

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The IBM personal computer family uses 256 distinct characters. These char
acters have numeric byte codes with values ranging from OOH through FFH
(0 through decimal 255). The characters are of two types:

• The first 128 characters, OOH through 7FH (decimal 0 through 127),
are the standard ASCII character set. Most computers handle the

standard characters in the same way (with the exception of the first
32 characters — see page 483).

• The last 128 characters, 80H through FFH (decimal 128 through

255), are special characters that make up the extended ASCII charac
ter set. Each computer manufacturer decides how to use these
special characters.

All models of the IBM personal computers use the same extended
ASCII character set. Computers that closely mimic the IBM personal com
puters use this set as well, but other computers often have their own set of
special characters. Be aware of this when you convert programs from other
computers or when you write PC programs that you plan to convert for use
on other computers.

The Standard and Extended Character Sets
The following BASIC program displays all 256 characters along with their
numeric codes in both decimal and hexadecimal notation. The characters

are also listed in Figure C-1.

1000 ' display all the PC characters

1010 '

1020 MONOCHROME - 1

1030 IF MONOCHROME THEN WW = 80 : HH = &HBOOO

ELSE WW = 40 : HH = &HB800

1040 GOSUB 2000 ' initialize OS register

1050 FOR I = 0 TO 255 ' for all character codes

1060 GOSUB 3000 ' display the information

1070 NEXT I

1080 PRINT "Done."

1090 GOSUB 6000

1092 COLOR 0,0,0

1095 SYSTEM

1999 '

2000 ' initialize

2010 '

2020 DEF SEG = HH ' set up OS register for poke

2030 KEY OFF : CLS ' set up the screen

476

Appendix C: About Characters

2040 WIDTH WW : COLOR 14,1,1

2050 FOR I = 1 TO 25 ; PRINT : NEXT I

2060 PRINT " Demonstrating all characters"

2070 GOSUB 5000

2080 RETURN

2099 •

3000 * display character information

3010 •

periodic subheading

3020

3030

3040

3050

3060

3070

3080

3090

3100

3997

3998

3999

PRINT USING " ## ";I;

IF I < 16 THEN PRINT "0";

PRINT HEX$(I);"

POKE WW * 2 * 23 + 34, I

GOSUB 4000

IF (I MOD 16) < 15 THEN RETURN

GOSUB 6000

IF I < 255 THEN GOSUB 5000

RETURN

' character comments

insert the character

print any comments

pause after each 16 characters

4000 IF I = 0 THEN PRINT "shows blank";

4007 IF I = 7 THEN PRINT "beep (bell)";

4008 IF I = 8 THEN PRINT "backspace";

4009 IF I = 9 THEN PRINT "tab";

4010 IF I = 10 THEN PRINT "linefeed";

4012 IF I = 12 THEN PRINT "page eject";

4013 IF I = 13 THEN PRINT "carriage return"

4026 IF I = 26 THEN PRINT "end text file";

4032 IF I = 32 THEN PRINT "true blank space'

4255 IF I = 255 THEN PRINT "shows blank";

4997 PRINT

4998 RETURN

finish the line

4999

5000

5010

5020

5030

5040

5050

5060

5070

5080

5999

6000

6010

6020

6030

periodic subheading

COLOR 15

PRINT

PRINT

PRINT "Decimal

PRINT

COLOR 14

RETURN

Hex - Char - Comments"

pause

IF INKEY$ <>

PRINT

THEN GOTO 6020

477

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

6040 COLOR 2

6050 PRINT "Press any key to continue...*

6060 COLOR 14

6070 IF INKEY$ - "" THEN GOTO 6070

6080 PRINT

6090 RETURN

Number

Char Dec Hex Control Char

Number

Dec Hex Control

0 OOH NUL (Null) # 35 23R

© 1 OIH SOR (Start of heading) $ 36 24R

e 2 02H STX (Start of text) % 37 25R

3 03H ETX (End of text) & 38 26R

♦ 4 04H EOT (End of * 39 27R

transmission) (40 28R

♦ 5 05H ENQ (Enquiry)) 41 29R

6 06H ACK (Acknowledge) * 42 2AR

• 7 07H BEL (Bell) + 43 2BR

D 8 08H BS (Backspace) , 44 2CR

O 9 09H RT (Rorizontal tab) - 45 2DR

s 10 OAR LF (Linefeed) 46 2ER

<5 11 OBH VT (Vertical tab) / 47 2FR

9 12 OCR FF (Formfeed) 0 48 30R

i 13 ODH CR (Carriage return) 1 49 31R

14 OER SO (Shift out) 2 50 32R

15 OFR SI (Shift in) 3 51 33R

► 16 lOR DLE (Data link escape) 4 52 34R
< 17 IIR DCl (Device control 1) 5 53 35R
X 18 12R DC2 (Device control 2) 6 54 36R
M 19 13R DC3 (Device control 3) 7 55 37R.
% 20 14R DC4 (Device control 4) 8 56 38R

§ 21 15R NAK (Negative 9 57 39R

acknowledge) 58 3AR

22 16R SYN (Synchronous idle) ; 59 3BR

t 23 17R ETB (End transmission < 60 3CR

block) = 61 3DR

t 24 18R CAN (Cancel) > 62 3ER

25 19R EM (End of medium) ? 63 3FR
-♦ 26 lAR SUB (Substitute) @ 64 40R

<«- 27 IBR ESC (Escape) A 65 41R

28 ICR FS (File separator) B 66 42R

29 IDR OS (Group separator) C 67 43R

▲ 30 lER RS (Record separator) D 68 44R
T 31 IFR US (Unit separator) E 69 45R

<space> 32 20R F 70 46R
t 33 21R G 71 47R
** 34 22R R 72 48R

Figure C-1. The IBM PC and PSI2 family character set. (continued)

478

Appendix C: About Characters

Figure C-1. continued

Number

Char Dec Hex

Number

Char Dec Hex Control

Number

Char Dec Hex

I 73 49H V 118 76H u 163 A3H

J 74 4AH w 119 77H n 164 A4H

K 75 4BH X 120 78H N 165 A5H

L 76 4CH y 121 79H 1 166 A6H

M 77 4DH z 122 7AH e 167 A7H

N 78 4EH I 123 7BH
C 168 A8H

0 79 4FH
1

1 124 7CH 169 A9H

P 80 50H I 125 7DH 170 AAH

Q 81 51H ~ 126 7EH 171 ABH

R 82 52H 127 7FH DEL 172 ACH

S 83 53H Q 128 80H I 173 ADH

T 84 54H ii 129 81H 174 AEH

U 85 55H e 130 82H »
175 AFH

V 86 56H a 131 83H 176 BOH

W 87 57H a 132 84H 1 111 BIH

X 88 58H a 133 85H 1 178 B2H

Y 89 59H a 134 86H 1
H

179 B3H

Z 90 5AH <? 135 87H 180 B4H

[91 5BH e 136 88H 181 B5H

\ 92 5CH e 137 89H]\ 182 B6H

] 93 5DH e 138 8AH H 183 B7H
A

94 5EH i 139 8BH =1 184 B8H

95 5FH i 140 8CH ^1 185 B9H

96 60H i 141 8DH II 186 BAH

a 97 61H A 142 8EH Tl 187 BBH

b 98 62H A 143 8FH 188 BCH

c 99 63H E 144 90H jj 189 BDH

d 100 64H ae 145 91H J 190 BEH

e 101 65H R 146 92H 1 191 BFH

f 102 66H 6 147 93H L 192 COH

g 103 67H 6 148 94H J. 193 CIH

h 104 68H 6 149 95H T 194 C2H

i 105 69H u 150 96H h 195 C3H

j 106 6AH u 151 97H - 196 C4H

k 107 6BH y 152 98H + 197 C5H

1 108 6CH 6 153 99H h 198 C6H

m 109 6DH u 154 9AH Ih 199 C7H

n 110 6EH C 155 9BH Ik 200 C8H

0 111 6FH £ 156 9CH ff 201 C9H

P 112 70H ¥ 157 9DH A 202 CAR

q 113 71H I? 158 9EH if 203 CBH

r 114 72H f 159 9FH 1^ 204 CCH

s 115 73H a 160 AOH = 205 CDH

t 116 74H i 161 AIM
JL

206 CEH

u 117 75H 6 162 A2H ± 207 CFH

(continued)

479

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Figure C-1. continued

Number Number Number

Char Dec Hex Char Dec Hex Char Dec Hex

JL 208 DOH a 224 BOH 240 FOR

T 209 DIM P 225 EIH + 241 FIH

T 210 D2H r 226 E2H > 242 F2H

IL 211 D3H TT 227 E3H < 243 F3H

1= 212 D4H Z 228 E4H r 244 F4H

F 213 D5H a 229 E5H j 245 F5H

IT 214 D6H li 230 E6H 246 F6H

1 215 D7H T 231 E7H ~ 247 F7H

+ 216 D8H 232 E8H O 248 F8H

J 217 D9H 0 233 E9H • 249 F9H

r 218 DAH n 234 BAH 250 FAR

1 219 DBH & 235 EBH J 251 FBH

■ 220 DCH
00 236 ECH T| 252 FCH

1 221 DDH 0 237 EDH 2 253 FDH

1 222 DEH e 238 EEH . 254 FEH

■ 223 DFH n 239 EFH 255 FFH

The BASIC program is designed to adjust itself to a monochrome or
color video mode based on the value shown in line 1020: 1 (as shown) indi

cates a monochrome mode; 0 indicates a color mode. The value in line 1020

causes the program to set two values:

• The location, in screen memory, where the POKE command inserts
display information

• The screen width (40 or 80 columns)

The POKE statement in line 3050 causes the characters to appear. This

extra step is necessary because a few characters cannot be displayed by the
ordinary PRINT statement. See "The First 32 ASCII Characters," page 483,
for an explanation.

Each of the 256 characters is visually unique, except for ASCII OOH and
ASCII FFH (decimal 255), which appear the same as the blank-space charac
ter, CHR$(32).

The Character Format

All characters that appear on the display screen are composed of dots drawn
within a grid called a character box or character matrix, (See Figure C-2.)
The size of the character box depends on your video hardware as well as on
the video mode you're using. For example, the Monochrome Display
Adapter (MDA) uses a 9 x 14 character matrix; the text modes on the Color

480

Appendix C: About Characters

■■■■■■■■

■■■■■■■■

■■■■■■■■

mmmmmmmm

mmmmmmmm

(a)

mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmw

mmmmmmm
mmmmmmm
mmmmmmm
mmmmmmm
mmmmmmm
mmmmmmm
mmmmmmm

(b)

Figure C-2. The dot-matrix pattern displayed by (a) the Color Graphics Adapter and
(b) the Monochrome Display Adapter.

