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INTRODUCTION

The world of personal computers has come a long way in the few years
since the original edition of this book appeared, yet the goal of this book
remains a simple but ambitious one: to help you master the principles of
programming the IBM personal computer family. From the time that the
first IBM Personal Computer (known simply as ‘‘the PC’’) was introduced
in the fall of 1981, it was clear that it was going to be a very important com-
puter. Later, as PC sales zoomed beyond the expectations of everyone (IBM
included) and as the original model was joined by a sibling or two, the PC
became recognized as the standard for serious desktop computers. From
the original PC, a whole family of computers—a family with many
branches — has evolved. And at the same time the importance of the PC
family has also grown.

The success and significance of the PC family has made the develop-
ment of programs for it very important. However, the fact that each member
of the family differs in details and characteristics from its relatives has also
made the development of programs for the family increasingly complex.

This book is about the knowledge, skills, and concepts that are needed
to create programs for the PC family —not only for one member of the
family (though you might perhaps cater to the peculiarities and quirks of
one member) but for the family as a whole—in a way that is universal
enough that your programs should work not only on all the present family
members, but on future members as well.

This book is for anyone involved in the development of programs for
the PC family. It is for programmers, but not only for programmers. It is for
anyone who is involved in or needs to understand the technical details and
working ideas that are the basis for PC program development, including
anyone who manages programmers, anyone who plans or designs PC pro-
grams, and anyone who uses PC programs and wants to understand the
details behind them.

Some Comments on Philosophy

One of the most important elements of this book is the discussion of pro-
gramming philosophy. You will find throughout this book explanations of
the ideas underlying IBM’s design of the PC family and of the principles
of sound PC programming, viewed from experience.

vii
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If this book were to provide you with only facts— tabulations of
technical information —it would not serve you well. That’s why we’ve in-
terwoven with the technical discussion an explanation of what the PC family
is all about, of the principles that tie the various family members together,
and of the techniques and methods that can help you produce programs that
will endure and prosper along with the PC family.

How to Use This Book

This book is both a reading book and a reference book, and you can ap-
proach it in at least two ways. You may want to read it as you would any
other book, from front to back, digging in where the discussion is useful to
you and quickly glancing through the material you don’t yet need. This ap-
proach provides a grand overview of the workings (and the ideas behind the
workings) of PC programs. You can also use this book as a pure reference,
and dip into specific chapters for specific information. We’ve provided a
detailed table of contents at the beginning of each chapter and an extensive
index to help you find what you need.

When you use this book as a random-access reference to the details of
PC programming, you’ll find that much of the material is intricately interre-
lated. To help you understand the interrelationships, we have repeated some
details when it was practical to do so and have referred you to other sections
when such repetition was less practical.

What’s New in This Edition

viii

As you might guess, this edition of the Programmer’s Guide has been
brought up to date for the new generation of IBM personal computers: the
Personal System/2 computers, or PS/2s.

In some ways this book is more complex and more detailed than the
original. There’s a good reason for this: The newer members of the PC and
PS/2 family are more complicated computers, and the later versions of DOS
are more complicated and have more features than their predecessors. It
was inevitable that this revised version of the Programmer’s Guide would
reflect this greater complexity in the hardware, the ROM BIOS, and DOS.

Still, you’ll find that a few members of the extended PC family aren’t
covered in this book. The PCjr, the XT/286, and the PC Convertible are used
relatively infrequently, and the PS/2 Model 70 was released too recently to
be included. Nevertheless, each of these machines is similar to one of the
PCs or PS/2s whose innards we will examine in detail, so this book should
be a useful guide even if you are programming a Model 70 or one of the less
widely used PCs.
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Here are some of the changes you’ll find in this new edition:

New video subsystems. Since the original edition appeared, IBM’s
Enhanced Graphics Adapter (EGA) became a de facto hardware standard for
PC programmers and users. Then the PS/2s introduced two new video sub-
systems, the Multi-Color Graphics Array (MCGA) and the Video Graphics
Array (VGA). These new video subsystems receive extensive coverage in
Chapters 4 and 9.

New keyboards. IBM supports a new, extended keyboard with later
versions of the PC/AT and with all PS/2s. Chapters 6 and 11 have been
expanded to cover the new hardware.

A new focus on C programming. For better or worse, the most recent
versions of DOS have been strongly influenced by the C programming
language. This influence is even more apparent in such operating envi-
ronments as Microsoft Windows, UNIX, and OS/2—all of which were
designed by C programmers. For this reason you’ll find new examples of C
programming in several different chapters. Of course, we haven’t aban-
doned Pascal and BASIC —in fact, Chapter 20 examines each of these pro-
gramming languages.

A new perspective on DOS. DOS has evolved into a mature operating
system whose design can now be viewed with the clarity of hindsight. The
past several years of working with DOS have helped us view this immensely
popular operating system with a practical perspective born of experience.
Our discussions of DOS emphasize which of its features are obsolescent and
which are pointers to the future.

Despite these changes, the direction and philosophy of this book
remain the same. When you write a program for a PC or PS/2, you can
actually program for an entire family of computers. Each member of the
family —the PC, the PC/XT, the PC/AT, and all PS/2s—has hardware and
software components that are identical or similar to those in other members
of the family. When you keep this big picture in mind, you’ll be able to
write programs that take advantage of the capabilities of the different PC
and PS/2 models without sacrificing portability.

Other Resources

One book, of course, can’t provide you with all the knowledge that you
might possibly need. We’ve made this book as rich and complete as we rea-
sonably can, but there will always be a need for other kinds of information.
Here are some of the places you might look for material to supplement what
you find here.
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For detailed technical information about the PC family, the ultimate
source is IBM’s series of technical reference manuals. Specific technical
reference manuals exist for the original PC, for the XT, for the AT, and for
PS/2 models 30, 50, 60, and 80. In addition, the detailed IBM BIOS Interface
Technical Reference Manual summarizes the capabilities of the Basic Input/
Output System in all members of the extended PC family. You should know
a few things about using these model-specific manuals:

o Information specific to one model is not differentiated from
general information for the whole PC family. To be sure of the dif-
ferences, you should use common sense, compare the different
manuals, and consult this book.

e Remember that each new model in the PC family adds new
features. If you turn to the manual for a later model, you will find
information on a wide variety of features; if you turn to the
manual for an earlier model, you’ll avoid being distracted by fea-
tures that do not apply to all models in the family.

There is also an IBM Options and Adapters Technical Reference Manual
for the various options and adapters used by the PC family, such as different
disk drives or display screens. Technical information about this kind of
equipment is gathered into this manual, which is updated periodically. (The
updates are available by subscription.) Little of the information in this
technical reference manual is of use to programmers, but you might find
some parts of interest.

IBM also publishes technical reference manuals for special extensions
to the PC, such as PC Network. ‘

Perhaps the most important of the IBM technical reference manuals is
the series for DOS. These manuals contain a wealth of detailed technical
information which we have summarized in this book.

A number of other sources can provide information to supplement the
IBM manuals:

e For a somewhat broader perspective on the IBM Personal Com-
puter —one that is not focused on programming — see Peter
Norton’s Inside the IBM Personal Computer, published by Robert J.
Brady Company.

e For a broader perspective on DOS, see the third edition of Van
Wolverton’s Running MS-DOS, and The MS-DOS Encyclopedia, both
published by Microsoft Press.
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Because this book covers the subject of PC programming in a broad
fashion, it can provide you with only a few key details about individual
programming languages. For details on particular programming languages
and the many specific compilers for those languages, you will need more
books than we could begin to list or recommend.

With these introductory remarks completed, it’s time to plunge into
the task of mastering the principles of programming the PC family!

xi
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From the programmer’s point of view, all members of the PC family consist
of a processor, memory chips, and several smart, or programmable, circuit
chips. All the main circuit components that make the computer work are lo-
cated on the system board; other important parts are located on expansion
boards, which can be plugged into the system board.

The system board (Figures 1-1 through 1-3) contains the microproces-
sor, which is tied to at least 64 KB of memory; some built-in ROM programs,
such as BASIC and the ROM BIOS; and several very important support chips.
Some of these chips control external devices, such as the disk drive or the
display screen, and others help the microprocessor perform its tasks.

In this section, we discuss each major chip and give a few important
technical specifications. These chips are frequently known by more than
one name. For example, some peripheral input/output hardware is super-
vised by a chip known as the 8255. This chip is also referred to as the 8255A
and the 8255A-5. The suffixes A and 5 refer to revision numbers and to parts
rated for operation at different speeds. For programming purposes, any
Intel chip part number that starts with 8255 is identical to any other chip
whose part number starts with 8255, regardless of the suffix. However, when
you replace one of these chips on a circuit board, note the suffix. If the
suffixes are different, the part may not operate at the proper speed.

The Microprocessor

In all PCs, the microprocessor is the chip that runs programs. The micropro-
cessor, or central processing unit (CPU), carries out a variety of computa-
tions, numeric comparisons, and data transfers in response to programs
stored in memory.

The CPU controls the computer’s basic operation by sending and
receiving control signals, memory addresses, and data from one part of the
computer to another along a group of interconnecting electronic pathways
called a bus. Located along the bus are input and output (1/0) ports that con-
nect the various memory and support chips to the bus. Data passes through
these 1/0 ports while it travels to and from the CPU and the other parts of the
computer.

In the IBM PCs and PS/2s, the CPU always belongs to the Intel 8086
family of microprocessors. (See Figure 1-4.) We’ll point out the similarities
and differences between the different microprocessors as we describe them.
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Model Microprocessor
PC 8088

PC/XT 8088

PC/AT 80286

PS/2 Models 25, 30 8086
PS/2 Models 50, 60 80286
PS/2 Model 80 80386

Figure 1-4. Microprocessors used in IBM PCs and PS/ 2s.

The 8088 Microprocessor

The 8088 is the 16-bit microprocessor that controls the standard IBM per-
sonal computers, including the original PC, the PC/XT, the Portable PC, and
the PCjr. Almost every bit of data that enters or leaves the computer passes
through the CPU to be processed.

Inside the 8088, 14 registers provide a working area for data transfer
and processing. These internal registers, forming an area 28 bytes in size,
are able to temporarily store data, memory addresses, instruction pointers,
and status and control flags. Through these registers, the 8088 can access 1
MB (megabyte), or more than one million bytes, of memory.

The 8086 Microprocessor

The 8086 is used in the PS/2 models 25 and 30 (and also in many IBM PC
clones). The 8086 differs from the 8088 in only one minor respect: It uses a
full 16-bit data bus instead of the 8-bit bus that the 8088 uses. (The difference
between 8-bit and 16-bit buses is discussed on page 12.) Virtually anything
that you read about the 8086 also applies to the 8088; for programming
purposes, consider them identical.

The 80286 Microprocessor

The 80286 is used in the PC/AT and in the PS/2 models 50 and 60. Although
fully compatible with the 8086, the 80286 supports extra programming fea-
tures that let it execute programs much more quickly than the 8086. Perhaps
the most important enhancement to the 80286 is its support for multitasking.

Multitasking is the ability of a CPU to perform several tasks at a
time—such as printing a document and calculating a spreadsheet— by
quickly switching its attention among the controlling programs.
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~ The 8088 used in a PC or PC/XT can support multitasking with the help
of sophisticated control software. However, an 80286 can do a much better
job of multitasking because it executes programs more quickly and ad-
dresses much more memory than the 8088. Moreover, the 80286 was de-
signed to prevent tasks from interfering with each other.

The 80286 can run in either of two operating modes: real mode or pro-
tected mode. In real mode, the 80286 is programmed exactly like an 8086. It
can access the same 1 MB range of memory addresses as the 8086. In pro-
tected mode, however, the 80286 reserves a predetermined amount of
memory for an executing program, preventing that memory from being
used by any other program. This means that several programs can execute
concurrently without the risk of one program accidentally changing the con-
tents of another program’s memory area. An operating system using 80286
protected mode can allocate memory among several different tasks much
more effectively than can an 8086-based operating system.

The 80386 Microprocessor

The PS/2 Model 80 uses the 80386, a faster, more powerful microprocessor
than the 80286. The 80386 supports the same basic functions as the 8086 and
offers the same protected-mode memory management as the 80286. How-
ever, the 80386 offers two important advantages over its predecessors:

e The 80386 is a 32-bit microprocessor with 32-bit registers. It can
perform computations and address memory 32 bits at a time in-
stead of 16 bits at a time.

e The 80386 offers more flexible memory management than the 80286
and 8086.

We’ll say more about the 80386 in Chapter 2.

The Math Coprocessor

The 8086, 80286, and 80386 can work only with integers. To perform
floating-point computations on an 8086-family microprocessor, you must
represent floating-point values in memory and manipulate them using only
integer operations. During compilation, the language translator represents
each floating-point computation as a long, slow series of integer operations.
Thus, ‘‘number-crunching’’ programs can run very slowly —a problem if
you have a large number of calculations to perform.

A good solution to this problem is to use a separate math coprocessor
that performs floating-point calculations. Each of the 8086-family micro-
processors has an accompanying math coprocessor: The 8087 math
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coprocessor is used with an 8086 or 8088; the 80287 math coprocessor is used
with an 80286; and the 80387 math coprocessor is used with an 80386. (See
Figure 1-5.) Each PC and PS/2 is built with an empty socket on its mother-
board into which you can plug a math coprocessor chip.

From a programmer’s point of view, the 8087, 80287, and 80387 math
coprocessors are fundamentally the same: They all perform arithmetic with
a higher degree of precision and with much greater speed than is usually
achieved with integer software emulation. In particular, programs that use
math coprocessors to perform trigonometric and logarithmic operations can
run up to 10 times faster than their counterparts that use integer emulation.

Programming these math coprocessors in assembly language can be
an exacting process. Most programmers rely on high-level language transla-
tors or commercial subroutine libraries when they write programs to run
with the math coprocessors. The techniques of programming the math
coprocessors directly are too specialized to cover in this book.

Approximate Range Significant Digits

Data Type (from) (to) Bits (decimal)
Word integer -32,768 +32,767 16 4
Short integer —2 % 10E9 +2 % 10E9 32 9
Longinteger -9 x 10E18 +9 x 10E18 64 18
Packed decimal -99...99 +99...99 80 18
Short real 8.43 x 10E-37 3.37 x 10E38 32 6-7
Long real 4.19 x 10E-307 1.67 x 10E308 64 15-16
Temporary real 3.4 x 10E—4932 1.2 x 10E4932 80 19

Figure 1-5. The range of numeric data types supported by the 8087, 80287, and 80387
math coprocessors.

The Support Chips

The microprocessor cannot control the entire computer without some
help —nor should it. By delegating certain control functions to other chips,
the CPU is free to attend to its own work. These support chips can be
responsible for such processes as controlling the flow of information
throughout the internal circuitry (as the interrupt controller and the DMA
controller are) and controlling the flow of information to or from a particu-
lar device (such as a video display or disk drive) attached to the computer.
These so-called device controllers are often mounted on a separate board
that plugs into one of the PC’s expansion slots.
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Many support chips in the PCs and PS/2s are programmable, which
means they can be manipulated to perform specialized tasks. Although
direct programming of these chips is generally not a good idea, the follow-
ing descriptions will point out which chips are safe to program directly and
which aren’t. Because this book does not cover direct hardware control, you
should look in the IBM technical manuals as well as in the chip manufac-
turers’ technical literature for details about programming individual chips.

The Programmable Interrupt Controller

In a PC or PS/2, one of the CPU’s essential tasks is to respond to hardware
interrupts. A hardware interrupt is a signal generated by a component of the
computer, indicating that component’s need for CPU attention. For example,
the system timer, the keyboard, and the disk drive controllers all generate
hardware interrupts at various times. The CPU responds to each interrupt by
carrying out an appropriate hardware-specific activity, such as increment-
ing a time-of-day counter or processing a keystroke.

Each PC and PS/2 has a programmable interrupt controller (PIC) circuit
that monitors interrupts and presents them one at a time to the CPU. The
CPU responds to these interrupts by executing a special software routine
called an interrupt handler. Because each hardware interrupt has its own in-
terrupt handler in the ROM BIOS or in DOS, the CPU can recognize and re-
spond specifically to the hardware that generates each interrupt. In the PC,
PC/XT, and PS/2 models 25 and 30, the PIC can handle 8 different hardware
interrupts. In the PC/AT and PS/2 models 50, 60, and 80, two PICs are chained
together to allow a total of 15 different hardware interrupts to be processed.

Although the programmable interrupt controller is indeed program-
mable, hardware interrupt management is not a concern in most programs.
The ROM BIOS and DOS provide nearly all of the services you’ll need for
managing hardware interrupts. If you do plan to work directly with the PIC,
we suggest you examine the ROM BIOS listings in the IBM technical refer-
ence manuals for samples of actual PIC programming.

The DMA Controller

Some parts of the computer are able to transfer data to and from the com-
puter’s memory without passing through the CPU. This operation is called
direct memory access, or DMA, and it is handled by a chip known as the DMA
controller. The main purpose of the DMA controller is to allow disk drives
to read or write data without involving the microprocessor. Because disk 1/0
is relatively slow compared to CPU speeds, DMA speeds up the computer’s
overall performance quite a bit.
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The Clock Generator

The clock generator supplies the multiphase clock signals that coordinate the
microprocessor and the peripherals. The clock generator produces a high-
frequency oscillating signal. For example, in the original IBM PC, this fre-
quency was 14.31818 megahertz (MHz, or million cycles per second); in the
newer machines, the frequency is higher. Other chips that require a regular
timing signal obtain it from the system clock generator by dividing the base
frequency by a constant to obtain the frequency they need to accomplish
their tasks. For example, the IBM PC’s 8088 is driven at 4.77 MHz, one-third
of the base frequency. The PC’s internal bus and the programmable interval
timer (discussed shortly) use a frequency of 1.193 MHz, running at a quarter
of the 8088 rate and one-twelfth- of the base rate.

The Programmable Interval Timer

The programmable interval timer generates timing signals at regular inter-
vals controlled by software. The chip can generate timing signals on three
different channels at once (four channels in the PS/2 models 50, 60, and 80).
The timer’s signals are used for various system tasks. One essential
timer function is to generate a clock-tick signal that keeps track of the cur-
rent time of day. Another of the timer’s output signals can be used to con-
trol the frequency of tones produced with the computer’s speaker. See
Chapter 7 for more information about programming the system timer.

Video Controllers

The many video subsystems available with the PCs and PS/2s present a
variety of programmable control interfaces to the video hardware. For ex-
ample, all PC and PS/2 video subsystems have a cathode ray tube (CRT) con-
troller circuit to coordinate the timing signals that control the video display.

Although the video control circuits can be programmed in application
software, all video subsystems have different programming interfaces.
Fortunately, all PCs and PS/2s are equipped with basic video control rou-
tines in the ROM BIOS. We’ll describe these routines in Chapter 9.

Input/Output Controllers

10

PCs and PS/2s have several input/output subsystems with specialized control
circuitry that provides an interface between the CPU and the actual 1/0
hardware. For example, the keyboard has a dedicated controller chip that
transforms the electrical signals generated by keystrokes into 8-bit codes
that represent the individual keys. All disk drives have separate controller
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circuitry that directly controls the drive; the CPU communicates with the
controller through a consistent interface. The serial and parallel communi-
cations ports also have dedicated input/output controllers.

You rarely need to worry about programming these hardware con-
trollers directly because the ROM BIOS and DOS provide services that take
care of these low-level functions. If you need to know the details of the in-
terface between the CPU and a hardware I/O controller, see the IBM tech-
nical reference manuals and examine the ROM BIOS listings in the PC and
PC/AT manuals.

Linking the Parts: The Bus

As we mentioned, the PC family of computers links all internal control cir-
cuitry by means of a circuit design known as a bus. A bus is simply a shared
path on the main circuit board to which all the controlling parts of the com-
puter are attached. When data is passed from one component to another, it
travels along this common path to reach its destination. Every micropro-
cessor, every control chip, and every byte of memory in the computer is
connected directly or indirectly to the bus. When a new adapter is plugged
into one of the expansion slots, it is actually plugged directly into the bus,
making it an equal partner in the operation of the entire unit.

Any information that enters or leaves a computer system is tem-
porarily stored in at least one of several locations along the bus. Data is
usually placed in main memory, which in the PC family consists of thou-
sands or millions of 8-bit memory cells (bytes). But some data may end up
in a port or register for a short time while it waits for the CPU to send it to its
proper location. Generally, ports and registers hold only 1 or 2 bytes of infor-
mation at a time and are usually used as stopover sites for data being sent
from one place to another. (Ports and registers are described in Chapter 2.)

Whenever a memory cell or port is used as a storage site, its location
is known by an address that uniquely identifies it. When data is ready to be
transferred, its destination address is first transmitted along the address
bus; the data follows along behind on the data bus. So the bus carries more
than data: It carries power and control information, such as timing signals
(from the system clock) and interrupt signals, as well as the addresses of the
thousands or millions of memory cells and the many devices attached to the
bus. To accommodate these four different functions, the bus is divided into
four parts: the power lines, the control bus, the address bus, and the data bus.
We’re going to discuss the subjects of address and data buses in greater
detail because they move information in a way that helps to explain some of
the unique properties of the PC family.

11
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The Address Bus

The address bus in the PC, PC/XT, and PS/2 models 25 and 30 uses 20 signal
lines to transmit the addresses of the memory cells and devices attached to
the bus. (Memory addressing is discussed more fully on page 13 and in
Chapter 3.) Because two possible values (either 1 or 0) can travel along each
of the 20 address lines, these computers can specify 220 addresses —the
limit of the addressing capability of the 8088 and 8086 microprocessors.
This amounts to more than a million possible addresses.

The 80286 used in the PC/AT can address 224 bytes of memory, so the
AT has a 24-line address bus. The bus in the 80286-based PS/2 models 50 and
60 also supports 24-bit memory addressing; in the 80386-based PS/2 Model
80, the bus has 32-bit addressing capability.

The Data Bus

12

The data bus works with the address bus to carry data throughout the com-
puter. The PC’s 8088-based system uses a data bus that has 8 signal lines,
each of which carries a single binary digit (bit); data is transmitted across
this 8-line bus in 8-bit (1-byte) units. The 80286 microprocessor of the AT
uses a 16-bit data bus and therefore passes data in 16-bit (1-word) units.

The 8088, being a 16-bit microprocessor, can work with 16 bits of data
at a time, exactly like its relative the 80286. Although the 8088 can work with
16-bit numbers internally, the size of its data bus allows the 8088 to pass data
only 8 bits at a time. This has led some people to comment that the 8088 is
not a true 16-bit microprocessor. Rest assured that it is, even though it is less
powerful than the 80286. The 16-bit data bus of the 80286 does help it move
data around more efficiently than the 8088, but the real difference in speed
between the 8088 and the AT comes from the AT’s faster clock rate and its
more powerful internal organization. :

There is an important practical reason why so many computers, in-
cluding the older members of the PC family, use the 8088 with its 8-bit data
bus, rather than the 8086 with its 16-bit bus. The reason is simple economics.
A variety of 8-bit circuitry elements are available in large quantities at low
prices. When the PC was being designed, 16-bit circuitry was more expen-
sive and was less readily available. The use of the 8088, rather than the 8086,
was important not only to hold down the cost of the PC, but also to avoid a
shortage of parts. The price of 16-bit circuitry elements has decreased sig-
nificantly since then, however, and it has become economically feasible to
use the more efficient 80286 with its 16-bit bus. Furthermore, the 80286 is
able to use a mixture of 8-bit parts and 16-bit parts, thereby maintaining
compatibility within the PC family.
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Micro Channel Architecture

The PS/2 models 50, 60, and 80 introduced a new bus hardware design that
IBM calls Micro Channel architecture. Both the Micro Channel bus in the
PS/2s and the earlier PC and PC/AT bus accomplish the same task of com-
municating addresses and data to plug-in adapters. The Micro Channel bus
hardware is designed to run at higher speeds than its predecessors as well as
to allow for more flexible adapter hardware designs. The Micro Channel
differs from the PC and PC/AT bus design both in its physical layout and in
its signal specifications, so an adapter that can be used with one bus is in-
compatible with the other.

The differences between the original PC bus, the PC/AT bus, and the
Micro Channel bus are important in operating system software but not in
applications programs. Although all programs rely implicitly on the proper
functioning of the address and data buses, very few programs are actually
concerned with programming the bus directly. We’ll come back to the
Micro Channel architecture only when we describe PS/2 ROM BIOS services
that work specifically with it.

Memory

So far, we’ve discussed the CPU, the support chips, and the bus, but we’ve
only touched on memory. We’ve saved our discussion of memory for the
end of this chapter because memory chips, unlike the other chips we’ve dis-
cussed, don’t control or direct the flow of information through a computer
system; they merely store information until it is needed.