Graphics Adapter (CGA) uses 8x8 characters; the default 80 x 25 text mode
on the Enhanced Graphics Adapter (EGA) uses an 8 x 14 character matrix;
and the default text modes on the Video Graphics Array (VGA) use 9 x 16
characters. Characters are created by filling, or lighting, the appropriate
dots in the grid. The more dots in a grid, the sharper the characters appear.

Dot-matrix printers also draw characters with a grid of dots. However,
each model of printer may have its own particular way of drawing charac
ters that may not exactly match the screen characters dot for dot.

To see how characters appear, the three dot matrices in Figure C-3 il
lustrate a y, a y, and a semicolon, using the 8x8 character box.

mmmmmmmm ■■■■■■■■

»»■■■■■■

mDDnammm ■■■■■■■■

■■□□■■■a mmnnmmmm
mmmmnnmrn

■■■■■■■■ □□□□□■■■

Figure C-3. The dot pattern of three characters in an8x8 character box.

481

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Several rules apply to the character drawings:

• For standard characters, the two right columns are unused, provid
ing separation between characters. These two columns are used
only by characters that are supposed to fill the entire character
box, such as the solid block character, ASCII DBH (decimal 129).

• The top two rows are used for ascenders (the parts of characters
that are above the ordinary character height). The ascender space is
used for capital letters and for such lowercase letters as b, d, and k.

• The bottom row is used for descenders (the parts of characters that
drop below the line), as in the lowercase letters g and y.

These general guidelines are occasionally compromised for overall
effect. For example, the semicolon, our third example in Figure C-3, is
shifted up one row from what you might expect so that it does not use the
descender row.

The dots that form each character on the screen are placed there by a
specialized component of the video subsystem called a character generator.
The character generator's task is to convert ASCII codes into the corre
sponding pattern of dots that make up a displayed character. The character
generator accomplishes this by using ASCII codes as an index into a
memory-resident bit pattern table that represents the displayed character's
dot patterns.

For example. Figure C-4 shows the table entry for an uppercase Y in
an 8 X 8 character box. Note how the pattern of ones and zeros in the charac
ter definition corresponds to the pattern of dots displayed for the character.

Bit Value

7 6 5 4 3 2 1 0 (hex)

1 1 0 0 1 1 0 0 CCH

1 1 0 0 1 1 0 0 CCH

1 1 0 0 1 1 0 0 CCH

0 1 1 1 1 0 0 0 78H

0 0 1 1 0 0 0 0 30H

0 0 1 1 0 0 0 0 30H

0 1 1 1 1 0 0 0 78H

0 0 0 0 0 0 0 0 OOH

Figure C-4. The coding of the 8 character bytes for the Y character.

482

Appendix C: About Characters

In some video modes, you have no control over the bit patterns that
define the displayed characters. The MDA's character definitions, for in
stance, are stored in special ROM chips that can be accessed only by the
adapter's character-generator circuitry. In many video modes, however, the
character definition table resides in RAM, allowing you to redefine the bit
patterns used by the character generator and create your own fonts or char
acter sets. (See Chapter 9 for more about RAM-based character definitions.)

The First 32 ASCII Characters

The first 32 ASCII characters, OOH through IFH (decimal 0 through 31), have
two important uses that just happen to conflict with each other. On one
hand, these characters have standard ASCII meanings; they are used for
both printer control (for example, ASCII OCH (decimal 12) is the formfeed
character) and communications control. On the other hand, IBM also uses
them for some of the most interesting and useful display characters, such as
the card-suit characters (hearts, diamonds, clubs, and spades)—ASCII 03H
through 06H, and the arrow characters (T, i, — and <—)—ASCII 18H
through ICH (decimal 24 through 27).

When DOS transmits characters to the video screen or to a printer, it
acts on the ASCII meaning of the characters instead of showing the charac
ter's picture. For example, the beep/bell character, ASCII 07H, has a dot for
a picture. However, if you use DOS (or a programming language such as
BASIC that relies on DOS for output), nothing happens on screen when you
try to display this character: Instead, the speaker will beep. But if you put
the character directly onto the screen by using the POKE command like this:

DEF SEG = &HB800 : POKE 0. 7

the character's picture will appear. You can always make characters appear
on the screen by poking them into the screen buffer. However, it's much
easier to use the PRINT statement to display characters. Store characters
directly into the video buffer only if you can't display them with PRINT.

Most of these 32 characters can be written to the screen, but the
display characters may vary, depending upon which language is used.
Figure C-5 shows some of these differences. The characters not shown,
ASCII OOH through 06H (decimal 0 through 6) and ASCII OEH through IBH
(decimal 14 through 27), can always be written to the screen with
predictable results.

483

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

ASCII Character Result

Hex Dec In BASIC In Most Other Languages

07H 1 Beeps Beeps

08H 8 Character appears Backspace action

09H 9 Tab action Tab action

OAH 10 Linefeed and carriage- Linefeed action

return action

OBH II Cursor to top left Character appears

OCR 12 Screen clears Character appears

ODH 13 Carriage-return action Carriage-return action

ICR 28 Cursor moves right Character appears

IDR 29 Cursor moves left Character appears

lER 30 Cursor moves up Character appears

lER 31 Cursor moves down Character appears

Figure C-5. The results obtained when certain characters are written to the screen using
different languages.

The Box-Drawing Characters
Among the most useful of the special extended ASCII characters are the
characters designed for drawing single- and double-lined boxes: characters
B3H through DAH (decimal 179 through 218). Because they are difficult to
combine properly, you may find the information in Figure C-6 helpful.

218 196 201 205

It -
186 II

J

Figure C-6. The box-drawing characters and their corresponding
ASCII codes.

Figure C-6. continued

Appendix C: About Characters

The Graph and Block Characters
In addition to the box-drawing characters, two series of characters are de

signed for graphs and block drawings. (See Figure C-7.) One series consists
of four characters that fill the entire character box but are shaded in differ

ent densities (that is, some of the character's dots are on, or set to the fore

ground color, and the remaining dots are off, or set to the background
color). The other series consists of four block characters that provide a solid
color covering half the character box. The solid character, ASCII DBH (deci

mal 219), is also used with these half-characters.

ASCII 176

ASCII 177

ASCII 178

ASCII 219

ASCII 220

ASCn22I

ASCII 222

ASCII 223

Figure C-7. The two sets of graph and block characters.

Text File Formatting Conventions
Many programs work with files of text. As a result, most programmers have

adopted text file formatting conventions that make it easier for text files to
be used by different programs. The formats are defined by embedded char
acters that perform such functions as carriage returns, linefeeds, and
backspaces.

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

When you write a program that reads text files, you can make it more
flexible by having it recognize a variety of different text file formats. Con
versely, when you design a program to write files with a simple text format,
other programs can more easily share your program's output. In this section,
we'll describe the ordinary text format recognized by most text-processing
programs, and then go on to discuss some of the text formats used in word-
processor files.

Ordinary Text File Formats
Ordinary text files are made up of only the standard ASCII characters and
do not use the extended ASCII characters. In the ASCII coding scheme, the

first 32 characters, ASCII OOH through IFH (decimal 0 through 31), have spe

cial meanings: Some are used for formatting text and others are generally
used for communications control. These control characters are rarely dis

played or printed.
Only a handful of formatting characters are widely used in ordinary

text files. They were originally developed as commands to tell a printer
how to format a printed page and how to recognize the end of a file. Now
their use extends to all output devices. We'll discuss each of the main for
matting characters in turn.

ASCII lAH (decimal 26) marks the true end of a text file. This charac
ter may come before the end of the file indicated by the file size in the
directory entry. This is because some text-processing programs read and
write files, not byte by byte, but in larger chunks—128 bytes at a time.
When they transfer data in this way, DOS sees only the end of the 128-byte
block and does not recognize the actual end of the file delimited by the end-
of-file character.

ASCII ODH (decimal 13) and ASCII OAH (decimal 10) normally divide a

text file into lines by marking the end of each line with a carriage return
(ASCII ODH) and a linefeed (ASCII OAH), usually in that order. Many text-
processing programs have difficulty with lines of more than 255 characters,
and some are limited to 80 character lines.

A carriage return can be used by itself. Unfortunately, such usage can
be interpreted as either of two things: the end of a line with a linefeed that
is implied and automatically provided by some printers; or a return to the
beginning of the current print line, which causes the entire line to be
overprinted. (The backspace character, ASCII 08H, is also sometimes used to
make a printer overstrike a character.)

486

Appendix C: About Characters

ASCII 09H, the tab character, is sometimes used to represent one or
more spaces, up to the tab location. Unfortunately, as yet, there is no univer
sal convention on tab settings, which makes the use of the tab character un
certain. However, one of the most common tab settings is every eight
spaces.

ASCII OCH (decimal 12), the formfeed or page eject, is another format
character. This character tells a printer to skip to the top of the next page.

Other formatting characters, such as the vertical tab (ASCII OBH, deci
mal II), are available but are not widely used with personal computers.

You can avoid many difficulties by having programs create text files
with simple formats. The simplest formats allow lines no longer than 255
characters and use only the carriage-return (ASCII ODH), linefeed (ASCII
OAH), and end-of-file (ASCII lAH, decimal 26) formatting characters. Many
programming languages, including BASIC and Pascal, can automatically
generate these formatting characters when creating text output.

Most compilers and assemblers expect to read source code in this or
dinary, plain format. Rarely can a language translator work with the more
complex formats created by some word processors.

Word-Processor Text Formats

Word-processing programs have special needs for formatting text files. The
files that these programs create are rarely simple and typically have many
exotic additions to the simplest ASCII format. Generally, each word pro
cessor has unique formatting rules; luckily, there are some common
features.

Many of the special format codes used by word processors are created
by using an extended ASCII code that is 128 higher than a normal ASCII
code. This is equivalent to setting the high-order bit of an otherwise ordi
nary byte. For example, a "soft" carriage return, ASCII SDH (decimal 141),
is coded by adding 128 to an ordinary carriage return, ASCII ODH (decimal
13). Soft carriage returns indicate a tentative end of line, which can be
changed when a paragraph is reformatted. On the other hand, an ordinary
carriage return, can mark the end of a paragraph that isn't changed by refor
matting. This kind of coding in word-processing text can cause some pro
grams to treat an entire paragraph as one single line.

"Soft" hyphens (ASCII ADH, decimal 173), whose ASCII value is 128
greater than ordinary hyphens (ASCII 2DH, decimal 45), are sometimes used
to indicate where a word may be split into syllables at the end of a line.

487

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Ordinary "hard" hyphens are treated as regular characters and cannot be
used or removed by the word-processing program in the same way that soft
hyphens can.

Even ordinary alphabetic text can have 128 added to its character
code. Some programs do this to mark the last letter in a word. For example,
a lowercase a is ASCII 61H (decimal 97); but when it appears at the end of a
word, as in America, it may be stored as ASCII EIH (decimal 225), because
225 is the sum of 97 + 128.

Programs intended to work with a variety of text and word-processing
data should be prepared, as much as possible, to cope with the variety of
text formats that these examples suggest.