The number and storage capacity of memory chips that exist inside
the computer determine the amount of memory we can use for programs
and data. Although this may vary from one computer to another, all PCs and
PS/2s come with at least 40 KB of read-only memory (ROM)— with space for
more—and between 64 KB and 2 MB of random-access memory (RAM).
Both ROM and RAM capacities can be augmented by installing additional
memory chips in empty sockets on the motherboard as well as by installing
a memory adapter in one of the system expansion slots. But this is only the
physical view of memory. A program sees memory not as a set of individual
chips, but as a set of thousands or millions of 8-bit (1-byte) storage cells,
each with a unique address.

Programmers must also think of memory in this way —not in terms
of how much physical memory there is, but in terms of how much address-
able memory there is. The 8088 and 8086 can address up to 1 MB (1024 KB, or
exactly 1,048,576 bytes) of memory. In other words, that’s the maximum

13
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number of addresses, and therefore the maximum number of individual
bytes of information, the processors can refer to. Memory addressing is dis-
cussed in more detail in Chapter 2.

CPU Address Space

14

Each byte is referred to by a 20-bit numeric address. In the 8086 memory
scheme, the addresses are 20 bits ‘‘wide’’ because they must travel along the
20-bit address bus. This gives the 8086 an address space with address values
that range from 00000H through FFFFFH (0 through 1,048,576 in decimal
notation). If you have trouble understanding hex notation, you might want
to take a quick look at Appendix B.

Similarly, the 80286’s 24-bit addressing scheme lets it use extended ad-
dress values in the range 000000H through FFFFFFH, or 16 MB. The 80386
can use extended 32-bit addresses, so its maximum address value is
FEFFFFFFH; that is, the 80386 can directly address up to 4,294,967,296 bytes,
or four gigabytes (GB), of memory. This is enough memory for most practi-
cal purposes, even for the most prolific programmer.

Although the 80286 and 80386 can address more than 1 MB of memory,
any program compatible with the 8086 and with DOS must limit itself to ad-

- dresses that lie in the 1 MB range available to the 8086. When the IBM PC

first appeared in 1981, 1 MB seemed like a lot of memory, but large
business-applications programs, memory-resident utility programs, and
system software required for communications and networking can easily
fill up the entire 8086 address space.

One way to work around the 1 MB limit is with the LIM (Lotus-Intel-
Microsoft) Expanded Memory Specification (EMS). The EMS is based on
special hardware and software that map additional RAM into the 8086 ad-
dress space in 16 KB blocks. The EMS hardware can map a number of differ-
ent 16 KB blocks into the same 16 KB range of 8086 addresses. Although the
blocks must be accessed separately, the EMS lets up to 2048 different 16 KB
blocks map to the same range of 8086 addresses. That’s up to 32 MB of ex-
panded memory.

Q NOTE: Don’t confuse EMS ‘‘expanded’ memory with the ‘“‘ex-
tended’’ memory located above the first megabyte of 80286 or 80386
memory. Although many memory expansion adapters can be con-
figured to serve as either expanded or extended memory (or both),
these two memory configurations are very different from both a
hardware and software point of view.



Chapter 1: Anatomy of the PCs and PS/2s

The System Memory Map

On the original IBM PC, the 1 MB address space of the 8088 was split into
several functional areas. (See Figure 1-6.) This memory map has been car-
ried forward for compatibility in all subsequent PC and PS/2 models.

PC/AT and PS/2 extended memory
100000H >
Reserved for ROM BIOS
ECO00H g
Reserved for installable ROM
CO0000H >
Video buffers
AO0000H »
Transient portion of DOS
Transient Program Area
(user programs and data)
[— System
Resident portion of DOS RAM
005004 > Data a]r)ea t;or R(;M :(I)(I)j ;rllg :ASIC
H R af I:lt'ea or t
- R errupt vectors ]

Figure 1-6. An outline of memory usage in PCs and PS/ 2s.

Some of the layout of the PC and PS/2 memory map is a consequence
of the design of the 8086 microprocessor. For example, the 8086 always
maintains a list of interrupt vectors (addresses of interrupt handling rou-
tines) in the first 1024 bytes of RAM. Similarly, all 8086-based microcom-
puters have ROM memory at the high end of the 1 MB address space, because
the 8086, when first powered up, executes the program that starts at address
FFFFOH.

The rest of the memory map follows this general division between
RAM at the bottom of the address space and ROM at the top. A maximum of
640 KB of RAM can exist between addresses 00000H and 9FFFFH. (This is
the memory area described by the DOS CHKDSK program.) Subsequent
memory blocks are reserved for video RAM (A0000H through BFFFFH),
installable ROM modules (CO000H through DFFFFH), and permanent ROM
(E0000H through FFFFFH). We’ll explore each of these memory areas in
greater detail in the chapters that follow.

15
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Design Philosophy

16

Before leaping into the following chapters, we should discuss the design
philosophy behind the PC family. This will help you understand what is
(and what isn’t) important or useful to you.

Part of the design philosophy of the IBM personal computer family
centers around a set of ROM BIOS service routines (see Chapters 8 through
13) that provide essentially all the control functions and operations that IBM
considers necessary. The basic philosophy of the PC family is: Let the ROM
BIOS do it; don’t mess with direct control. In our judgment, this is a sound
idea that has several beneficial results. Using the ROM BIOS routines en-
courages good programming practices, and it avoids some of the kludgy
tricks that have been the curse of many other computers. It also increases
the chances of your programs working on every member of the PC family.
In addition, it gives IBM more flexibility in making improvements and ad-
ditions to the line of PC computers. However, it would be naive for us to
simply say to you, ‘‘Don’t mess with direct control of the hardware.”” For
good reasons or bad, you may want or may need to have your programs
work as directly with the computer hardware as possible, doing what is col-
orfully called *‘programming down to the bare metal.”

Still, as the PC family has evolved, programmers have had the oppor-
tunity to work with increasingly powerful hardware and system software.
The newer members of the PC family provide faster hardware and better
system software, so direct programming of the hardware does not necessar-
ily result in significantly faster programs. For example, with an IBM PC
running DOS, the fastest way to display text on the video display is to use
assembly-language routines that bypass DOS and directly program the video
hardware. Video screen output is many times slower if you route it through
DOS. Contrast this with a PC/AT or PS/2 running OS/2, where the best way to
put text on the screen is to use the operating system output functions. The
faster hardware and the efficient video output services in OS/2 make direct
programming unnecessary. )

As you read the programming details we present in this book, keep in
mind that you can often obtain a result or accomplish a programming task
through several means, including direct hardware programming, calling the
ROM BIOS, or using a DOS service. You must always balance portability,
convenience, and performance as you weigh the alternatives. The more you
know about what the hardware, the ROM BIOS, and the operating system can
do, the better your programs can use them.
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Generally speaking, the more you know about how your computer works,
the more effective you’ll be at writing programs for it. High-level program-
ming languages, such as BASIC and C, are not designed to include every
possible function that you might need while programming — though admit-
tedly, some are better than others. At some point, you will want to go
deeper into your system and use some of the routines the languages them-
selves use, or perhaps go even deeper and program at the hardware level.

Although some languages provide limited means to talk directly to
memory (as with PEEK and POKE in BASIC) or even to some of the chips (as
with BASIC’s INP and OUT statements), most programmers eventually resort
to assembly language, the basic language from which all other languages
and operating systems are built. The 8086 assembly language, like all other
assembly languages, is composed of a set of symbolic instructions, as shown
in Figure 2-1. An assembler translates these instructions and the data associ-
ated with them into a binary form, called machine language, that can reside
in memory and be processed by the 8086 to accomplish specific tasks.

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by all 8086-family microprocessors:

AAA ASCII Adjust After Addition CWD Convert Word to Doubleword
AAD ASCII Adjust After Division DAA Decimal Adjust After Addition
AAM ASCII Adjust After Multiplication DAS Decimal Adjust After Subtraction
AAS ASCII Adjust After Subtraction DEC DECrement
ADC ADd with Carry DIV Unsigned DIVide
ADD ADD ESC ESCape
AND AND HLT HalLT
CALL CALL IDIV Integer DIVide
CBW Convert Byte to Word IMUL Integer MULtiply
CLC CLear Carry flag IN INput from I/O port
CLD CLear Direction flag INC INCrement
CLI CLear Interrupt flag INT INTerrupt
CMC CoMplement Carry flag INTO INTerrupt on Overflow
CMP CoMPare IRET Interrupt RETurn
CMPS CoMPare String JA Jump if Above
CMPSB CoMPare String (Bytes) JAE Jump if Above or Equal
CMPSW CoMPare String (Words) JB Jump if Below
Figure 2-1. The instruction set used with the 8086, 80286, and 80386. (continued)
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Mnemonic Full Name

Mnemonic Full Name

Instructions recognized by all 8086-family microprocessors: (continued)

JBE
IC
ICXZ
JE
JG
JGE
JL
JLE
IMP
INA
JNAE
JNB
JNBE
JNC
JNE
ING
INGE
JNL
JNLE
JNO
JNP
JNS
INZ
JO

JPE
JPO
JS

JZ
LAHF
LDS
LEA

Jump if Below or Equal
Jump if Carry

Jump if CX Zero

Jump if Equal

Jump if Greater than

Jump if Greater than or Equal
Jump if Less than

Jump if Less than or Equal
JuMP

Jump if Not Above

Jump if Not Above or Equal
Jump if Not Below

Jump if Not Below or Equal
Jump if No Carry

Jump if Not Equal

Jump if Not Greater than
Jump if Not Greater than or Equal
Jump if Not Less than

Jump if Not Less than or Equal
Jump if Not Overflow
Jump if Not Parity

Jump if Not Sign

Jump if Not Zero

Jump if Overflow

Jump if Parity

Jump if Parity Even

Jump if Parity Odd

Jump if Sign

Jump if Zero

Load AH with Flags

Load pointer using DS
Load Effective Address

LES
LOCK
LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVSB
MOVSW
MUL
NEG
NOP
NOT
OR
ouT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET

Load pointer using ES
LOCK bus

LOaD String

LOaD String (Bytes)
LOaD String (Words)
LOooOP

LOOP while Equal
LOOP while Not Equal
LOOP while Not Zero
LOOP while Zero
MOVe data

MOVe String

MOVe String (Bytes)
MOVe String (Words)
MULtiply

NEGate

No OPeration

NOT

OR

OUTput to I/O port
POP

POP Flags

PUSH

PUSH Flags

Rotate through Carry Left
Rotate through Carry Right
REPeat

REPeat while Equal
REPeat while Not Equal
REPeat while Not Zero
REPeat while Zero
RETurn

(continued)
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Figure 2-1. continued

Mnemonic Full Name Mnemonic Full Name

Instructions recognized by all 8086-family microprocessors: (continued)

ROL ROtate Left STD SeT Direction flag
ROR ROtate Right STI SeT Interrupt flag
SAHF Store AH into Flags STOS STOre String

SAL Shift Arithmetic Left STOSB STOre String (Bytes)
SAR Shift Arithmetic Right STOSW STOre String (Words)
SBB SuBtract with Borrow SUB SUBtract

SCAS SCAn String TEST TEST

SCASB SCAn String (Bytes) WAIT WAIT

SCASW SCAn String (Words) XCHG eXCHanGe

SHL SHift Left XLAT transLATe

SHR SHift Right XOR eXclusive OR

STC SeT Carry flag

Instructions recognized by the 80286 and 80386 only:

ARPL Adjust RPL field of selector LTR Load Task Register

BOUND  Check array index against BOUNDs OUTS OUTput String to I/O port

CLTS CLear Task-Switched flag POPA POP All general registers

ENTER Establish stack frame PUSHA PUSH All general registers

INS INput String from I/O port SGDT Store Global Descriptor Table
register

LAR Load Access Rights SIDT Store Interrupt Descriptor Table
register

LEAVE Discard stack frame SLDT Store Local Descriptor Table
register

LGDT Load Global Descriptor Table register SMSW Store Machine Status Word

LIDT Load Interrupt Descriptor Table register ~ STR Store Task Register

LLDT Load Local Descriptor Table register VERR VERify a segment selector for

. Reading

LMSW Load Machine Status Word VERW VERIify a segment selector for
Writing

LSL Load Segment Limit

(continued)
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Mnemonic Full Name

Mnemonic Full Name

Instructions recognized by the 80386 only:

BSF
BSR

BT
BTC
BTR
BTS
CDQ
CMPSD
CWDE
LFS
LGS
LSS
LODSD
MOVSD
MOVSX
MOVZX
SCASD
SETA
SETAE
SETB
SETBE
SETC
SETE
SETG
SETGE

Bit Scan Forward

Bit Scan Reverse

Bit Test

Bit Test and Complement

Bit Test and Reset

Bit Test and Set

Convert Doubleword to Quadword
CoMPare String (Doublewords)
Convert Word to Doubleword in EAX
Load pointer using FS

Load pointer using GS

Load pointer using SS

LOaD String (Doublewords)
MOVe String (Doublewords)
MOVe with Sign-eXtend

MOVe with Zero-eXtend

SCAn String (Doublewords)
SET byte if Above

SET byte if Above or Equal
SET byte if Below

SET byte if Below or Equal
SET byte if Carry

SET byte if Equal

SET byte if Greater

SET byte if Greater or Equal

SETL
SETLE
SETNA
SETNAE
SETNB
SETNBE
SETNC
SETNE
SETNG
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETO
SETP
SETPE
SETPO
SETS
SETZ
SHLD
SHRD
STOSD

SET byte if Less

SET byte if Less or Equal

SET byte if Not Above

SET byte if Not Above or Equal
SET byte if Not Below

SET byte if Not Below or Equal
SET byte if No Carry

SET byte if Not Equal

SET byte if Not Greater

SET byte if Not Greater or Equal
SET byte if Not Less

SET byte if Not Less or Equal
SET byte if Not Overflow

SET byte if Not Parity

SET byte if Not Sign

SET byte if Not Zero

SET byte if Overflow

SET byte if Parity

SET byte if Parity Even

SET byte if Parity Odd

SET byte if Sign

SET byte if Zero

SHift Left (Doubleword)

SHift Right (Doubleword)
STOre String (Doublewords)

Q NOTE: Although this chapter discusses the details of 8086 pro-
gramming, remember that we’re implicitly talking about the 8088,
80286, and 80386 as well. Information pertaining exclusively to the

80286 or 80386 will be noted.
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The operations that the 8086 instructions can perform break down into
only a few categories. They can do simple, four-function integer arithmetic.
They can move data around. They can, using only slightly clumsy methods,
manipulate individual bits. They can test values and take logical action
based on the results. And last but not least, they can interact with the cir-
cuitry around them. The size of each instruction varies, but generally the
most basic and often-used instructions are the shortest.

Assembly-language programming can be carried out on one of two
levels: to create interface routines that will tie high-level programs to the
lower-level DOS and ROM-BIOS routines; or to create full-fledged assembly-
language programs that are faster and smaller than equivalent high-level
programs, or that perform exotic tasks at the hardware level, perhaps
accomplishing a feat that is accomplished nowhere else. Either way, to
understand how to use assembly language, you must understand how 8086-
family microprocessors process information and how they work with the
rest of the computer. The rest of this chapter describes how the micro-
processor and the computer’s other parts communicate.

How the 8086 Communicates

22

The 8086, 80286, and 80386 interact with the circuitry around them in three
ways: through direct and indirect memory access, through input/output
(1/0) ports, and with signals called interrupts.

The microprocessor uses memory by reading or writing values at
memory locations that are identified with numeric addresses. The memory
locations can be accessed in two ways: through the direct memory access
(DMA) controller or through the microprocessor’s internal registers. The
disk drives and the serial communications ports can directly access mem-
ory through the DMA controller. All other devices transfer data to and from
memory by way of the microprocessor’s registers.

Input/Output ports are the microprocessor’s general means of
communicating with any computer circuitry other than memory. Like
memory locations, I/0 ports are identified by number, and data can be read
from or written to any port. I/O port assignment is unique to the design of
any particular computer. Generally, all members of the IBM PC family use
the same port specifications, with just a few variations among the different
models. (See page 37.)

Interrupts are the means by which the circuitry outside the micro-
processor reports that something (such as a keystroke) has happened and
requests that some action be taken. Although interrupts are essential to the
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microprocessor’s interaction with the hardware around it, the concept of an
interrupt is useful for other purposes as well. For example, a program can
use the INT instruction to generate a software interrupt that requests a
service from DOS or from the system ROM BIOS. Interrupts are quite
important when programming the PC family, so we’ll devote a special
section to them at the end of this chapter.

The 8086 Data Formats

Numeric data. The 8086 and 80386 are able to work with only four simple
numeric data formats, all of which are integer values. The formats are
founded on two building blocks: the 8-bit byte and the 16-bit (2-byte) word.
Both of these basic units are related to the 16-bit processing capacity of the
8086. The byte is the more fundamental unit; and when the 8086 and 80286
address memory, bytes are the basic unit addressed. In a single byte, these
microprocessors can work with unsigned positive numbers ranging in value
from 0 through 255 (that is, 28 possibilities). If the number is a signed value,
one of the 8 bits represents the sign, so only 7 bits represent the value. Thus
a signed byte can represent values ranging from -128 through +127. (See
Figure 2-2.)

The 8086 and 80286 can also operate on 16-bit signed and unsigned
values, or words. Words are stored in memory in two adjacent bytes, with
the low-order byte preceding the high-order byte. (See the discussion of
‘‘back-words storage’’ on page 24.)

Range
Size Signed? Dec Hex
8 No 0 through 255 O00H through FFH
8 Yes —128 through 0 through +127 80H through 00H through 7FH
16 No 0 through 65,535 0000H through FFFFH
16 Yes —32,768 through 0 8000H through 0000H
through +32,767 through 7FFFH
32 No 0 through 4,294,967,295 00000000H through
FFFFFFFFH
32 Yes -2,147,483,648 through 00000000H through
+2,147,483,647 00000000H through
7FFFFFFFH

Figure 2-2. The six data formats used in the 8086 family. (Only the 80386 supports 32-bit
Jformats.)
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A word interpreted as an unsigned, positive number can have 216 dif-
ferent values ranging from 0 through 65,535. As a signed number, the value
can range from -32,768 through +32,767.

The 80386 differs from its predecessors in that it can also work with
32-bit integer values, or doublewords. A doubleword represents a signed or
unsigned 4-byte integer with any of 232 (or 4,294,967,295) different values.

Character data. Character data is stored in the standard ASCII format,
with each character occupying 1 byte. The 8086 family knows nothing about
ASCII characters and treats them as arbitrary bytes, with one exception: The
instruction set accommodates decimal addition and subtraction performed
on binary coded decimal (BCD) characters. The actual arithmetic is done in
binary, but the combination of the AF flag (see page 33) and a few special
instructions makes it practical to work on decimal characters and get deci-
mal results, which can easily be'converted to ASCIL.

, ~ While the PC S memory is addressed in umts of md1v1dual 8—b1t bytes,
many operatrons mvolve 16- blt words In memory, a 16-bit word is

backward appearance of this storage scheme, itis
sometimes whrmsrcally called ‘‘back-words’’ storage.

ngher addresses = ; .
‘ . Value of word is EG9CH

= Higher addresses =
' 5B 00 ] ; I Val ue of doubleword is 1200584AH

_ If you are working wrth bytes and words in memory, you should k
take ‘care not to be confused by back-words storage The source of the

order of mgmfxcance is the same as if you are wrrtmg a decrmal
er: The most 31gn1frcant drglt 1s wrrtten fll‘St But a word is
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See Appendix C for more information on ASCII and the PC family’s
extended ASCII character set.

How the 8086 Addresses Memory

The 8086 is a 16-bit microprocessor and cannot therefore work directly with
numbers larger than 16 bits. Theoretically, this means that the 8086 should
be able to access only 64 KB of memory. But, as we noted in the previous
chapter, it can in fact access much more than that— 1024 KB to be exact.
This is possible because of the 20-bit addressing scheme used with the 8086,
which expands the full range of memory locations that the 8086 can work
with from 216 (65,536) to 220 (1,048,576). But the 8086 is still limited by its 16-
bit processing capacity. To access the 20-bit addresses, it must use an
addressing method that fits into the 16-bit format.

Segmented Addresses

The 8086 divides the addressable memory space into segments, each of
which contains 64 KB of memory. Each segment begins at a paragraph
address —that is, a byte location that is evenly divisible by 16. To access
individual bytes or words, you use an offset that points to an exact byte
location within a particular segment. Because offsets are always measured
relative to the beginning of a segment, they are also called relative
addresses or relative offsets.

Together, a segment and an offset form a segmented address that can
designate any byte in the 8086’s 1 MB address space. The 8086 converts a
given 32-bit segmented address into a 20-bit physical address by using the
segment value as a paragraph number and adding the offset value to it. In
effect, the 8086 shifts the segment value left by 4 bits and then adds the
offset value to create a 20-bit address.

Figure 2-3 shows how this is done for a segment value of 1234H and an
offset of 4321H. The segmented address is written as 1234:4321, with 4-digit
hexadecimal values and with a colon separating the segment and offset.

1234:4321
shift
left

12340
+4321
16661

Figure 2-3. Decoding an 8086 segmented address. The segment value 1234H is shifted

left 4 bits (one hex digit) and added to the offset 4321H to give the 20-bit physical address
16661H.
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On the 8086, there’s obviously a great deal of overlap in the range of
values that can be expressed as segmented addresses. Any given physical
address can be represented by up to 212 different segmented addresses. For
example, the physical address 16661H could be represented not only as
1234:4321, but also as 1666:0001, 1665:0011, 1664:0021, and so on.

80286 and 80386 Protected-Mode Addresses

26

The 80286 also uses segmented addresses, but when the 80286 runs in
protected mode, the addresses are decoded differently than on an 8086 or in
80286 real mode. The 80286 decodes protected-mode segmented addresses
through a table of segment descriptors. The ‘‘segment’’ part of a segmented
address is not a paragraph value, but a ‘‘selector’’ that represents an index
into a segment descriptor table (Figure 2-4). Each descriptor in the table
contains a 24-bit base address that indicates the actual start of a segment in
memory. The resulting address is the sum of the 24-bit base address and the
16-bit offset specified in the segmented address. Thus, in protected mode
the 80286 can access up to 224 bytes of memory; that is, physical addresses
are 24 bits in size.

This table-driven addressing scheme gives the 80286 a great deal of
control over memory usage. In addition to a 24-bit base address, each
segment descriptor specifies a segment’s attributes (executable code,
program data, read-only, and so on), as well as a privilege level that lets an
operating system restrict access to the segment. This ability to specify
segment attributes and access privileges is of great use to a multitasking
operating system like 0S/2.

The 80386 supports both 8086 and 80286 protected-mode addressing.
The 80386 enhances the protected-mode addressing scheme by allowing 32-
bit segment base addresses and 32-bit offsets. Thus a single segmented

0038:4321

28
30
012340 38
40

> 012340

+432] €
016661

Figure 2-4. Decoding an 80286 protected-mode segmented address. The segment selector
38H indicates an entry in a segment descriptor table. The segment descriptor contains a
24-bit segment base address which is added to the offset 4321H to give the 24-bit physical
address 016661H.
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address, consisting of a 16-bit selector and a 32-bit offset, can specify any of
232 different physical addresses.

The 80386 also provides a ‘‘virtual 8086°° addressing mode, in which
addressing is the same as the usual 8086 16-bit addressing, but with the
physical addresses corresponding to the 1 MB 8086 address space mapped
anywhere in the 4 gigabyte (GB) 80386 address space. This lets an operating
system execute several different 8086 programs, each in its own 1 MB, 8086-
compatible address space.

Address Compatibility

The different addressing schemes used by the 80286 and 80386 are generally
compatible (except, of course, for 32-bit addressing on the 80386). However,
if you are writing an 8086 program that you intend to convert for use in
protected mode, be careful to use segments in an orderly fashion. Although
it’s possible to specify a physical 8086 address with many different segment-
offset combinations, you will find it easier to convert 8086 programs to
80286 protected-mode addressing if you keep your segment values as
constant as possible.

For example, imagine that your program needs to access an array of
160-byte strings of characters, starting at physical address B800OH. A poor
way to access each string would be to exploit the fact that the strings are
each 10 paragraphs long by using a different segment value to locate the
start of each string:

B800:0000H (physical address B80GOH)
B80A:0000H (physical address BSOAOH)
B814:0000H (physical address B8140H)
B81E:0000H (physical address B81EOH)

A better way to accomplish the same addressing would be to keep a
constant segment value and change the offset value:

B800:0000H (physical address B8000OH)
B800:00A0H (physical address B8OAOH)
B800:0140H (physical address B8140H)
B800:01E0H (physical address B81EOH)

Although the result is the same on an 8086 and in real mode on an
80286, you’ll find that the second method is much better suited to 80286
protected mode, where each different segment selector designates a
different segment descriptor.
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The 8086 Registers

The 8086 was designed to execute instructions and perform arithmetic and
logical operations as well as receive instructions and pass data to and from
memory. To do this, it uses a variety of 16-bit registers.