488

Appendix D

DOS Version 4

New Features in DOS Version 4 490

Interrupt 21H Functions in DOS Version 4 492

Function 33H (decimal 51): Get/Set System Value 492

Function 44H (decimal 68): lOCTL—I/O Control for Devices 492

Function 65H (decimal 101): Get Extended Country Information 492

Function 6CH (decimal 108): Extended Open/Create 493

Interrupts 25H and 26H 495

The DOS Version 4 Disk Boot Sector 496

The Extended BIOS Parameter Block 496

The Volume Serial Number 497

A Sample Routine 498

DOS Version 4 in Perspective 499

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

New Features in DOS Version 4
DOS version 4's full-screen interface shell gives it a very different look
from the "glass teletype" interface familiar to users of previous DOS ver
sions. Nevertheless, from a programmer's perspective, DOS version 4 is
quite similar to its predecessor, version 3.3.

The most important changes in DOS version 4 are related to its ability
to manage larger disk and memory resources. When the IBM PC and DOS
were new, the lack of support for more than 1 megabyte (MB) of RAM or 32
MB of disk space was hardly a shortcoming. But by July 1988, when DOS
version 4 appeared, both of these limits had become important to many DOS
users. DOS version 4 avoids the limitations of previous versions by improv
ing the way it manages memory and disk space.

DOS version 4 provides access to larger fixed-disk partitions by using
32-bit logical sector numbers instead of the 16-bit sector numbers used in
previous versions. With 16-bit logical sector numbers, the maximum num
ber of sectors in a fixed-disk partition is 65,536. Thus, with a default 512-
byte sector size, the largest disk partition you can support is 32 MB. With
DOS version 4's 32-bit logical sector numbers, the maximum number of
logical sectors in a partition is not limited to 65,536. This means that DOS
version 4 can manage fixed-disk partitions larger than 32 MB without
increasing the default sector size. (See Chapter 5 for more about logical
sectors.)

DOS version 4 supports expanded memory by incorporating the func
tionality of version 4.0 of the LIM (Lotus-Intel-Microsoft) Expanded
Memory Specification, which consists of a set of function calls invoked
through software interrupt 67H. (See Figure D-1.) Because DOS supports the
LIM interface, you needn't install a separate device driver in order to use
expanded memory in a PC or PS/2.

One immediate benefit of EMS support is that DOS itself can use ex
panded memory for its internal buffers. (The /E switch with BUFFERS= in
the CONFIG.SYS file places DOS disk buffers in expanded memory; the /E
switch on FASTOPEN places FASTOPEN's directory/file cache in expanded
memory.) This lets your applications use more conventional memory in the
first 640 KB of the 8086 address space.

These features of DOS version 4 make the DOS application-program
ming interface different from previous versions in several ways. The differ
ences are evident in several interrupt 21H functions, in the services
provided through interrupts 25H and 26H, and in the way DOS version 4 for
mats disks. The following sections describe these differences.

490

Appendix D: DOS Version 4

EMM Function

Function Hex Dec Description

1 40H 64 Get status.

2 41H 65 Get page frame address.

3 42H 66 Get unallocated page count.

4 43H 67 Allocate pages.

5 44H 68 Map/unmap handle page.

6 45H 69 Deallocate pages.

7 46H 70 Get EMM version.

8 47H 71 Save page map.

9 48H 72 Restore page map.

10 (Reserved.)

11 (Reserved.)

12 4BH 75 Get EMM handle count.

13 4CH 76 Get EMM handle pages.

14 4DH 77 Get all EMM handle pages.

15 4EH 78 Get/set page map.

16 4FH 79 Get/set partial page map.

17 50H 80 Map/unmap multiple handle pages.

18 51H 81 Reallocate pages.

19 52H 82 Get/set handle attributes.

20 53H 83 Get/set handle name.

21 54H 84 Get handle directory.

22 55H 85 Alter page map and jump.

23 56H 86 Alter page map and call.

24 57H 87 Move/exchange memory region.

25 58H 88 Get mappable physical address array.

26 59H 89 Get expanded memory hardware
information.

27 5AH 90 Allocate raw pages.

28 5BH 91 Alternate page map register set.

29 5CH 92 Prepare expanded memory for warm boot.

30 5DH 93 Enable/disable operating system/
environment functions.

Figure D-1. LIM Expanded Memory Support functions supported in DOS version 4
through interrupt 67H.

491

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Interrupt 21H Functions in DOS Version 4
DOS version 4 supports all (and enhances some) interrupt 21H functions
available in DOS 3.3. In addition, it supports a new interrupt 21H function
(function 6CH, Extended Open/Create). We'll summarize the new features
here, but be sure to compare the functions supported in DOS version 4 to
those offered in previous DOS versions. (See Chapters 15,16, and 17.)

Function 33H (decimal 51): Get/Set System Value
In DOS versions prior to version 4, function 33H (decimal 51) can be used

only to examine or update the DOS internal flag that controls Ctrl-C check
ing. (See Chapter 17.) DOS version 4 supports a third subfunction that
returns the drive ID of the disk drive used to boot the system.

To determine the boot drive ID, call function 33H with AL = 5. DOS

version 4 returns the drive ID in register DL. Drive ID values can be 1 (drive
A) or 3 (drive C).

Function 44H (decimal 68): lOCTL—I/O Control for Devices
Subfunction OCH has been enhanced for double-byte character support
(DECS). See the DOS Version 4 Technical Reference Manual for details.

Function 65H (decimal 101): Get Extended Country Information
In DOS version 4, interrupt 21H, function 65H (decimal 101) supports sub-
function 07H, which returns the segmented address of a DBCS vector, a table

of byte pairs that can be used to translate characters in non-ASCII character

sets that represent each character with 2 bytes instead of one. Each byte pair
indicates a range of values. The values in each range do not, themselves,
represent individual characters; instead, each value identifies the lead byte
of a 2-byte character code.

This support for double-byte characters is useful only in foreign-

language DOS releases where the usual extended ASCII character set is in
adequate. But if you want to experiment, here's how interrupt 21H, function
65H gives you access to the DBCS vector in DOS version 4.

Call this function with the register values shown in Figure D-2. Sub-
function 07H updates the buffer at ES:DI with a subfunction ID byte (07H)
followed by the segmented address of the byte-pair table. The table consists
of a single word containing the number of entries in the table, followed by a
sequence of byte-pairs. For example, in a DOS version 4 system installed
with COUNTRY = 81 (Japan) in its CONFIG.SYS file, subfunction 07H returns
a pointer to the following table:

06 GO 81 9F EG FC GG GG

492

Appendix D: DOS Version 4

The first 2 bytes of the table indicate its length (6 bytes). The next two pairs
of bytes indicate that each value in the ranges 81H-9FH and EDH-FCH repre
sents the lead byte of a 2-byte character code. The table ends with a pair of
zero bytes.

Call with Returns
AH = 65H If error:
AL = 07H CF set

BX = code page number AX = error code
(-1= default) If no error:
CX = buffer length (should be 05H) (^p Qjggj.
DX = country ID (—1 = default) ES:DI —» extended country
ES:DI ̂ empty buffer information

Figure D-2. Registers usedfor interrupt 21H, function 65H, subfunction 07H.

Function 6CH (decimal 108): Extended Open/Create
Function 6CH, introduced in DOS version 4, combines the functionality of
several previously supported interrupt 21H functions. This function lets you
specify several different actions at the time you open a file:

• You can open an existing file (as in functions OFH and 3DH).

• You can create a file or truncate an existing file (as in functions
16H and 3CH).

• You can create a file that is guaranteed to be new (as in function
5BH).

• You can open a file for which every write operation is automati
cally committed to disk (as if you called function 68H after each
write).

• You can disable interrupt 24H (critical-error) processing for the
file.

When you call function 6CH, you select a combination of these actions
by setting bits in registers BX (Figure D-3) and DX (Figure D-4). The other
registers specify information required by DOS to open or create the file: CX
contains the file-create attribute if you're creating a file; DS:SI contains a
pointer to an ASCIIZ filename; and AL must contain OOH.

493

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

Bit

1514131211109 8 76543210 Value Meaning

0 0 0 0 0

0 0 0 0

0 0 1 1

0 1 0 2

0

1

0

1

2

3

4

0

1

0

1

0

1

Access code: read only

Access code: write only

Access code: read/write

(Reserved)

Sharing mode: compatibility

Sharing mode: deny read/write

Sharing mode: deny write

Sharing mode: deny read

Sharing mode: deny none

Inherit: child inherits handles

Inherit: no inherited handles

(Reserved)

INT24H: enabled

INT 24H: disabled

Auto-commit: disabled

Auto-commit: enabled

(Reserved)

Figure D-3. Bit-field values in register EX for interrupt 2IH, function 6CH.

Bit

1514131211109 8 76543210 Value Meaning

00000000

0 0 0 0

0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 1

If file exists: fail

If file exists: open

If file exists: truncate and open

If file not found: fail

If file not found: create

(Reserved)

Figure D-4. Bit-field values in register DXfor interrupt 21H, function 6CH.

If the create or open operation is successful, function 6CH returns with
the carry flag clear, a file handle in AX, and a result code in CX. The pos
sible result codes are OIH (existing file opened), 02H (new file created and
opened), and 03H (existing file truncated and opened). If an error occurs.

494

Appendix D: DOS Version 4

the function sets the carry flag and returns an error code in AX. Possible er
ror codes depend on the type of operation you requested. They include OIH
(invalid function), 02H (file not found), 03H (path not found), 04H (no
handles available), 05H (access denied), and 50H (file already exists).

Interrupts 25H and 26H
In DOS version 4, the Absolute Disk Read and Write services — interrupts

25H and 26H (decimal 37 and 38)—have been augmented to process 32-bit
logical sector numbers. You must use these services to access individual
sectors in disk partitions that contain more than 65,536 sectors.

As in previous DOS versions, these interrupt services require you to
use the CPU registers to pass a disk drive ID, a buffer address, a starting sec
tor number, and a number of sectors. However, the registers are used differ
ently in DOS version 4 (Figure D-5). To use a 32-bit sector number, you must
execute interrupt 25H or 26H with CX = -1 and DS:BX containing the address
of a control packet, a 10-byte data structure that contains the starting sector
number, the number of sectors to read or write, and the buffer address
(Figure D-6). If CX does not contain -1, DOS version 4 assumes that the other
registers are used as in previous DOS versions to describe the read or write
operation. (See Chapter 15 for details.)

Call with Returns

AL = drive ID Previous contents of Flags
CX = -1 register on top of stack
DSiBX —^ control packet If error'

CP set

AH = error code

AL = error code

If no error:
CP clear

Figure D-5. Registers used with interrupt 25H and 26H services in DOS version 4.

Offset Size (bytes) Contents

OOH 4 Logical sector number

04H 2 Number of sectors to read or write

06H 4 Segmentioffset address of data buffer

Figure D-6. The control packet used in DOS version 4 interrupt 25H and 26H services.