There are fourteen registers in all, each with a special use. Four
scratch-pad registers are used by programs to temporarily hold the inter-
mediate results and operands of arithmetic and logical operations. Four
segment registers hold segment values. Five pointer and index registers hold
the offsets that are used with the values in the segment registers to locate
data in memory. Finally, one flags register contains nine 1-bit flags that are
used to record 8086 status information and control 8086 operations. (See
Figure 2-5.)

Scratch-pad registers

AX (accumulator) o AH AL
BX (base) . oBH [ "BL
CX (count) . CcH .. . CL
DX (data) ~ DH. . | 7 b

f PR S " " " 1 n

Segment registers

CS (code segment)
DS (data segment)
SS (stack segment)

ES (extra segment)

PR PR " L " " PR

Offset registers
15 0

IP (instruction pointer)
SP (stack pointer)
BP (base pointer)

SI (source index)

DI (destination index)

Flags register
15 0

Flags| ~ * 7 [oF|pF IF|tF[sE|zE] [a [pF[ [cH

Figure 2-5. The 8086 registers and flags.
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The Scratch-Pad Registers

When a computer is processing data, a great deal of the microprocessor’s
time is spent transferring data to and from memory. This access time can
be greatly reduced by keeping frequently used operands and results inside
the 8086. Four 16-bit registers, usually called the scratch-pad or data regis-
ters, are designed for this purpose.

The scratch-pad registers are known as AX, BX, CX, and DX. Each of
them can also be subdivided and separately used as two 8-bit registers. The
high-order 8-bit registers are known as AH, BH, CH, and DH, and the low-
order 8-bit registers are known as AL, BL, CL, and DL.

The scratch-pad registers are used mostly as convenient temporary
working areas, particularly for arithmetic operations. Addition and sub-
traction can be done in memory without using the registers, but the registers
are faster.

Although these registers are available for any kind of scratch-pad
work, each also has some special uses:

e The AX (accumulator) register is the main register used to perform
arithmetic operations. (Although addition and subtraction can be
performed in any of the scratch-pad or offset registers, multiplica-
tion and division must be done in AX or AL.)

e The BX (base) register can be used to point to the beginning of a
translation table in memory. It can also be used to hold the offset
part of a segmented address.

e The CX (count) register is used as a repetition counter for loop con-
trol and repeated data moves. For example, the LOOP instruction in
assembly language uses CX to count the number of loop iterations.

e The DX register is used to store data for general purposes, although
it, too, has certain specialized functions. For example, DX contains
the remainder of division operations performed in AX.

The Segment Registers
As we discussed earlier, the complete address of a memory location consists
of a 16-bit segment value and a 16-bit offset within the segment. Four regis-
ters, called CS, DS, ES, and S8, are used to identify four specific segments of
memory. Five offset registers, which we’ll discuss shortly, can be used to
store the relative offsets of the data within each of the four segments.
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Each segment register is used for a specific type of addressing:

o The Cs register identifies the code segment, which contains the
program that is being executed.

e The DS and ES registers identify data segments where data used in
a program is stored.

o The SS register identifies the stack segment. (See page 32 for more
information about stacks.)

Programs rarely use four separate segments to address four different
64 KB areas of memory. Instead, the four segments specified in CS, DS, ES,
and SS usually refer to overlapping or identical areas in memory. In effect,
the different segment registers identify areas of memory used for different
purposes.

For example, Figure 2-6 shows how the values in the segment registers
correspond to the memory used in a hypothetical DOS program. The values
in the segment registers are chosen to correspond to the start of each logi-
cally different area of memory, even though the 64 KB areas of memory
identified by each segment overlap each other. (See Chapter 20 for more
about segments and the memory layout of DOS programs.)

All 8086 instructions that use memory have an implied use of a par-
ticular segment register for the operation being performed. For example,
the MOV instruction, because it acts on data, uses the DS register. The IMP
instruction, which affects the flow of a program, automatically uses the CS
register.

This means that you can address any 64 KB segment in memory by
placing its paragraph address in the appropriate segment register. For ex-
ample, to access data in the video buffer used by IBM’s Color Graphics
Adapter, you place the paragraph address of the start of the buffer in a seg-
ment register and then use the MOV instruction to transfer data to or from
the buffer.

$S=2919H Stack 29190H [ 2KB
Program data - 20 KB
DS=2419H 24190H —
Executable code — 16 KB
CS=2019H 20190H «—
Segment registers Physical addresses

Figure 2-6. Segment usage in a typical DOS program. Each.segment register contains the
Starting paragraph of a different area of memory.
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mov ax,0B800h ; move the segment value into DS
mov ds,ax
mov al,[0000] ; copy the byte at B800:0000

; into AL

In interpreted BASIC you can use this method with the DEF SEG

statement:

DEF SEG = &HB800 ' move the segment value into DS

X = PEEK(0000) ' copy the byte at B800:0000 into X
The Offset Registers

Five offset registers are used with the segment registers to contain
segmented addresses. One register, called the instruction pointer (IP),
contains the offset of the current instruction in the code segment; two
registers, called the stack registers, are intimately tied to the stack; and the
remaining two registers, called the index registers, are used to address
strings of data.

The instruction pointer (IP), also called the program counter (PC),
contains the offset within the code segment where the current program is
executing. It is used with the CS register to track the location of the next
instruction to be executed.

Programs do not have direct access to the IP register, but a number of
instructions, such as JMP and CALL, change the IP value implicitly.

The stack registers, called the stack pointer (SP) and the base pointer
(BP), provide offsets into the stack segment. SP gives the location of the
current top of the stack. Programs rarely change the value in SP directly.
Instead, they rely on PUSH and POP instructions to update SP implicitly. BP
is the register generally used to access the stack segment directly. You’ll see
BP used quite often in the assembly-language examples that appear in
Chapters 8 through 20.

The index registers, called the source index (SI) and the destination
index (DI), can be used for general-purpose addressing of data. Also, all
string move and comparison instructions use SI and DI to address data
strings.

The Flags Register

The fourteenth and last register, called the flags register, is really a
collection of individual status and control bits called flags. The flags are
maintained in a register, so they can be either saved and restored as a
coordinated set or inspected as ordinary data. Normally, however, the flags
are set and tested as independent items —not as a set.
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There are nine 1-bit flags in the 8086’s 16-bit flags register, leaving 7
bits unused. (The 80286 and 80386 use some of the unused flags to support
protected-mode operation.) The flags can be logically divided into two
groups: six status flags, which record processor status information (usually
indicating what happened with a comparison or arithmetic operation), and
three control flags, which direct some of the 8086 instructions. Be prepared
to see a variety of notations for the flags, including distinct names for
whether they are set (1) or clear (0). The terms used in Figures 2-7 and 2-8
are the most common.
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Code Name Use

CF Carry flag Indicates an arithmetic carry

OF Overflow flag Indicates signed arithmetic overflow

ZF Zero flag Indicates zero result, or equal comparison
SF Sign flag Indicates negative result/comparison

PF Parity flag Indicates even number of 1 bits

AF Auxiliary carry flag Indicates adjustment needed in binary-coded

decimal (BCD) arithmetic operations

Figure 2-7. The six status flags in the 8086’s flags register.
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Code  Name Use

DF Direction flag Controls increment direction in string operations
(CMPS, LODS, MOVS, SCAS, STOS)

IF Interrupt flag Controls whether interrupts are enabled

TF Trap flag Controls single-step operation (used by DEBUG) by

generating an interrupt at the end of every instruction

Figure 2-8. The three control flags in the 8086’s flags register.

Addressing Memory Through Registers

We’ve seen that memory is always addressed by a combination of a segment
value and a relative offset. The segment value always comes from one of
the four segment registers.

In contrast, the relative offset can be specified in many different
ways. (See Figure 2-9.) For each machine instruction that accesses memory,
the 8086 computes an effective address by combining one, two, or three of
the following:

e The value in BX or BP
e The value in SI or DI

o A relative-offset value, called a displacement, that is part of the
instruction itself

Name Effective Address Example Comments

Immediate Value ‘‘addressed’” is part mov ax,1234h Stores 1234H in AX.
of the 8086 instruction

Direct Specified as part of the mov ax,[1234h] Copies the value at 1234H into
8086 instruction ' AX. The default segment

register is DS.

Register indirect Contained in BX, SI, mov ax,[bx] Copies the value at the offset

DI, or BP contained in BX into AX. The

default segment register for
[BX], [SI], and [DI] is DS; for
[BP] the default is SS.

Figure 2-9. 8086 Addressing Modes. In assembly language, some instructions (continued)
can be specified in several different ways.
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Figure 2-9. continued

Name Effective Address Example Comments
Based The sum of a displacement ~ mov ax,[bx+2] Copies the value 2 bytes past the
(part of the instruction) and  or mov ax,2[bx] offset contained in BX into AX.
the value in BX or BP The default segment register for
[BX] is DS; for [BP] the default
is SS.
Indexed The sum of a displacement ~ mov ax,[si+2] Copies the value 2 bytes past the
and the value in SI or DI or mov ax,2[si] offset contained in SI into AX.

Based indexed The sum of a displacement,  mov ax,[bp+si+2]
the value in SI or DI, and the or mov ax,2[bp+si]

The default segment register is
DS.

The offset is the sum of the
values in BP and SI, plus 2.

value in BX or BP or mov ax,2[bp][si] When BX is used, the default
segment register is DS; when BP
is used, the default is SS.
String addressing Source string: register movsb Copies the string from memory
indirect using SI at DS:[SI] to ES:[DI].

Destination string: register
indirect using DI

Each of the various ways of forming an effective address has its uses.
You can use the Immediate and Direct methods when you know the offset
of a particular memory location in advance. You must use one of the
remaining methods when you can’t tell what an address will be until your
program executes. In the chapters ahead, you’ll see examples of most of the
different 8086 addressing modes.

The notation used in specifying 8086 addresses is straightforward.
Brackets, [ 1, are used to indicate that the enclosed item specifies a relative
offset. This is a key element of memory addressing: Without brackets, the
actual value stored in the register is used in whatever operation is specified.

Rules for Using Registers

It is important to know that various rules apply to the use of registers, and it
is essential to be aware of these rules when writing assembly-language
interface routines. Because the rules and conventions of usage vary by
circumstance and by programming language, exact guidelines are not
always available, but the general rules that follow will apply in most cases.
(You will find additional guidance, and working models to copy, in the
examples in Chapters 8 through 20.) Keep in mind, though, that the
following rules are general, not absolute.
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Probably the most useful rule for using the registers is simply to use
them for what they are designed for. The idea that each of the 8086 registers
has certain special uses may seem somewhat quirky, particularly to a
programmer who is accustomed to working with a CPU that has a less
specialized set of registers (such as the 68000, for example). On the 8086,
using the registers for their natural functions leads to cleaner, more efficient
source code and ultimately to more reliable programs.

For example, the segment registers are designed to contain segment
values, so don’t use them for anything else. (In 80286 protected mode you
can’t use them for anything else anyway without generating an error
condition.) The BP register is intended for stack addressing; if you use it for
anything else, you’ll have to do some fancy footwork when you need to
address values in the stack segment.

Particular rules apply to the four segment registers (CS, DS, ES, and
SS). The CS register should be changed only through intersegment jumps
and subroutine calls.

Most programmers use the DS register to point to a default data
segment that contains the data most frequently used in a program. This
means that the value in the DS register is usually initialized at the
beginning of a program and then left alone. Should it be necessary to use
DS to address a different segment, its original value is saved, the new
segment is accessed, and then the original value is restored. In contrast,
most people use the ES register as needed to access arbitrary segments in
memory.

The stack segment (SS) and stack pointer (SP) registers should usually
be updated implicitly, either by PUSH and POP instructions or by CALL and
RET instructions that save subroutine return addresses on the stack. When
DOS loads a program into memory to be executed, it initializes SS and SP to
usable values. In .COM programs, SS:SP points to the end of the program’s
default segment; in .EXE programis, SS:SP is determined explicitly by the
size and location of the program’s stack segment. In either case, it’s rare
that you need to change SS or SP explicitly.