495

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

The augmented DOS 4 versions of these services use the same codes to
report errors as previous versions. If you do not use a 32-bit logical sector
number when you access a disk partition that contains more than 65,536 sec
tors, these services return with AH = 02H (bad address mark) and AL = 07H
(unknown media). This error occurs even if you try to access one of the first
65,536 logical sectors in the partition.

Before it can process an interrupt 25H or interrupt 26H request, DOS
version 4 must know how the disk is formatted. For a fixed disk this isn't a

problem, but for diskettes you can ensure that DOS knows the current dis
kette format by executing interrupt 21H, function 47H (Get Current Direc
tory) before you call interrupt 25H or 26H.

The DOS Version 4 Disk Boot Sector
When it formats a disk, DOS records information about the disk in logical
sector 0, the DOS boot sector. (See Chapter 5.) As in previous versions, DOS
version 4 stores information about the size of the disk's sectors, clusters,
FAT, and root directory in a table called the BIOS parameter block (BPB).
But DOS version 4 records more information in the disk boot sector than do

previous DOS versions.

The Extended BIOS Parameter Block

In DOS version 4, the BPB data structure contains an extra 4-byte field that
can contain the number of logical sectors on the disk. (Compare Figure D-7
with Figure 5-9 on page 111.) As in previous DOS versions, DOS version 4
stores the number of logical sectors in the field at offset 13H and the number

of hidden sectors in the field at offset ICH. If, however, the sum of these two

values is greater than 65,535, DOS stores a 0 in the field at offset 13H and

uses the additional field at offset 20H to record the total number of logical
sectors on the disk.

Offset in Boot Sector Length (bytes) Description

03H 8 System ID

OBH 2 Number of bytes per sector

ODH 1 Number of sectors per cluster

OEH 2 Number of sectors in reserved area

lOH 1 Number of copies of FAT

IIH 2 Number of root directory entries

Figure D-7. The extended BIOS parameter block in the DOS version 4 sector, (continued)

496

Appendix D: DOS Version 4

Figure D-7. continued

Offset in Boot Sector Length (bytes) Description

13H 2 Total number of sectors

15H 1 DOS media descriptor

16H 2 Number of sectors per FAT

18H 2 Number of sectors per track

lAH 2 Number of heads (sides)

ICH 4 Number of hidden sectors

20H 4 Total number of sectors (if field
at offset 13H contains 0)

The Volume Serial Number

DOS version 4 also records a disk's volume label and volume serial number

in a data structure that immediately follows the BPB in the boot sector. (See
Figure D-8.) The volume label is the same 11-byte name that appears in a
disk's volume-label entry in the root directory. You specify the volume
label with the FORMAT or LABEL command, or with a call to interrupt 21H,

function 16H. DOS itself computes the volume serial number.
When it formats a disk, DOS version 4 derives the disk's volume serial

number from the current date and time. This means that volume serial num

bers are almost always different among different disk volumes, so DOS
version 4 can use the serial numbers to distinguish different disks with the
same physical format. You can illustrate this in DOS version 4 by installing
SHARE, opening a diskette file for input, and then changing diskettes. If you
then try to read from the file, DOS version 4 generates an "invalid disk
change" critical error. In a program, you can use your own critical-error
handler to detect this error. It's easier, of course, to rely on the DOS version
4 default critical-error handler, which displays the volume label and serial
number of the diskette that contains the open file.

Offset in Boot Sector Length (bytes) Description

24H

25H

26H

27H

2BH

36H

1

1

1

4

11

8

Physical drive number

(Reserved)

Signature byte (29H)

Volume serial number

Volume label

(Reserved)

Figure D-8. Boot sector extensions in DOS version 4.

497

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

A Sample Routine
The following sample routine reads the volume serial number from a DOS
version 4 disk. The C program, which calls Readabs(), shows how you can
access information in a DOS version 4 boot sector:

main(argc, argr)

int argc;

char * argv[];

unsigned char Buffer[512];

unsigned long * LongPointer;

Int DrIvelD =02; /* drive c */

struct

{

unsigned long SectorNumber; /* 4 bytes */

unsigned Int Count; /* 2 bytes */

void far * BufferPolnter; /* 4 bytes */

}

Control Packet;

/* initialize control packet */

Control Packet.SectorNumber = 0;

Control Packet.Count = 1;

Control Packet.BufferPolnter = (char far *)Buffer;

/* read the DOS boot sector on the specified drive */

if(argc = 2)

DrivelD = (argvCl][0] | 0x20) - 'a*;

ReadAbsC DrivelD, &ControlPacket);

/* display the volume serial number if it's there */

ifC Buffer[0x26] = 0x29) /* check the signature */

{

LongPointer = (long *) (Buffer+0x27);

printf("\nThe volume serial number is %081X", *LongPointer);

}

el se

printf("\nNo volume serial number");

498

Appendix D: DOS Version 4

The ReadabsO routine illustrates how to use the DOS version 4
extended interrupt 25H function:

DGROUP

-TEXT

GROUP -DATA

SEGMENT byte public 'CODE*

ASSUME cs:_TEXT,ds:DGROUP

-ReadAbs

PUBLIC -ReadAbs

PROG near

push bp

mov bp,sp

push si

push di

ensure that DOS knows the disk media format

by executing interrupt 21H, function 47H

mov ah,47h

mov dl.Cbp+4]

inc dx

mov si,offset DGROUP:Buffer

int 21h

use interrupt 25h to read the requested sector(s)

mov

mov

mov

int

al,[bp+4]

bx.[bp+6]

cx, -1

25h

; AL = drive ID

; DS:BX -> control packet

; absolute disk read

mov

adc

ax,0

ax,0

return AX - value of

... carry flag

add sp,2 ; discard flags pushed by DOS

pop

pop

di

si

pop

ret

bp

-ReadAbs ENDP

-TEXT

-DATA

Buffer

-DATA

ENDS

SEGMENT word public 'DATA'

DB 64 dup(?)

ENDS

499

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

DOS Version 4 in Perspective
For the most part, DOS users—not DOS programmers—benefit most from
DOS version 4. DOS version 4 support for expanded memory and larger
fixed disks makes it easier for applications to take advantage of these
resources. The full-screen command shell clearly resembles the command
interface provided with OS/2 Presentation Manager and reflects the philoso
phy that the point-and-shoot graphics interface is what PC and PS/2 users
want. But from a programmer's point of view, DOS version 4 support for
these features presents few novelties.

DOS version 4 isn't revolutionary. It represents another step in the
evolution of the predominant operating system for the IBM PCs and PS/2s.

500

Index

Numbers

8086 microprocessor
accessing memory 25-27
address space 25
data formats

"back-words" storage 24
character 24-25

numeric 23-24

general discussion of 6
instruction set 18-20

interrupts (see interrupt(s))
memory addressing (see address(es))
ports, input/output (see ports)
registers (see individual registers)

8087 math coprocessor 7-8
8088 microprocessor 6
80286 microprocessor 6-7
address space 14
general discussion 7
instruction set 18-20

protected mode 7,26-27, 235, 236
real mode 7

80287 math coprocessor 8
80386 microprocessor
address space 14
general discussion 7
instruction set 18-21

80387 math coprocessor 8

ABIOS. See advanced BIOS

access codes. See file access

address(es)
general discussion of 25-27
modes 34-35

notation 34-35,167,468-69
address interrupts. See interrupt 22H; interrupt

23H; interrupt 24H
advanced BIOS (ABIOS) 168
AF (auxiliary carry flag). See flags register, status

alarm. See real-time clock

allocation units. See clusters

Alt key. See keyboard
ANSI driver (ANSI.SYS)
keyboard control 462
pros and cons 462-63
screen control 460-62

ASCII characters

box-drawing characters 484-85
character display format 480-83
character sets 186-89

control characters 182

ASCII characters, continued
extended set of 476-80

graph and block characters 485
representation in memory of 90-91,482-83
standard set of 476

text-file formatting 485-88
ASCIIZ strings 350
assembly language. See also interface routines
addressing notation 34-35,167
ASSUME, use of 163, 223
general discussion of 18-22,160-68, 433-38
instruction sets 18-21

programming examples 194-95, 437
attributes. See file attributes; video output, color

control, attributes

AUX device 327, 351. See also serial

communications

auxiliary carry flag (AF). See flags register, status
flags

auxiliary input. See serial communications
AX register
general discussion of 29
ROM BIOS use of 159

B

backspace character 486
"back-words" storage 24
bad track marking 203
base pointer register. See BP register
BASIC. See also compiled BASIC; interpreted

BASIC

changing video modes 74-76
clock-tick interrupt 146
data segment value 31
hex arithmetic in 472

ROM 46, 65
statements

BLOAD 446-47

DBF SEG 31

INKEY$ 137

IN? 18

OUT 18

PEEK 18, 31

POKE 18

SCREEN 75-76

BASICA. See interpreted BASIC
BIOS. See ROM BIOS

BIOS parameter block (BPB) 111, 496
BLOAD 446-47

boot sector 108,109-11,496
bootstrap loader 46
box-drawing characters 484-85
BPB (BIOS parameter block) 111, 496

501

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

BP register
general discussion of 31,419
ROM BIOS use of 159

break key
Ctrl-Break 131-32

Ctrl-C 307-8

interrupt {see interrupt IBH; interrupt 23H)
status of 59,132
technique used to ignore 132, 307-8

bus 11-13

8-bit 16-bit 12

address 12

control 11

data 12

expansion slots 11
Micro Channel 13

power lines 11
BX register
general discussion of 29, 419
ROM BIOS use of 159

C (programming language)
assembly-language interface 438-45
data formats

floating-point 444
integer 444
string 445

interface programming examples 439, 440, 442,
443

memory models 441-44
naming conventions 445
parameter passing in 440-41

calendar. See real-time clock

carriage-return character 486,487
carry flag (CF). See flags register, status flags
cassette tape 233-34
central processing unit (CPU). See 8086; 8088;

80286; 80386
CF (carry flag). See flags register, status flags
CGA (Color Graphics Adapter)

attributes 81-85

cursor 94,173-75

display pages 87-88
memory usage 86
palettes 79
video modes 69,172

character handling
box-drawing characters 484-85
display attributes 81-85
graphics character table 90,188
ROM BIOS video services {see interrupt lOH)

clock. See CPU clock; real-time clock; system
timer

clock generator 10
clusters. See also file allocation table

cluster status on disk 357

general discussion of 109
numbering of 119
size of 109

code segment register. See CS register
Color Graphics Adapter. See CGA
.COM files

converting .EXE files 425
memory usage 425
relative size of 438

COMl device 327

combining program modules. See linker
COMMAND.COM 376

command-line parameters 316-17
compact model. See memory, models
compiled BASIC
assembly-language interface 450-52
data formats

floating-point 452
integer 452
string 452

interface programming example 451
memory model 450
parameter passing in 450

CON device 351

CONFIG.SYS 458

cooked mode 367

coprocessors. See 8087; 80287; 80387
copy protection 122-23, 205
country-dependent information. See interrupt 21H,

function 38H; interrupt 21H, function 65H
CP/M 325

CPU (central processing unit). See 8086; 8088;
80286; 80386

CPU clock 143-44

CRC. See cyclical redundancy check
critical error handling. See error codes; interrupt

24H

CS register
changing code segment address 36
during interrupt process 40
general discussion of 30,418-19
PSP and 299, 325
ROM BIOS services and 158

Ctrl-Alt-Del. See keyboard, keys, Ctrl-Alt-Del
Ctrl-Break. See break key
currency symbol 359-60
cursor 94,173-75,190-91
CX register
general discussion of 29
ROM BIOS use of 159

cyclical redundancy check (CRC) 202
cylinders 101. See also fixed disk

502

Index

D

data formats

8086 23-25

C 444-45

compiled BASIC 452
interpreted BASIC 448-50
Pascal 455

data segment register. See DS register
date. See time and date

DEF SEG 31

destination index register. See DI register
device driver

ANSI.SYS 460-63

DOS interface 459-60 {see also interrupt 21H,
function 44H)

general discussion of 458
structure 459-60

use in DOS environment 104, 351-52
device handles. See handles

device header 309

direct memory access. See DMA
directory
DOS services. See interrupt 21H
end-of-directory marker 112
entry

date 116

file attributes 113-15, 365
filename 112-13

filename extension 113

file size 117

starting cluster 117
time 116

erased file marker 113

root 111-12

searching 332-33, 378-79
DI (destination index) register 31,159, 419
disk base table

creating 211
format 210-11

general discussion of 198, 210-11
location of 198, 211

disk controller 10-11,199, 210

disk drive

geometry 100-101
numbering in DOS 331, 371-72
numbering in ROM BIOS 198

diskette. See also fixed disk

bad-track marking 118
bootable 103

capacity 102-3
DOS services {see interrupt 21H)
format

logical 104,106-9
physical 101-3

organization 100-108
boot sector 108,109-11, 496
file allocation table (FAT) 108,118-21

diskette, organization, continued
files area 117-18

root directory 109,111-17
programming recommendations 121-22
ROM BIOS services {see interrupt 13H)
sectors

DOS numbering 107, 300
length in disk base table 210
number of 357

ROM BIOS numbering 101,103, 300
size of 101, 357

status 57

disk I/O

DOS services {see interrupt 21H)
ROM BIOS services {see interrupt 13H)

disk transfer area (DTA) 335, 355
DMA (direct memory access)
DMA controller 9

mode setting in disk base table 210
DOS

command-line parameters 316-17
commands and utility programs
CHKDSK 117

ERRORLEVEL 377

EXE2BIN 425, 438

LIB 426-27

LINK 376, 425, 427-29

PRINT 303-6

SET 315

SHARE 362-63,497

disk formats 104-9

environment settings 315
files

COMMAND.COM 376

CONFIG.SYS 458

IBMBIO.COM 48

IBMDOS.COM 48-49

general discussion of 292-96
interrupts
address interrupts {see interrupt 22H; interrupt

23H; interrupt 24H)
print spool control {see interrupt 2FH)
program terminate {see interrupt 20H)
sector read/write {see interrupt 25H; interrupt

26H)
terminate and stay resident (TSR) {see

interrupt 27H)
umbrella interrupt {see interrupt 21H)

programming examples 318-19, 345-46
versions

compatibility of 294-95, 490
determining 355
diskette formats of 104, 296

DS register
BASIC use of 31

general discussion of 30, 418-19
ROM BIOS use of 158

503

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

DTA. See disk transfer area

DX register
general discussion of 29
ROM BIOS use of 159

E

EGA (Enhanced Graphics Adapter)
attributes 81-86

cursor 94,173-75

display pages 87-89
memory usage 69-70, 86-87
palettes 79
video modes 172

EMS (Expanded Memory Specification) 14, 490
end-of-file character 487

Enhanced Graphics Adapter. See EGA
environment block 315

equipment list 55,246-47
erased files

directory entry notation for 113
FAT notation for 119

recovery of 117
error codes. See also individual DOS and ROM

BIOS services

DOS critical error handler 310-11

DOS extended error codes 381-86

general discussion of 349
ES register
general discussion of 30,418
ROM BIOS use of 158

exclusive-OR (video output) 179
EXE2BIN 425, 438
EXEC. See interrupt 21H, function 4BH
.EXE files

converting to .COM files 425
relative size of 438

expanded memory. See memory, expanded
Expanded Memory Specification (EMS) 14,490
extended data area. See ROM BIOS, extended data

area

extended error codes. See error codes

extended memory. See memory, extended
extended partitions 107,495
extra segment register. See ES register

FAT. See file allocation table

FCB. See file control block

FDC (floppy disk controller). See disk controller
file access 362, 490
file allocation table (FAT) 118-21

bad-cluster marking in 118, 203
damaged 121
DOS services (see interrupt 21H)
format of 118-20

file allocation table, continued
location on disk 108

media descriptor byte in 120
number of copies on disk 108
space allocation chain 113,119-20

file attributes. See also directory, entry, file
attributes; file access

archive 113,115
DOS services (see interrupt 21H)
hidden 113,114
read-only 113,114
subdirectory 113,115
system file 113,114
volume label 113,114-15

file control block (FCB)
extension 344

format 342-44

general discussion of 341-42
support in PSP 316

file directory. See directory
file fragmentation 117-18
file handles. See handles

file I/O. See interrupt 21H
filename

DOS services (see interrupt 21H)
in FCB 343

files area 117-18

file sharing
DOS services (see interrupt 21H)
inheritance codes 362,493
locking 387
SHARE.EXE 362-63

sharing modes 362, 493
file size

examining 336, 378
setting 338, 364

fixed disk. See also diskette

bootable 103

capacity 105
cylinders, number of 105
format

logical 105-6
physical 101-3

organization 100-108
boot sector 108,109-11, 496
file allocation table (FAT) 108,118-21
files area 117-18

root directory 109,111-17
partitions 105,107
platters 100-101
programming recommendations 121-22
ROM BIOS services (see interrupt 13H)
sectors

DOS numbering 107, 300
number of 357

ROM BIOS numbering 101,103, 300
size of 101, 357

504

Index

flags register 31-34
control flags 32, 34
status flags
AF flag (auxiliary carry flag) 33
CP flag (carry flag) 33, 159
ZF flag (zero flag) 33,159

floppy disk controller (FDC). See disk controller
foreign country symbols and delimiters. See

interrupt 21H, function 38H; interrupt 21H,
function 65H

formfeed character 487

G-H

Game Control Adapter 235
graphics characters 485
graphics modes. See video modes
handles

general discussion of 350-51
number of 351

standard DOS 351

hard disk. See fixed disk

Hercules Graphics Card 69, 82
hexadecimal numbers

addition 473

in BASIC 472

conversion to decimal 469-71

multiplication 474
notation of 466-69

IBM

hardware

PC 6

PC/AT 6

PC/XT 6

PS/2 models 25 and 30 6
PS/2 models 50 and 60 6

PS/2 Model 80 7

video subsystems (see CGA; EGA; MCGA;
MDA; VGA)

manuals Xy 296
IBMBIO.COM 48

IBMDOS.COM 48-49

ICA. See intra-application communications area
idle interrupt 312
index registers 31
inheritance codes. See file sharing, inheritance

codes

input/output ports. See ports
installable device driver. See device driver

instruction pointer. See IP register
instruction set

8086 18-20

80286 18-20

80386 18-21

interface routines. See also C; compiled BASIC;
interpreted BASIC; Pascal

format of 161-68, 421-23

assembler overhead 163-64

entry and exit code 164-66
parameters 166-67, 422

programming examples 161-68,194-95, 212-14,
222, 318-19, 346,439-54

requirements of 161-63
interpreted BASIC. See also BASIC
assembly-language interface 445-48
data formats

floating-point 448-49
integer 448-49
string 449-50

interface programming examples 446-47, 450
memory model 445
parameter-passing conventions 445-46

interrupt 05H 132, 245
interrupt 08H 145
interrupt 09H 130
interrupt lOH
general discussion of 171-72
programming example 194-95
service OOH (Set Video Mode) 74,172-73,195
service OIH (Set Cursor Size) 94,173-74
service 02H (Set Cursor Position) 94,174
service 03H (Read Cursor Position) 94,175
service 04H (Read Light-Pen Position) 175
service 05H (Set Active Display Page) 87,176
service 06H (Scroll Window Up) 176-77
service 07H (Scroll Window Down) 177
service 08H (Read Character and Attribute)

177-78

service 09H (Write Character and Attribute)
178-79

service OAH (Write Character) 179-80
service OBH (Set 4-Color Palette) 180,195
service OCH (Write Pixel) 181
service ODH (Read Pixel) 181
service OEH (Write Character in Teletype Mode)

182

service OFH (Get Current Video Mode) 87,182
service lOH (Color Palette Interface) 183-86
service IIH (Character Generator Interface)

186-89

service 12H ("Alternate Select") 189-91
service 13H (Write Character String) 191
service lAH (Read/Write Display Combination

Code) 191-92
service IBH (Return Functionality/State

Information) 192-93
service ICR (Save/Restore Video State) 193

interrupt IIH 246-47
interrupt 12H 167, 247
interrupt 13H
general discussion of 198-99
programming example 212-14

505

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

interrupt 13H, continued
service OOH (Reset Disk System) 199
service OIH (Get Disk Status) 199-200
service 02H (Read Disk Sectors) 200-202,

213-14

service 03H (Write Disk Sectors) 202, 213-14
service 04H (Verify Disk Sectors) 202-3
service 05H (Format Disk Track) 203-5
service 06H (Format PC/XT Fixed Disk Track)

206

service 07H (Format PC/XT Fixed Disk) 206
service 08H (Get Disk Drive Parameters) 206
service 09H (Initialize Fixed-Disk Parameter

Tables) 206
service OAH (Read Long) 207
service OBH (Write Long) 207
service OCH (Seek to Cylinder) 207
service ODH (Alternate Fixed Disk Reset) 207
service lOH (Test for Drive Ready) 207
service IIH (Recalibrate Drive) 207
service 15H (Get Disk Type) 207-8
service 16H (Diskette Change Status) 208
service 17H (Set Diskette Type) 208-9
service 18H (Set Media Type for Format) 209
service 19H (Park Heads) 209
service lAH (Format ESDI Unit) 209

interrupt 14H
general discussion of 227-28
service OOH (Initialize Serial Port) 228-29
service OIH (Send Out One Character) 229
service 02H (Receive One Character) 230
service 03H (Get Serial Port Status) 230
service 04H (Initialize Extended Serial Port) 231
service 05H (Control Extended Communications