If you need to discard a number of values from the stack or reserve
temporary storage space on top of the stack, you can increment or
decrement SP directly:

add sp,8 ; discard four words (8 bytes)
; from stack
sub sp,6 ; add three empty words (6 bytes)

; to top of stack
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If you need to move the stack to a different location in memory, you
must generally update both SS and SP at the same time:

cli ; disable interrupts

mov ss,NewStackSeg ; update SS from a memory variable
mov sp,NewStackPtr ; update SP from a memory variable
sti ; re-enable interrupts

Be careful when you change SS and SP explicitly. If you modify SS but
fail to update SP, SS will be specifying a new stack segment while SP will
be pointing somewhere inside another stack segment—and that’s asking
for trouble the next time you use the stack.

It’s hard to be explicit about the use of the other registers. In general,
most programmers try to minimize memory accesses by keeping the
intermediate results of lengthy computations in registers. This is because it
takes longer to perform a computation on a value stored in memory than on
a value stored in a register. Of course, the 8086 has only so many registers to
work with, sa you may find yourself running out of registers before you run
out of variables. )

How the 8086 Uses I/O Ports

The 8086-family microprocessors communicate with and control many
parts of the computer through the use of input and output (I/0) ports. The
1/0 ports are doorways through which information passes as it travels to or
from an I/O device, such as a keyboard or a printer. Most of the support
chips we described in Chapter 1 are accessed through I/O ports; in fact,
each chip may use several port addresses for different purposes.

Each port is identified by a 16-bit port number, which can range from
00H through FFFFH (65,535). The CPU identifies a particular port by the
port’s number.

As it does when accessing memory, the CPU uses the data and address
buses as conduits for communication with the ports. To access a port, the
CPU first sends a signal on the system bus to notify all I/O devices that the
address on the bus is that of a port. The CPU then sends the port address.
The device with the matching port address responds.

The port number addresses a memory location that is associated with
an I/0 device but is not part of main memory. In other words, an 1/O port
number is not the same as a memory address. For example, 1/0 port 3D8H
has nothing to do with memory address 003D8H. To access an I/O port, you
don’t use data-transfer instructions like MOV and STOS. Instead, you use the
instructions IN and OUT, which are reserved for I/O port access.
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U NOTE: Many high-level programming languages provide func-
tions that access 1/0 ports. The BASIC functions INP and OUT, and
the C functions inp and outp, are typical examples.

The uses of specific 1/0 ports are determined by the hardware
designers. Programs that make use of 1/0 ports need to be aware of the port
numbers, as well as their use and meaning. Port number assignments differ
slightly among the PC family members, but, in general, IBM has reserved
the same ranges of 1/0 port numbers for the same input/output devices in all
PCs and PS/2s. (See Figure 2-10.) For details on how each 1/0 port is used,
see the descriptions of the various input/output devices in the IBM technical
reference manuals.

Description 1/O Port Numbers  Comment
Programmable Interrupt Ceutroller (master) 20H-3FH
System timer 40H-5FH
Keyboard controller 60H-6FH On PS/2 Model 30, ports 60H-
6FH are reserved for system-
board control and status
System control port B 61H PS/2 models 50, 60, and 80 only
Real-time clock, NMI mask 70H-7FH On PC, PC/XT, and PS/2 Model
30, NMI mask is at port AOH
System control port A 92H PS/2 models 50, 60, and 80 only
Programmable Interrupt Controller (slave) AOH-BFH On PS/2 Model 30, AOH-AFH
Real-time clock BOH-BFH, PS/2 Model 30 only
EOH-EFH
Clear math coprocessor busy FOH
Reset math coprocessor FIH
Math coprocessor F8H-FFH
Fixed-disk controller 1FOH-1F8H
Game control adapter 200H-207H
Parallel printer 3 278H-27BH
Serial communications 2 2F8H-2FFH
Fixed-disk controller 320H-32FH PC/XT and PS/2 Model 30
PC network 360H-363H,
368H-36BH
Parallel printer 2 378H-37BH
Figure 2-10. PC and PS/2 input/output port assignments. This table lists the (continued)

most frequently used I/O ports. For a complete list, see the IBM Technical
Reference manuals.
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Figure 2-10. continued

Description I/0 Port Numbers =~ Comment

Monochrome Display Adapter 3BOH-3BBH Also used by EGA and VGA in
monochrome video modes

Parallel printer 1 3BCH-3BFH

Enhanced Graphics Adapter (EGA), 3COH-3CFH

Video Graphics Array (VGA)

Color Graphics Adapter (CGA), 3DOH-3DFH Also used by EGA and VGA in

Multi-Color Graphics Array (MCGA) color video modes

Diskette controller 3FOH-3F7H

Serial communications 1 3F8H-3FFH

How the 8086 Uses Interrupts

An interrupt is an indication to the microprocessor that its immediate
attention is needed. The 8086-family microprocessors can respond to inter-
rupts from either hardware or software. A hardware device can generate an
interrupt signal that is processed by the programmable interrupt controller
(PIC) and passed to the microprocessor; in software, the INT instruction
generates an interrupt. In both cases, the microprocessor stops processing
and executes a memory-resident subroutine called an interrupt handler.
After the interrupt handler has performed its task, the microprocessor
resumes processing at the point the interrupt occurred.

The 8086 supports 256 different interrupts, each identified by a
number between 00H and FFH (decimal 255). The segmented addresses of
the 256 interrupt handlers are stored in an interrupt vector table that starts
at 0000:0000H (that is, at the very beginning of available memory). Each
interrupt vector is 4 bytes in size, so you can locate the address of any
interrupt handler by multiplying the interrupt number by 4. You can also
replace an existing interrupt handler with a new one by storing the new
handler’s segmented address in the appropriate interrupt vector.

Software Interrupts

Probably the most familiar type of interrupts are generated by the INT
instruction. Consider what happens when the CPU executes the following
instruction:

INT 12H
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The CPU pushes the current contents of the flags register, the CS (code
segment) register, and the IP (instruction pointer) register onto the stack.
Then it transfers control to the interrupt handler corresponding to interrupt
number 12H, using the segmented address stored at 0000:0048H. The CPU
then executes the interrupt 12H handler, which responds appropriately to
interrupt 12H. The interrupt handler terminates with an IRET instruction
that pops CS:IP and the flags back into the registers, thus transferring
control back to the interrupted program.

Hardware Interrupts

40

The microprocessor responds to a hardware interrupt in much the same way
it responds to a software interrupt: by transferring control to an interrupt
handler. The important difference lies in the way the interrupt is signalled.

Devices such as the system timer, the hard disk, the keyboard, and the
serial communications ports can generate interrupt signals on a set of
reserved interrupt request (IRQ) lines. These lines are monitored by the PIC
circuit, which assigns interrupt numbers to them. When a particular hard-
ware interrupt occurs, the PIC places the corresponding interrupt number on
the system data bus where the microprocessor can find it.

The PIC also assigns priorities to the various interrupt requests. For
example, the highest-priority PIC interrupt in all PCs and PS/2s is the timer-
tick interrupt, which is signalled on interrupt request line 0 (IRQO) and is
assigned interrupt 08H by the PIC. When a system timer generates a timer-
tick interrupt, it does so by signalling on IRQO; the PIC responds by
signalling the CPU to execute interrupt 08H. If a lower-priority hardware
interrupt request occurs while the timer-tick interrupt is being processed,
the PIC delays the lower-priority interrupt until the timer interrupt handler
signals that it has finished its processing.

When you coldboot the computer, the system start-up routines assign
interrupt numbers and priorities to the hardware interrupts by initializing
the PIC. In 8088- and 8086-based machines (PCs, PC/XTs, PS/2 models 25 and
30), interrupt numbers 08H through OFH are assigned to interrupt request
levels 0 through 7 (IRQO through IRQ7). In PC/ATs and PS/2 models 50, 60,
and 80, an additional eight interrupt lines (IRQ8 through IRQ15) are assigned
interrupt numbers 70H through 77H.

One hardware interrupt bypasses the PIC altogether. This is the non-
maskable interrupt (NMI), which is assigned interrupt number 02H in the
8086 family. The NMI is used by devices that require absolute, ‘‘now-or-
never’’ priority over all other CPU functions. In particular, when a
hardware memory error occurs, the computer’s RAM subsystem generates
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an NMI. This causes the CPU to pass control to an interrupt 02H handler; the
default handler in the PC family resides in ROM and issues the ‘‘PARITY
CHECK”’ message you see when a memory error occurs.

When you debug a program on any member of the PC family,
remember that hardware interrupts are occurring all the time. For example,
the system timer-tick interrupt (interrupt 08H) occurs roughly 18.2 times per
second. The keyboard and disk-drive controllers also generate interrupts.
Each time these hardware interrupts occur, the 8086 uses the current stack to
save CS:IP and the flags register. If your stack is too small, or if you are
manipulating SS and SP when a hardware interrupt occurs, the 8086 may
damage valuable data when it saves CS:IP and the flags.

If you look back at our example of updating SS and SP on page 36,
you’ll see that we explicitly disable hardware interrupts by executing the
CLI instruction prior to updating SS. This prevents a hardware interrupt
from occurring between the two MOV instructions while SS:SP is pointing
nowhere. (Actually, this is a problem only in very early releases of the 8088;
the chip was later redesigned to prevent this problem by disabling interrupts
during the instruction that follows a data move into SS.)

We’ll talk in more detail about how PCs and PS/2s use interrupts in
Chapters 3 and 8.
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It takes software to make a computer go. And getting a computer going and
keeping it going is much easier if some of that software is permanently built
into the computer. That’s what the ROM programs are all about. ROM stands
for read-only memory— memory permanently recorded in the circuitry of
the computer’s ROM chips, that can’t be changed, erased, or lost.

PCs and PS/2s come with a substantial amount of ROM that contains
the programs and data needed to start and operate the computer and its
peripheral devices. The advantage of having a computer’s fundamental pro-
grams stored in ROM is that they are right there — built into the computer —
and there is no need to load them into memory from disk the way that DOS
must be loaded. Because they are permanent, the ROM programs are very
often the foundation upon which other programs (including DOS) are built.

There are four elements to the ROM in IBM’s PC family: the start-up
routines, which do the work of getting the computer started; the ROM
BIOS—an acronym for Basic Input/Output System — which is a collection
of machine-language routines that provide support services for the continu-
ing operation of the computer; the ROM BASIC, which provides the core of
the BASIC programming language; and the ROM extensions, which are pro-
grams that are added to the main ROM when certain optional equipment is
added to the computer. We’ll be examining each of these four major ele-
ments throughout the rest of this chapter.

The ROM programs occupy addresses F000:0000H through F000:FFFFH
in the PC/XT/AT family and the PS/2 models 25 and 30, and E000:0000H
through FOOO:FFFFH in the other PS/2s. However, the routines themselves
are not located at any specific addresses in ROM as they are in other com-
puters. The address of a particular ROM routine varies among the different
members of the PC/XT/AT and PS/2 families.

Although the exact addresses of the ROM routines can vary, IBM pro-
vides a consistent interface to the ROM software by using interrupts. Later
in this book we’ll show you exactly how to use interrupts to execute the
ROM routines.

The Start-Up ROM

The first job the ROM programs have is to supervise the start-up of the com-
puter. Unlike other aspects of the ROM, the start-up routines have little to do
with programming the PC family —but it is still worthwhile to understand
what they do.
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The start-up routines perform several tasks:

e They run a quick reliability test of the computer (and the ROM
programs) to ensure everything is in working order.

o They initialize the chips and the standard equipment attached to
the computer.

o They set up the interrupt-vector table.
e They check to see what optional equipment is attached.
o They load the operating system from disk.

The following paragraphs discuss these tasks in greater detail.

The reliability test, part of a process known as the Power On Self Test
(POST), is an important first step in making sure the computer is ready. All
POST routines are quite brief except for the memory tests, which can be an-
noyingly lengthy in computers that contain a large amount of memory.