Port) 232
interrupt 15H
general discussion of 232-33
service OOH (Turn On Cassette Motor) 233
service OIH (Turn Off Cassette Motor) 233
service 02H (Read Cassette Data Blocks)

233-34

service 03H (Write Cassette Data Blocks) 234
service 21H (Read or Write PS/2 POST Error

Log) 234
service 4FH (Keyboard Intercept) 240-41
service 80H (Device Open) 241
service 81H (Device Close) 241
service 82H (Program Termination) 241
service 83H (Start or Cancel Interval Timer)

234-35

service 84H (Read Joystick Input) 235
service 85H (Sys Req Keystroke) 241-42
service 86H (Wait During a Specified Interval)

235

service 87H (Protected-Mode Data Move) 235
service 88H (Get Extended Memory Size) 236
service 89H (Switch to Protected Mode) 236
service 90H (Device Busy) 242-43

interrupt 15H, continued
service 91H (Interrupt Complete) 243
service COH (Get System Configuration

Parameters) 236
service CIH (Get ROM BIOS Extended Data

Segment) 237
service C2H (Pointing-Device Interface) 237-39
service C3H (Enable/Disable Watchdog Timer)

239

service C4H (Programmable Option Select) 239
interrupt 16H
general discussion of 216, 221
programming example 222-23
service OOH (Read Next Keyboard Character)

216-17, 222
service OIH (Report Whether Character Ready)

217, 222

service 02H (Get Shift Status) 217-18
service 03H (Set Typematic Rate and Delay)

218-19

service 05H (Keyboard Write) 219-20
service lOH (Extended Keyboard Read) 220
service IIH (Get Extended Keystroke Status) 220
service 12H (Get Extended Shift Status) 220-21

interrupt 17H
general discussion of 243
service OOH (Send 1 Byte to Printer) 243
service OIH (Initialize Printer) 244
service 02H (Get Printer Status) 244

interrupt 18H 247
interrupt 19H 247-48
interrupt lAH
general discussion of 248-50
service OOH (Get Current Clock Count) 250
service OIH (Set Current Clock Count) 250
service 02H (Get Real-Time Clock Time) 250
service 03H (Set Real-Time Clock Time) 250
service 04H (Get Real-Time Clock Date) 250
service 05H (Set Real-Time Clock Date) 251
service 06H (Set Real-Time Clock Alarm) 251
service 07H (Reset Real-Time Clock Alarm) 251
service 09H (Get Real-Time Clock Alarm Time

and Status) 251
interrupt IBH 132, 308
interrupt lEH 211
interrupt IFH 90,188
interrupt 20H 299
interrupt 21H
function OOH (Terminate) 325
function OIH (Character Input with Echo) 326
function 02H (Character Output) 327,437
function 03H (Auxiliary Input) 327
function 04H (Auxiliary Output) 327
function 05H (Printer Output) 327
function 06H (Direct Console Input/Output)

327-28

function 07H (Direct Console Input Without
Echo) 328

506

Index

interrupt 21H, continued
function 08H (Console Input Without Echo) 328
function 09H (String Output) 329
function OAH (Buffered Keyboard Input)

329-30

function OBH (Check Keyboard Status) 330
function OCH (Flush Keyboard Buffer, Read

Keyboard) 330
function ODH (Flush Disk Buffers) 330
function OBH (Select Disk Drive) 330-31
function OFH (Open File) 331
function lOH (Close File) 331-32
function IIH (Find First Matching Directory

Entry) 332
function 12H (Find Next Matching Directory

Entry) 332-33
function 13H (Delete File) 333
function 14H (Sequential Read) 333
function 15H (Sequential Write) 333-34
function 16H (Create File) 334
function 17H (Rename File) 334
function 19H (Get Current Disk) 334
function lAH (Set Disk Transfer Area) 335
function IBH (Get Default Drive Information)

335

function ICH (Get Specified Drive Information)
336

function 21H (Read Random Record) 336
function 22H (Write Random Record) 336
function 23H (Get File Size) 336-37
function 24H (Set FCB Random Record Field)

337

function 25H (Set Interrupt Vector) 318, 337
function 26H (Create New PSP) 337
function 27H (Read Random Records) 337-38
function 28H (Write Random Records) 338
function 29H (Parse Filename) 338-39
function 2AH (Get Date) 339, 346
function 2BH (Set Date) 340, 346
function 2CH (Get Time) 340
function 2DH (Set Time) 340
function 2EH (Set Verify Flag) 340-41
function 2FH (Get DTA Address) 355
function 30H (Get DOS Version Number) 296,

355

function 31H (Terminate and Stay Resident)
355-56

function 33H (Get/Set Ctrl-C Flag) 356, 492
function 35H (Get Interrupt Vector) 357
function 36H (Get Disk Free Space) 357
function 38H (Get/Set Country-Dependent

Information) 357-60
function 39H (Create Directory) 360
function 3AH (Remove Directory) 360
function 3BH (Change Current Directory) 361
function 3CH (Create File) 361
function 3DH (Open Handle) 361-63

interrupt 2IH, continued
on 3EH (Close Handle) 363
function 3FH (Read from File or Device) 363
function 40H (Write to File or Device) 363-64
function 4IH (Delete File) 364
function 42H (Move File Pointer) 364-65
function 43H (Get/Set File Attributes)
function 44H (lOCTL—I/O Control for

Devices) 366-72,492
function 45H (Duplicate Handle) 372
function 46H (Force Duplicate Handle) 372-73
function 47H (Get Current Directory) 373-74
function 48H (Allocate Memory Block) 374
function 49H (Free Memory Block) 374
function 4AH (Resize Memory Block) 374-75
function 4BH (EXEC—Load and Execute a

Program) 375-76
function 4CH (Terminate with Return Code)

377,437
function 4DH (Get Return Code) 377
function 4EH (Find First Matching Directory

Entry) 378
function 4FH (Find Next Matching Directory

Entry) 379
function 54H (Get Verify Flag) 379
function 56H (Rename File) 379-80
function 57H (Get/Set File Date and Time) 380
function 58H (Get/Set Memory Allocation

Strategy) 380-81
function 59H (Get Extended Error Information)

349, 381-86

function 5AH (Create Temporary File) 386
function 5BH (Create New File) 386-87
function 5CH (Lock/Unlock File Region) 387
function 5EH (Network Machine Name and

Printer Setup) 388
function 5FH (Network Redirection) 388-90
function 62H (Get PSP Address) 390
function 65H (Get Extended Country

Information) 390-91,493
function 66H (Get/Set Global Code Page) 392
function 67H (Set Handle Count) 392
function 68H (Commit File) 393
function 6CH (Extended Open/Create) 493
general discussion of 323-25, 349-54
programming examples 318-19, 345-46, 355,

368, 372, 373
summary 396-415

interrupt 22H 307
interrupt 23H 307-8, 317-20
interrupt 24H 308-12
interrupt 25H 300-302,495
interrupt 26H 300-302,495
interrupt 27H 302-3
interrupt 28H 312
interrupt 2FH (DOS multiplex interrupt) 303-6
interrupt 4IH 198

507

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

interrupt 43H 188
interrupt 46H 198
interrupt 4AH 251
interrupt 67H 490
interrupt(s)
BASIC 50

DOS

address (see interrupt 22H; interrupt 23H;
interrupt 24H)

service (see interrupt 20H; interrupt 21H;
interrupt 25H; interrupt 26H)

general discussion of 22-23, 39-40
handlers 9, 39
hardware 40-41

microprocessor 47,160-61
nonmaskable (NMI) 40
ROM BIOS (see interrupt 05H; interrupt lOH;

interrupt IIH; interrupt 12H; interrupt 13H;
interrupt 14H; interrupt 15H; interrupt 16H)

software 48-49

stack management 40
vectors (see interrupt vectors)

interrupt request lines (IRQ) 40
interrupt vectors
initialization 45,47
inspecting 50, 357
location in memory of 15, 39
table 39,47, 51-52
updating
directly 52-53
using DOS 53-54, 318, 337

intra-application communications area (ICA) 62
I/O ports. See ports
lOCTL (input/output control). See interrupt 21H,

function 44H

IP register
general discussion of 31
ROM BIOS use of 159

J-K

joystick 235
keyboard
buffer

character present in 330
flushing 222, 330
location of 55-56

data format 131-32

DOS services (see interrupt 21H)
enhancer software 133

error detection 127

general discussion of 126-27
hold state 139

interrupts
interrupt 09H 130
interrupt 16H (see interrupt 16H)
summarized 140

keys
Alt 131

Caps Lock 131,138
Ctrl 131

Ctrl-Alt-Del 131-32

Ctrl-Break 131-32

Ctrl-Num Lock 131-32,139

duplicate 129,134
Insert 138

Num Lock 131,138
Shift 131

Shift-PrtSc 131-32

special function 131
Sys Req 131-32, 241-42

layout 126-27
numeric keypad input 134
programming example 222
repeat action (see keyboard, typematic)
ROM BIOS services (see interrupt 16H)
scan codes 128-30

status

hold state 139

shift state 137-39, 217-18, 220-21

toggle keys 139
typematic 127,132-34, 218-19

L-M

large model. See memory, models
LIB 426-27

libraries. See object libraries
light pen 175
LIM (Lotus-Intel-Microsoft) Expanded Memory

Specification 490
linefeed character 486,487
LINK 376,425, 427-29. See also linker
link editor. See linker

linker

linking .OBJ files 429
linking one program 428
linking with libraries 428-29

logical sectors. See sectors, logical
LPTl device 351

machine ID 62-65

machine language 18. See also assembly language
MCGA (Multi-Color Graphics Array)
attributes 81-85

cursor 94,173-75

display pages 87-89
memory usage 86-87
palettes 79
video modes 172

MDA (Monochrome Display Adapter)
attributes 81, 83-84
cursor 94,173-75

memory usage 86-87
video modes 69,172

508

Index

medium model. See memory, models
memory

amount of 13

conventional (see interrupt 12H)
extended (see interrupt 15H, function 88H)

addressing techniques
*'back-words" storage 24
protected-mode 26-27
segmented 25-27

DOS services (see interrupt 21H)
expanded 14,490
memory manager 490

extended 14

general discussion of 13-15
maps

executable program 418-19
system 15

models 420 (see also C; compiled BASIC;
interpreted BASIC; Pascal)

ROM BIOS services (see interrupt 12H;
interrupt 15H)

system 15
video (see video memory)

memory-resident programs. See TSR
Micro Channel bus 13

microprocessor. See 8086; 8088; 80286; 80386
monitors. See video displays
Monochrome Display Adapter. See MDA
motherboard. See system board
MS-DOS. See DOS

Multi-Color Graphics Array. See MCGA
multiplex interrupt. See interrupt 2FH
multitasking
8086-family microprocessors and 6-7
programming issues 95, 96,459-60

N-O

NEC controller 210

NETBIOS 388

NMI. See nonmaskable interrupt
nonmaskable interrupt (NMI) 40
object files 426,429
object libraries
creating 426-27
using 428-29

object modules
creating 426
using 426-29

offset registers 31. See also BP register; SP
register, BX register

offsets, relative 25, 34
OS/2

compatibility issues 95, 331, 351, 419,459-60
multitasking in 95, 96

overlay 375-76

palettes. See video output, color control, palettes
paragraph 25. See also segment
parameter passing
C 440-41

compiled BASIC 450
general discussion of 422
interpreted BASIC 445
Pascal 453

Pascal (programming language)
assembly-language interface 453
data formats

floating-point 455
integer 455
set 455

string 455
interface programming example 453
memory model 453
parameter passing in 453

PIC. See programmable interrupt controller
pixels
attributes 84-86

display resolution of 76-77
general discussion of 71
memory representation of 91-93
ROM BIOS services (see interrupt lOH)

ports

assignment of 38-39
general discussion of 22, 37-39
programming-language interface
in assembly language 37
in high-level languages 38

serial (RS-232) (see serial communications)
POST (power-on self test) 45, 234
power-on self test. See POST
printer services
DOS services (see interrupt 21H)
print screen (see interrupt 05H)
ROM BIOS services (see interrupt 17H)

print screen. See interrupt 05H
PRN device 351

programmable interrupt controller (PIC) 9, 40
programmable interval timer. See system timer
programming languages. See assembly language;

C; compiled BASIC; interpreted BASIC;
Pascal

program segment prefix. See PSP
program termination 299. See also TSR
protected mode 7, 26-27, 235, 236
PSP (program segment prefix) 313-17, 337, 390

Q-R

QuickBASIC. See compiled BASIC
raster scan 71

raw mode 367-68

509

PROGRAMMER'S GUIDE TO THE IBM PC AND PS/2

read-only memory (ROM). See ROM; ROM
BASIC; ROM BIOS

real mode 7

real-time clock. See also time and date

alarm 153, 251

general discussion of 153
ROM BIOS services (see interrupt lAH)

reboot. See interrupt 19H
redirection 372-73

registers. See also individual registers
addressing with 34-35
flags 31-34
general discussion of 28
offset 31

scratch pad 28, 29
segment 28
use of 28-37

repeat key action. See keyboard, typematic
resident programs. See TSR
retrace. See vertical retrace

return codes 355, 377. See also error codes

ROM (read-only memory) 44. See also ROM
BASIC; ROM BIOS

bootstrap loader 46
start-up routines 44-45

ROM BASIC 46, 65

ROM BIOS

advanced BIOS 168

assembly-language interface 160-68
bootstrap loader 46, 247-48
calling conventions 158-59
cassette tape services (see interrupt 15H)
data area 54-62

disk 57

keyboard 55-56, 60
ROM BASIC 61-62

video 57-60

disk services (see interrupt 13H)
equipment-list service (see interrupt IIH)
extended data area 62, 237
extensions 65-66

general discussion of 46-47,156-57
hooks 239-43

interrupts 157-58 (see also interrupt 05H;
interrupts lOH through lAH)

intra-application communications area (ICA) 62
keyboard handling
buffer 55-56, 60
duplicate keys 129,134
keyboard interrupt (see interrupt 09H)
repeat keys 132-34
scan-code translation 134-37

shift state 137-39, 217-18, 220-21
services (see interrupt 16H)

location in memory 44, 66
memory size determination (see interrupt 12H;

interrupt 15H)
miscellaneous services (see interrupt 15H)
POST (power-on self test) 45

ROM BIOS, continued
printer services (see interrupt 17H)
programming examples 162,168,194-95,

212-14, 222
serial port services (see interrupt 14H)
services

general discussion of 157-58
programming interface to 158-68
summary of 254-90 (see also interrupt 05H;

interrupts lOH through lAH)
switch to ROM BASIC (see interrupt 18H)
time-of-day services (see interrupt lAH)
version 62-65

video services (see interrupt lOH)
root directory. See directory, root
RS-232. See serial communications

scan codes. See keyboard, scan codes
scratch-pad registers 29. See also AX register; BX

register; CX register; DX register
screen. See video output
sectors

DOS notation 107, 300
DOS services (see interrupt 21H; interrupt 25H;

interrupt 26H)
logical 107, 300,496
number of 357

ROM BIOS notation 101,103, 300

ROM BIOS services (see interrupt 13H)
size of 101, 357

segment(s)
general discussion of 25-27
notation 25,468-69

registers 29-31 (see also CS register; DS register,
ES register; SS register)

selectors 26-27

serial communications

DOS services 327

ROM BIOS services (see interrupt 14H)
SHARE 362-63,497
sharing. See file sharing
SI (source index) register 31,159, 419
small model. See memory, models
sound

computer production of 148-53
frequency range 146-48
programming examples 150-53

source code

file format 486

filename extension of 424

translating to object code 424-25
source index register. See SI register
SP (stack pointer) register
DOS use of 302

general discussion of 31,419
ROM BIOS use of 159

510

Index

space allocation. See file allocation table
speaker. See sound
SS register
general discussion of 418-19
ROM BIOS use of 158

stack

general discussion of 32-33, 36-37
registers (see BP register; SP register; SS

register)
size of 33

use of

parameter passing 422-23
temporary storage 345-46

stack pointer register. See SP register
stack segment register. See SS register
start-up ROM. See ROM
step-rate time. See disk base table
subdirectory. See also directory
compared with root directory 114
directory entry for 115
general discussion of 114-15

subroutines. See interface routines

system board
bus 11-13

components

clock generator 10
microprocessor 2
programmable interrupt controller (PIC) 9
system timer 10,144-46

layout 2-5
system timer (programmable interval timer)
DOS services 340

frequency of 145
functions of 10

interrupt 145
programming interface 149-50
ROM BIOS services (see interrupt lAH)
sound generation with 148-50
tick count

location of 59,145
midnight rollover 59, 250

T-U

tab character 487

teletype mode (video output) 182
terminate-and-stay-resident programs. See TSR
terminate program 299. See also TSR
text files

creating 487
format of 485-88

special characters in 486-87
time and date

DOS services 339-40, 357-60, 380
programming example 346
ROM BIOS services 250-51

timer. See system timer

toggle keys. See keyboard
tracks 101. See also diskette; fixed disk
TSR (terminate-and-stay-resident) programs
DOS services 302, 355-56
general discussion of 302-3

TTY. See teletype mode
Turbo Pascal. See Pascal

typematic. See keyboard, typematic
UNDC 323, 350, 459

v-w

vertical retrace 71

VGA (Video Graphics Array)
attributes 81-86

cursor 94,173-75
display pages 87-89
memory usage 69-70, 86-87
palettes 79-80
video modes 172

video digital-to-analog converter (DAC) 79-80,
183-86

video display pages 87-89
video displays 69, 74-75
analog 75
composite 72-73, 81
digital 75
resolution 76-77

Video Graphics Array. See VGA
video memory 69-70, 86-93
video modes

general discussion of 68, 72-73, 81-82
hardware support for 72-73
selecting 73-76,172-73

video output. See also CGA; EGA; Hercules
Graphics Card; MCGA; MDA; VGA

color control 77-86

attributes 81-86

palettes 77-80,183-86
compatibility 97-98
DOS services (^ee interrupt 21H)
general discussion of 93-96
modes (see video modes)
ROM BIOS services (^ee interrupt lOH)
use of exclusive-OR for 179

video subsystems 68. See also CGA; EGA;
Hercules Graphics Card; MCGA; MDA;
VGA

volume label 344,497
volume serial number 497

windowing environments 95, 98

511

Peter Norton

Peter Norton was reared in Seattle, Washington, and was educated at Reed
College in Portland, Oregon. Before discovering microcomputers, he spent
a dozen years working on mainframes and minicomputers for companies
including Boeing and Jet Propulsion Laboratories. When the IBM PC made
its debut, Norton was among the first to buy one. Now recognized as a prin
cipal authority on IBM personal computer technology, he is the president of
Peter Norton Computing, Inc., a company that is a leader in developing and
publishing PC utility software. Norton is also the author of the popular book
Inside the IBM PC, now in its second edition from Brady Books.

Richard Wilton

Currently a fellow in the Medical Informatics program at the University
of California, Los Angeles, Richard Wilton earned an M.D. from UCLA
and completed his residency in pediatrics at the Childrens Hospital of Los
Angeles. He has been programming computers since the late 1960s and has
worked with IBM mainframes as well as with various microcomputers.

Wilton has written about IBM PC and PS/2 programming for BYTE, Computer
Language, and The Seybold Outlook on Professional Computing. He is the
author of PROGRAMMER'S GUIDE TO PC AND PS/2 VIDEO SYSTEMS,

published by Microsoft Press.

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Cover design by Greg Hickman
Interior text design by Darcie S. Furlan
Illustrations by Becky Geisler-Johnson
Principal typography by Jean Trenary

Text composition by Microsoft Press in Times Roman with display in
Times Roman Bold, using the Magna composition system and the
Linotronic 300 laser imagesetter.

OTHER TITLES FROM MICROSOFT PRESS

ADVANCED MS-DOS® PROGRAMMING, 2nd ed.

Ray Duncan

^'ADVANCED MS-DOS PROGRAMMING is one of the most authoritative in its field..."

PC Magazine

ADVANCED MS-DOS PROGRAMMING has been completely revised and expanded to include MS-DOS
version 4.0, DOS and OS/2 compatibility, and the new PS/2 ROM BIOS services. Ray Duncan begins his in
structive guide to assembly-language and C programming in the PC/MS-DOS environment by giving you an
overview of the structure and loading of MS-DOS. He addresses key programming topics, including character
devices, mass storage, memory management, and process management. You will find a detailed reference sec
tion of system functions and interrupts for all current versions of MS-DOS; ROM BIOS information, including
the EGA, VGA, PC/AT, and PS/2; version 4.0 of the Lotus/Intel/Microsoft Expanded Memory Specification;
and advice on writing "well-behaved*' vs hardware-dependent applications. The examples, ranging from pro
gramming samples to full-length utilities, are instructive and extremely utilitarian and were developed using
the Microsoft Macro Assembler version 5.1 and Microsoft C Compiler version 5.1.

512 pages, softcover $24.95 Order Code: 86-96668

THE MS-DOS® ENCYCLOPEDIA

Foreword by Bill Gates

"... for those with any technical involvement in the PC industry, this is the one and only volume worth
reading."