The initialization process is slightly more complex. One routine sets the
default values for interrupt vectors. These default values either point to the
standard interrupt handlers located inside the ROM BIOS, or they point to
do-nothing routines in the ROM BIOS that may later be superseded by the
operating system or by your own interrupt handlers. Another initialization
routine determines what equipment is attached to the computer and then
places a record of it at standard locations in low memory. (We’ll be discuss-
ing this equipment list in more detail later in the chapter.) How this infor-
mation is acquired varies from model to model —for example, in the PC it
is taken mostly from the settings of two banks of switches located on the
computer’s system board; in the PC/AT and the PS/2s, the ROM BIOS reads
configuration information from a special nonvolatile memory area whose
contents are initialized by special setup programs supplied by IBM. The
POST routines learn about the computer’s hardware by a logical inspection
and test. In effect, the initialization program shouts to each possible option,
‘‘Are you there?’’, and listens for a response. '

No matter how it is acquired, the status information is recorded and
stored in the same way for every model so that your programs can examine
it. The initialization routines also check for new equipment and extensions
to ROM. If they find any, they momentarily turn control over to the ROM ex-
tensions so that they can initialize themselves. The initialization routines
then continue executing the remaining start-up routines (more on this later
in the chapter).
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The final part of the start-up procedure, after the POST tests, the ini-
tialization process, and the incorporation of ROM extensions, is called the
bootstrap loader. It’s a short routine that loads a program from disk. In es-
sence, the ROM bootstrap loader attempts to read a disk boot program from a
disk. If the boot program is successfully read into memory, the ROM loader
passes control of the computer to it. The disk boot program is responsible
for loading another, larger disk program, which is usually a disk operating
system such as DOS, but can be a self-contained and self-loading program,
such as Microsoft Flight Simulator. If the ROM bootstrap loader cannot read
a disk’s boot program, it either activates the built-in ROM BASIC or displays
an error message if the disk boot program contains an error. As soon as €i-
ther of these two events occurs, the system start-up procedure is finished
and the other programs take over.

The ROM BIOS
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The ROM BIOS is the part of ROM that is in active use whenever the com-
puter is at work. The role of the ROM BIOS is to provide the fundamental ser-
vices that are needed for the operation of the computer. For the most part,
the ROM BIOS controls the computer’s peripheral devices, such as the dis-
play screen, keyboard, and disk drives. When we use the term BIOS in its
narrowest sense, we are referring to the device control programs — the pro-
grams that translate a simple command, such as read-something-from-the-
disk, into all the steps needed to actually perform the command, including
error detection and correction. In the broadest sense, the BIOS includes not
only routines needed to control the PC’s devices, but also routines that con-
tain information or perform tasks that are fundamental to other aspects of
the computer’s operation, such as keeping track of the time of day.
Conceptually, the ROM BIOS programs lie between programs that are
executing in RAM (including DOS) and the hardware. In effect, this means
that the BIOS works in two directions in a two-sided process. One side
receives requests from programs to perform the standard ROM BIOS input/
output services. A program invokes these services with a combination of an
interrupt number (which indicates the subject of the service request, such as
printer services) and a service number (which indicates the specific service
to be performed). The other side of the ROM BIOS communicates with the
computer’s hardware devices (display screen, disk drives, and so on), using
whatever detailed command codes each device requires. This side of the
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ROM BIOS also handles any hardware interrupts that a device generates to
get attention. For example, whenever you press a key, the keyboard gener-
ates an interrupt to let the ROM BIOS know.

Of all the ROM software, the BIOS services are probably the most in-
teresting and useful to programmers — as a matter of fact, we have devoted
six chapters to the BIOS services in Chapters 8 through 13. Since we deal
with them so thoroughly later on, we’ll skip any specific discussion of what
the BIOS services do and instead focus on how the BIOS as a whole keeps
track of the computer’s input and output processes.

Interrupt Vectors

The 1BM PC family, like all computers based on the Intel 8086 family of
microprocessors, is controlled largely through the use of interrupts, which
can be generated by hardware or software. The BIOS service routines are no
exception; each is assigned an interrupt number that you must call when
you want to use the service.

When an interrupt occurs, control of the computer is turned over to an
interrupt-handling subroutine that is often stored in the system’s ROM (a
BIOS service routine is nothing more than an interrupt handler). The inter-
rupt handler is called by loading its segment and offset addresses into regis-
ters that control program flow: the CS (code segment) register and the IP
(instruction pointer) register —together known as the CS:IP register pair.
Segment addresses that locate interrupt handlers are called interrupt vectors.

During the system start-up process, the BIOS sets the interrupt vectors
to point to the interrupt handlers in ROM. The interrupt vector table starts at
the beginning of RAM, at address 0000:0000H. (See Chapter 2 for more about
interrupts and interrupt vectors.) Each entry in the table is stored as a pair
of words, with the offset portion first and the segment portion second. The
interrupt vectors can be changed to point to a new interrupt handler simply
by locating the vector and changing its value.

As a general rule, PC-family interrupts can be divided into six cate-
gories: microprocessor, hardware, software, DOS, BASIC, and general use.

Microprocessor interrupts, often called logical interrupts, are de-
signed into the microprocessor. Four of them (interrupts 00H, 01H, 03H, and
04H) are generated by the microprocessor itself, and another (interrupt 02H,
the nonmaskable interrupt) is activated by a signal generated by certain
hardware devices, such as the 8087 math coprocessor.
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Hardware interrupts are built into the PC hardware. In PCs, XTs, and
PS/2 models 25 and 30, interrupt numbers 08H through OFH are used for
hardware interrupts; in ATs and PS/2 models 50, 60, and 80, interrupt num-
bers 08H through OFH and 70H through 77H are reserved for hardware inter-
rupts. (See Chapter 2 for more about hardware interrupts.)

Software interrupts incorporated into the PC design are part of the
ROM BIOS programs. ROM BIOS routines invoked by these interrupts cannot
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be changed, but the vectors that point to them can be changed to point to
different routines. Reserved interrupt numbers are 10H through 1FH
(decimal 16 through 31) and 40H through S5FH (decimal 64 through 95).

DOS interrupts are always available when DOS is in use. Many
programs and programming languages use the services provided by DOS
through the DOS interrupts to handle basic operations, especially disk 1/0.
DOS interrupt numbers are 20H through 3FH (decimal 32 through 63).

eé Chapters 14 through 18. )

;he COMMAND COM flle 1s the thlrd and most 1mportant_f

ional information
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BASIC interrupts are assigned by BASIC itself and are always avail-
able when BASIC is in use. The reserved interrupt numbers are 80H through
FOH (decimal 128 through 240).

General-use interrupts are available for temporary use in your pro-
grams. The reserved interrupt numbers are 60H through 66H (decimal 96
through 102).

Most of the interrupt vectors used by the ROM BIOS, DOS, and BASIC
contain the addresses of interrupt handlers. A few interrupt vectors, how-
ever, point to tables of useful information. For example, interrupt 1EH con-
tains the address of a table of diskette drive initialization parameters; the
interrupt 1FH vector points to a table of bit patterns used by the ROM BIOS
to display text characters; and interrupts 41H and 46H point to tables of
fixed-disk parameters. These interrupt vectors are used for convenience,
not for interrupts. If you tried to execute interrupt 1EH, for instance, you’d
probably crash the system because the interrupt 1EH vector points to data,
not to executable code.

The interrupt vectors are stored at the lowest memory locations; the
very first location in memory contains the vector for interrupt number 00H,
and so on. Because each vector is two words in length, you can find a par-
ticular interrupt’s location in memory by multiplying its interrupt number
by 4. For example, the vector for interrupt 05H, the print-screen service in-
terrupt, would be at byte offset 20 (5 X 4 = 20); that is, at address 0000:0014H.
You can examine the interrupt vectors by using DEBUG. For example, you
could examine the interrupt 05H vector with DEBUG in the following way:

DEBUG
D 0000:0014 L 4

’

DEBUG will show 4 bytes, in hex, like this:
54 FF 00 FO

Converted to a segment and offset address and allowing for ‘back-
words’’ storage, the interrupt vector for the entry point in ROM of the print-
screen service routine (interrupt 05H) is FO00:FF54H. (Of course, this address
may be different in different members of the PC and PS/2 families.) The
same DEBUG instruction finds any other interrupt vector just as easily.

Figure 3-1 lists the main interrupts and their vector locations. These
are the interrupts that programmers will probably find most useful. Details
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are available for most of these interrupts in Chapters 8 through 18. Inter-
rupts that are not mentioned in this list are, for the most part, reserved for
future development by IBM.

Interrupt  Offset in Interrupt  Offset in
Segment Segment
Hex Dec 0000 Use Hex Dec 0000 Use
0OOH O 0000 Generated by CPU when 13H 19 004C Invokes disk services in
division by zero is ROM BIOS
attempted 14H 20 0050  Invokes communications
OlH 1 0004 Used to single-step through services in ROM BIOS
programs (as with I5SH 21 0054  Invokes system services in
DEBUG) ROM BIOS
02H 2 0008  Nonmaskable interrupt 16H 22 0058  Invokes standard keyboard
(NMI) services in ROM BIOS
03H 3 000C  Used to set break-points in 17TH 23 005C  Invokes printer services in
programs (as with ROM BIOS
DEBUG
vo . . 18H 24 0060 Activates ROM
04H 4 0010 Generated when arithmetic BASIC language
1t fl
rosu ovcr‘ ows 1I9H 25 0064 Invokes bootstrap
OSH 5 0014 Invokes print-screen start-up routine in
service routine in ROM ROM BIOS
BIOS
1AH 26 0068 Invokes time and dat
08H 8 0020 Generated by hardware servicei il]:nRO;l,I ate
clock tick BIOS
09H 9 0024 Generated by keyboard IBH 27 006C Interrupt by ROM
action BIOS for Ctrl-Break
OEH 14 0038 Signals diskette attention ICH 28 0070 Interrupt generated at
(e.g. to signal completion) each clock tick
OFH 15 003C Used in printer control IDH 29 0074 Points to table of
I0H 16 0040 Invokes video display video control
services in ROM BIOS parameters
11H 17 0044 Invokes equipment-list 1IEH 30 0078 Points to diskette
service in ROM BIOS drive parameter table
12H 18 0048 Invokes memory-size
service in ROM BIOS

Figure 3-1. Important interrupts used in the IBM personal computer family.

(continued)
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Figure 3-1. continued

Interrupt  Offsetin Interrupt  Offsetin
Segment Segment

Hex Dec 0000 Use Hex Dec 0000 Use

IFH 31 007C Points to CGA video 25H 37 0094 Invokes absolute disk-
graphics characters read service in DOS

20H 32 0080 Invokes program- 26H 38 0098 Invokes absolute disk-
terminate service in write service in DOS
DOS 27H 39  009C Ends program, but

21H 33 0084 Invokes all function- keeps it in memory
call services in DOS under DOS

22H 34 0088 Address of DOS 2FH 47 00BC DOS Multiplex
program-terminate interrupt
routine 41H 65 0104 Points to fixed-disk

23H 35 008C Address of DOS drive parameter table
keyboard-break 43H 67 010C  Points to video
handler graphics characters

24H 36 0090 Address of DOS (EGA, PS/2s)
critical-error handler 67H 103 O0I19CH  Invokes LIM

Expanded Memory
Manager

Changing Interrupt Vectors
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The main programming interest in interrupt vectors is not to read them but
to change them to point to a new interrupt-handling routine. To do this, you
must write a routine that performs a different function than the standard
ROM BIOS or DOS interrupt handlers perform, store the routine in RAM, and
then assign the routine’s address to an existing interrupt in the table.

A vector can be changed byte by byte on an assembly-language level,
or by using a programming-language instruction like the POKE statement in
BASIC. In some cases, there may be a danger of an interrupt occurring in
the middle of a change to the vector. If you are not concerned about this, go
ahead and use the POKE method. Otherwise, there are two ways to change
a vector while minimizing the likelihood of interrupts: by suspending
interrupts during the process, or by using a DOS interrupt specially
designed to change vectors.

The first method requires that you use assembly language to suspend
interrupts while you change the interrupt vector. You can use the clear
interrupts instruction (CLI), which suspends all interrupts until a
subsequent STI (set interrupts) instruction is executed. By temporarily
disabling interrupts with CLI you ensure that no interrupts can occur while
you update an interrupt vector.
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Q NOTE: CLI does not disable the nonmaskable interrupt (NMI). If
your application is one of the rare ones that needs to supply its own
NMI handler, the program should temporarily disable the NMI while
changing the NMI interrupt vector. (See PC or PS/2 technical
reference manuals for details.)

The following example demonstrates how to update an interrupt
vector with interrupts temporarily disabled. This example uses two MOV
instructions to copy the segment and offset address of an interrupt handler
from DS:DX into interrupt vector 60H:

xor ax,ax ; zero segment register ES
mov es,ax

cli ; disable interrupts

mov word ptr es:[180h],dx ; update vector offset

mov word ptr es:[182h],ds ; update vector segment
sti ; enable interrupts

The second method of updating an interrupt vector is to let DOS do it
for you using DOS interrupt 21H, service 25H (decimal 37), which was
designed for this purpose. There are two very important advantages to
letting DOS set interrupts for you. One advantage is that DOS takes on the
task of putting the vector into place in the safest possible way. The other
advantage is more far-reaching. When you use DOS service 25H to change
an interrupt vector, you allow DOS to track changes to any interrupt vectors
it may itself be using. This is particularly important for programs that
might run in the DOS ‘‘compatibility box’’ in 0S/2. Using a DOS service to
set an interrupt vector instead of setting it yourself is only one of many
ways that you can reduce the risk that a program will be incompatible with
new machines or new operating-system environments.