PC WEEK

If you're a serious MS-DOS programmer, this is the ultimate reference. THE MS-DOS ENCYCLOPEDIA is
an unmatched sourcebook for version-specific technical data, including annotations of more than 100 system
function calls, each accompanied by C-callable, assembly-language routines; for comprehensive version-
specific descriptions and usage information on each of the 90 user commands—the most comprehensive ever
assembled; and for documentation of a host of key programming utilities. Articles cover debugging, TSRs, in
stallable device drivers, writing applications for upward compatibility, and much, much more. THE MS-DOS
ENCYCLOPEDIA contains hundreds of hands-on examples, thousands of lines of code, plus an index to com
mands and topics. Covering MS-DOS through version 3.2, with a special section on version 3.3, this encyclo
pedia is the preeminent, most authoritative reference for every professional MS-DOS programmer.

1600 pages, Vk x 10, hardcover $134.95 Order Code: 86-96122

INSIDE OS/2

Gordon Letwin, Chief Architecty Systems Software y Microsoft
Foreword by Bill Gates

"Mere recommendations aren't good enough for INSIDE OS/2 If you're at all serious about OS/2 you must
buy this book."

Dr. Dobb's Journal

INSIDE OS/2 is an unprecedented, candid, and exciting technical examination of OS/2. Letwin introduces you
to the philosophy, key development issues, programming implications, and future of OS/2. He also provides the
first in-depth look at each of OS/2's design elements, how they work alone, and what roles they play in the sys
tem. A valuable and revealing programmer-to-programmer discussion on the graphical user interface, multi
tasking, memory management, protection, encapsulation, interprocess communication, direct device access,
and more. You can't get a more inside view. This is a book no OS/2 programmer can afford to be without!

304 pages, softcover $19.95 Order Code: 86-96288

THE 80386 BOOK

Assembly Language Programmer's Guide for the 80386
Ross P. Nelson

This is the most comprehensive and authoritative introduction to the 80386 chip available for 8086/8088 pro
grammers. Nelson provides a detailed analysis of the CPU, memory architecture, the protection scheme, com
patibility with 8086/80286 chips, and much more. Scores of programming and design examples demonstrate
effective 80386 assembly-language programming technique. A complete instruction-set reference and infor
mation-packed appendixes make THE 80386 BOOK a valuable reference tool.

464 pages, softcover $24.95 Order Code: 86-96494

PROGRAMMING WINDOWS

The Microsoft® Guide to Programming for the MS-DOS® Presentation Manager:
Windows 2.0 and Windows/386

Charles Fetzold

PROGRAMMING WINDOWS is the first full technical discussion of Windows 2.0 and Windows/386. It's

your fastest route to developing great Windows applications. Special topics cover memory management, fonts,
dynamically linkable libraries, manipulating the resources of the graphics device interface, and much more.
Included are scores of valuable sample programs and utilities. Even if you have little programming experience
you will gain a solid understanding of Windows' dynamics and its relationship to MS-DOS and the IBM PC.

864 pages, softcover $24.95 Order Code: 86-96049
hardcover $34.95 Order Code: 86-96130

THE PROGRAMMER'S PC® SOURCEBOOK

Reference Tables for the IBM PC®s and Compatibles, PS/2™ Machines, and DOS®
Thorn Hogan

At last! A reference book to save you the frustration of searching high and low for key pieces of technical data.
THE PROGRAMMER'S PC SOURCEBOOK integrates factual information from hundreds of sources into

convenient and accessible charts, tables, and listings. It's the first place to turn for immediate, accurate infor
mation about your computer and its operating system. It's all here. THE PROGRAMMER'S PC SOURCE-
BOOK covers all versions of PC-DOS and MS-DOS, and all IBM computers, including the PS/2 series.
Among the charts included are DOS commands and utilities; interrupts; mouse information; EMS support;
ROM BIOS calls and supporting tables; memory layout; interrupt vectors; RAM parameters; keyboard-related
charts; extended character sets; and more.

560 pages, softcover $24.95 Order Code: 86-96296

PROGRAMMER'S GUIDE TO PC® & PS/2™ VIDEO SYSTEMS

Maximum Video Performance from the EGA™, VGA, HGC, and MCGA
Richard Wilton

Do you want maximum video performace from your EGA, VGA, HGC, or MCGA graphics adapter? The
PROGRAMMER'S GUIDE TO PC & PS/2 VIDEO SYSTEMS shows you how to get it. No other book offers
such detailed, specialized programming data, techniques, and advice to help you tackle the exacting problems
of programming directly to the video hardware. And no other book offers the more than 100 invaluable source
code examples included here. Whatever graphics output you want—text, circles, region fill, bit blocks, or
animation—you'll do it faster and more effectively with PROGRAMMER'S GUIDE TO PC & PS/2 VIDEO
SYSTEMS—a one-of-a-kind resource for every serious programmer.

544 pages, softcover $24.95 Order Code: 86-96163

ADVANCED OS/2 PROGRAMMING

Ray Duncan

Here is the most complete and accurate source of information on the new features and structure of OS/2 for
C and assembly-language programmers. Topics include porting existing MS-DOS applications to OS/2, pro
gramming in both real and protected modes, writing true multitasking programs, and more. ADVANCED
OS/2 PROGRAMMING contains an example-packed reference section on the more than 250 OS/2 1.1 kernel
functions, with complete information on their calling arguments, return values, and special uses. ADVANCED
OS/2 PROGRAMMING will improve your OS/2 programming skills.

512 pages, softcover $24.95 Order Code: 86-96106
(available December 1988)

PROGRAMMER'S QUICK REFERENCE SERIES

MS-DOS® FUNCTIONS

Ray Duncan

MS-DOS FUNCTIONS: PROGRAMMER'S QUICK REFERENCE is full of information that all program

mers—professional or casual—need right at their fingertips. You'll find information—all clearly organized—
on each MS-DOS system service call (accessed via Interrupts 20H through 2FH) along with a list of the
parameters it requires, the results it returns, version dependencies, and valuable programming notes. Covers
MS-DOS through version 3.3.

128 pages, 4^4 x 8, softcover $5.95 Order Code: 86-96411

IBM® ROM BIOS

Ray Duncan

If you're an assembly-language, Pascal, or C programmer—no matter what your experience level—this is an
incredibly useful reference. IBM ROM BIOS: PROGRAMMER'S QUICK REFERENCE is a handy and com
pact guide to the ROM BIOS services of IBM PC, PC/AT, and PS/2 machines. Designed for quick and easy ac
cess to information, this guide provides core information on each ROM BIOS service: its required parameters
and returned results, version dependencies, and some valuable programming notes. Keep this book within
easy reach!

128 pages, 4^4 x 8, softcover $5.95 Order Code: 86-96478

ESSENTIAL OS/2 FUNCTIONS

Ray Duncan

ESSENTIAL OS/2 FUNCTIONS: PROGRAMMER'S QUICK REFERENCE is a guide to the most accurate,
up-to-date information on OS/2 1.0 kernel function calls within the applications program interface. Provided is
a list of the arguments each API function requires and a description of the results returned. Duncan also offers
valuable programming notes, lists common OS/2 error messages, and identifies all Family API calls.

208 pages, 4^4 x 8, softcover $9.95 Order Code: 86-96866

How to order these Microsoft Press books:

Please fill out the attached order card. Include your name, address, daytime phone number, books wanted, and
payment information. If the card has been used, call 800-638-3030 (in MD, call collect 824-7300) 8:15 AM to
4:15 PM (EST) for information on ordering.

ORDERING INFORMATION
Microsoft Press Books are available wherever books and software are sold or you can order directly from Microsoft Press.

DAYTIME PHONE

TOLL-FREE ORDERING NUMBER
For faster serv ice, cal 1 i n your credit card order:

1-800-638-3030
In Maryland call collect: 824-7300

Monday through Friday, 8:15 A M to 4:15 PM (EST)
To make ordering by phone easier, fi 1 lin the order form before call ing.

Please refer to campaign PNG88

ORDER
CODE QTY. TITLE

PRICE
OFEACH

TOTAL
PRICE

POSTAGE & HANDLING CHARGES

One book ; $2.50

Two books $3.25

Three books $4.00

Four books $4.75

Each additional book $.75

SALESTAX

California residents add 6.5%

Washington slate residentsadd 8.1%

Massachusetts residents . . . add 5%

Maryland residents add 5%

TOTAL

POSTAGE & HANDLING

SALESTAX

TOTAL

CHARGECARDNUMBER

PAYMENT:

□ Check or money order

□ American Express

□ VISA

All orders are shipped via UPS ground delivery. Please allow 4 weeks for delivery.

□ MasterCard

PNGJ

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMITNO.108 BELLEVUE,WA

POSTAGE WILL BE PAID BY ADDRESSEE

MICROSOFT PRESS

Attn:S. IDETA

16011 N.E. 36th Way
Box97017

Redmond, WA 98073-9717

THE NEW PETER NORTO

PROGRAMMER'S GUIDE TO THE

IBM* PC & PS/Z
.. both a text to be readfrom front to back and a reference book to sit on the shelf waiting with

immediate answers to questions... a mustfor every serious PC user's technical library."
PC Magazine

"Ifyou plan on some serious programming using an IBM PC, this book will be a good companion
to ease you through the rough spots." BYTE Magazine

..a valuable reference for anyone, including non-programmers, who wants to know what
happens in the PC, its software systems, and its peripherals." Online Today

THE PETER NORTON PROGRAMMER'S GUIDE TO THE IBM PC has long been a must-have
reference for programmers, students, and industry experts—even for nonprogrammers who want
to master the concepts and understand the inner workings of the IBM family of microcomputers.
Now updated to include information on all new IBM hardware — including the PS/2 line—this
book continues to be the reference of choice.

Unmatched Programming Advice
Because sound programming technique is essential, Norton and Wilton include valuable discus
sions on programming philosophy. Their characteristically astute advice, programming methods,
and techniques will help you create simple, clean programs that are portable among all current—
even future—IBM machines. You won't find better authorities than Norton and Wilton. And their
down-to-earth style makes even the most complex concepts readily understandable.

SoUd Technical Data

Use this book as a pure reference, dipping into specific chapters for up-to-date information on
ROM software; video, disk, and keyboard basics; clocks, timers, and sound generation; ROM BIOS
basics and the ROM BIOS services; DOS basics, interrupts, and functions; and much more. Of spe
cial interest are the details of the architectural similarities and differences among IBM machines.

Timely New Information
A wealth of updated and new information covers the 80286 and 80386 microprocessors; the
enhanced keyboard; the new VGA and MCGA; the new PS/2 ROM BIOS; current versions of DOS;
interrupts, device drivers, and video programming; and programming in C, QuickBASIC, and
Turbo Pascal®

Peter Norton, developer of the popular Norton Utilities, is a preeminent authority on the IBM
family of microcomputers. His books, including INSIDE THE IBM PC, were among the first to fully
explain and explore the IBM PC.

Richard Wilton, author of PROGRAMMER'S GUIDE TO PC AND PS/2
VIDEO SYSTEMS, is a frequent contributor to BYTE, Computer Language,
and Andrew Seybold's Outlook on Professional Computing.

ISBN l-SSt.lS-131-N

5 2 29!

Cnxommended)

9 781556 151316