The following example demonstrates how to use interrupt 21H, service
25H to update the vector for interrupt 60H from values stored in a memory
variable:

mov dx.seg Int60Handler ; copy new segment to DS

mov ds,dx

mov dx,offset Int60Handler ; store offset address in DX

mov al,60h ; interrupt number

mov ah,25h ; DOS set-interrupt function number
int 21h ; DOS function-call interrupt
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This example shows, in the simplest possible way, how to use the DOS
service. However, it glosses over an important and subtle difficulty: You
have to load one of the addresses that you’re passing to DOS into the DS
(data segment) register— which effectively blocks normal access to data
through the DS register. Getting around that problem requires you to
preserve the contents of the DS register. Here is one way this can be done. In
this example, taken from the Norton Utilities programs, the interrupt 09H
vector is updated with the address of a special interrupt handler:

push ds ; save current data segment

mov dx,offset PGROUP:XXX ; store handler's offset in DX

push cs ; move handler's code segment...

pop ds ; ...into DS

mov ah,25h ; request set-interrupt function

mov al,9 ; change interrupt number 9

int 21h ; DOS function-call interrupt

pop ds ; restore original data segment
Key Low-Memory Addresses
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Much of the operation of the PCs and PS/2s is controlled by data stored in
low-memory locations, particularly in the two adjacent 256-byte areas
beginning at segments 40H and 50H (addresses 0040:0000H and 0050:0000H).
The ROM BIOS uses the 256 bytes from 0040:0000H through 0040:00FFH as a
data area for its keyboard, video, disk, printer, and communications
routines. The 256 bytes between 0050:0000H and 0050:00FFH are used
primarily by BASIC, although a few ROM BIOS status variables are located
there as well.

Data is loaded into these areas by the BIOS during the start-up process.
Although the control data is supposed to be the private reserve of the BIOS,
DOS, and BASIC, your programs are allowed to inspect or even change it.
Even if you do not intend to use the information in these control areas, it is
worth studying because it reveals a great deal about what makes the PC
family tick.

The ROM BIOS Data Area

Some memory locations in the BIOS data area are particularly interesting.
Most of them contain data vital to the operation of various ROM BIOS and
DOS service routines. In many instances, your programs can obtain infor-
mation stored in these locations by invoking a ROM BIOS interrupt; in all
cases, they can access the information directly. You can easily check out the
values at these locations on your own computer, using either DEBUG or BASIC.
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To use DEBUG, type a command of this form:

DEBUG
D XXxx:vvry L 1

XXXX represents the segment part of address you want to examine.
(This would be either 0040H or 0050H, depending on the data area that
interests you.) YYYY represents the offset part of the address. The L 1 tells
DEBUG to display one byte. To see two or more bytes, type the number of
bytes (in hex) you want to see after the L instruction. For example, the BIOS
keeps track of the current video mode number in the byte at 0040:0049H. To
inspect this byte with DEBUG, you would type '

DEBUG
D 0040:0049 L 1

To display the data with BASIC, use a program of the following form,
making the necessary substitutions for segment (&H0040 or &HO0050),
number.of.bytes, and offset (the offset part of the address you want to
inspect):

10 DEF SEG = segment
20 FOR I = 0 TO number.of.bytes - 1
30 VALUE = PEEK(offset + I)

40 IF VALUE < 16 THEN PRINT "0"; ' needed for leading zero
50  PRINT HEX$ (VALUE):" ";
60 NEXT I

The following pages describe useful low-memory addresses.

0040:0010H (a 2-byte word). This word holds the equipment-list data
that is reported by the equipment-list service, interrupt 11H (decimal 17).
The format of this word, shown in Figure 3-2, was established for the PC and
XT; certain parts may appear in a different format in later models.

0040:0013H (a 2-byte word). This word contains the usable memory
size in KB. BIOS interrupt service 12H (decimal 18) is responsible for
reporting the value in this word.

0040:0017H (2 bytes of keyboard status bits). These bytes are actively
used to control the interpretation of keyboard actions by the ROM BIOS
routines. Changing these bytes actually changes the meaning of keystrokes.
You can freely change the first byte, at address 0040:0017H, but it is not a
good idea to change the second byte. See pages 137 and 138 for the bit
settings of these 2 bytes.
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Bit
FEDCBA98 76543210 Meaning

XX, . o000 L Number of printers installed
XL s s e e (Reserved)
XL o e 1 if game adapter installed
e XXX L0 oo Number of RS-232 serial ports
....... D, G (Reserved)

........ XX. ... .. +1 = number of diskette drives:
00 = 1 drive; 01 =2 drives;
10 = 3 drives;
11 =4 drives (see bit 0)
........ L XXL L L. Initial video mode:
01 = 40-column color;
10 = 80-column color,
11 = 80-column monochrome;
00 = none of the above

........ Lo XX For PC with 64 KB motherboard:
Amount of system board RAM
(11=64KB, 10 =48 KB,
01 =32KB, 00 =16 KB)
For PC/AT: Not used
For PS/2s: Bit 3: Not used;
Bit 2: 1 = pointing device installed

e X. 1 if math coprocessor installed

............... X  1ifany diskette drives present (if so, see
bits 7 and 6)

Figure 3-2. The coding of the equipment-list word at address 0040:0010H.

0040:001AH (a 2-byte word). This word points to the current head of
the BIOS keyboard buffer at 0040:001EH, where keystrokes are stored until
they are used.

0040:001CH (a 2-byte word). This word points to the current tail of the
BIOS keyboard buffer. .

0040:001EH (32 bytes, used as sixteen 2-byte entries). This keyboard
buffer holds up to 16 keystrokes until they are read via the BIOS services
through interrupt 16H (decimal 22). As this is a circular queue buffer, two
pointers indicate the head and tail. It is not wise to manipulate this data.

0040:003EH (1 byte). This byte indicates if a diskette drive needs to be
recalibrated before seeking to a track. Bits 0 through 3 correspond to drives
0 through 3. If a bit is clear, recalibration is needed. Generally, you will find
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that a bit is clear if there was any problem with the most recent use of a
drive. For example, the recalibration bit will be clear if you try to request a
directory (DIR) on a drive with no diskette, and then type A in response to
the following display:

Not ready reading drive A
Abort, Retry, Fail?

0040:003FH (1 byte). This byte returns the diskette motor status. Bits 0
through 3 correspond to drives 0 through 3. If the bit is set, the diskette
motor is running.

0040:0040H (1 byte). This byte is used by the ROM BIOS to ensure that
the diskette drive motor is turned off. The value in this byte is decremented
with every tick of the system clock (that is, about 18.2 times per second).
When the value reaches 0, the BIOS turns off the drive motor.

0040:0041H (1 byte). This byte contains the status code reported by the
ROM BIOS after the most recent diskette operation. (See Figure 3-3.)

0040:0042H (7 bytes). These 7 bytes hold diskette controller status
information.

Beginning at 0040:0049H is a 30-byte area used for video control. This
is the first of two areas in segment 40H that the ROM BIOS uses to track
critical video information.

Value Meaning

00H No error

01H Invalid diskette command requested

02H Address mark on diskette not found

03H Write-protect error

04H Sector not found; diskette damaged or not formatted
06H Diskette change line active

08H DMA diskette error

09H Attempt to DMA across 64 KB boundary

O0CH Media type not found

10H Cyclical redundancy check (CRC) error in data
20H Diskette controller failed

40H Seek operation failed

80H Diskette timed out (drive not ready)

Figure 3-3. Diskette status codes in the ROM BIOS data area at 0040:0041H.
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Although programs can safely inspect any of this data, you should
modify the data only when you bypass the ROM BIOS video services and
program the video hardware directly. In such cases, you should update the
video control data to reflect the true status of the video hardware.

0040:0049H (1 byte). The value in this byte specifies the current video
mode. (See Figure 3-4.) This is the same video-mode number used in the
ROM BIOS video services. (See Chapter 9 for more on these services and
page 72 for general information concerning video modes.)

We’ve already shown how to use DEBUG to determine the current
video mode by inspecting the byte at 0040:0049H. BASIC programs can use
the following instructions to read this byte and determine the video mode:

DEF SEG = &H40 ' set BASIC data segment to 40H
VIDEO.MODE = PEEK(&H49) ' look at location 0040:0049H

0040:004AH (a 2-byte word). This word indicates the number of
characters that can be displayed in each row of text on the screen.

0040:004CH (a 2-byte word). This word indicates the number of bytes
required to represent one screenful of video data.

Number Description

00H 40 x 25 16-color text (CGA composite color burst disabled)
01H 40 x 25 16-color text

02H 80 x 25 16-color text (CGA composite color burst disabled)
03H 80 x 25 16-color text

04H 320 x 200 4-color graphics

05H 320 x 200 4-color graphics (CGA composite color burst disabled)
06H 640 x 200 2-color graphics

07H 80 X 25 monochrome text

ODH 320 % 200 16-color graphics

OEH 640 x 200 16-color graphics

OFH 640 x 350 monochrome graphics

10H 640 x 350 16-color graphics

11H 640 x 480 2-color graphics

12H 640 x 480 16-color graphics

13H 320 x 200 256-color graphics

Figure 3-4. BIOS video mode numbers stored at address 0040:0049H.
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0040:004EH (a 2-byte word). This word contains the starting byte off-
set into video display memory of the current display page. In effect, this ad-
dress indicates which page is in use by giving the offset to that page.

0040:0050H (eight 2-byte words). These words give the cursor locations
for eight separate display pages, beginning with page 0. The first byte of
each word gives the character column and the second byte gives the row.

0040:0060H (a 2-byte word). These 2 bytes indicate the size of the cur-
sor, based on the range of cursor scan lines. The first byte gives the ending
scan line, the second byte the starting scan line.

* 0040:0062H (1 byte). This byte holds the current display page number.

0040:0063H (a 2-byte word). This word stores the port address of the
hardware CRT controller chip. '

0040:0065H (1 byte). This byte contains the current setting of the CRT
mode register on the Monochrome Display Adapter and the Color Graphics
Adapter.

0040:0066H (1 byte). This byte contains the current setting of the Color
Graphics Adapter’s CRT color register. This byte ends the first block of
ROM BIOS video control data.

0040:0067H (5 bytes). The original IBM PC BIOS used the 5 bytes start-
ing at 0040:0067H for cassette tape control. In PS/2 models 50, 60, and 80,
which don’t support a cassette interface, the 4 bytes at 0040:0067H can con-
tain the address of a system reset routine that overrides the usual BIOS
startup code. (See the BIOS technical reference manual for details.)

0040:006CH (4 bytes stored as one 4-byte number). This area is used as
a master clock count, which is incremented once for each timer tick. It is
treated as if it began counting from 0 at midnight. When the count reaches
the equivalent of 24 hours, the ROM BIOS resets the count to 0 and sets the
byte at 0040:0070H to 1. DOS or BASIC calculates the current time from this
value and sets the time by putting the appropriate count in this field.

0040:0070H (1 byte). This byte indicates that a clock rollover has oc-
curred. When the clock count passes midnight (and is reset to 0), the ROM
BIOS sets this byte to 1, which means that the date should be incremented.

Q NOTE: This byte is set to 1 at midnight and is not incremented.
There is no indication if two midnights pass before the clock is read.

0040:0071H (1 byte). The ROM BIOS sets bit 7 of this byte to indicate
that the Ctrl-Break key combination was pressed.
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0040:0072H (a 2-byte word). This word is set to 1234H after the initial
power-up memory check. When a warm boot is instigated from the key-
board (via Ctrl-Alt-Del), the memory check will be skipped if this location
is already set to 1234H.

0040:0074H (4 bytes). These 4 bytes are used by various members of the
PC family for diskette and fixed-disk drive control. See the IBM BIOS Inter-
face Technical Reference Manual for details.

0040:0078H (4 bytes). These bytes control time-out values for the paral-
lel printers. (In the PS/2, only the first 3 bytes are used for this purpose.)

0040:007CH (4 bytes). These bytes contain time-out values for up to
four RS-232 serial ports.

0040:0080H (a 2-byte word). This word points to the start of the key-
board buffer area.

0040:0082H (a 2-byte word). This word points to the end of the key-
board buffer area.

The next 7 bytes are used by the ROM BIOS in the EGA and PS/2s for
video control:

0040:0084H (1 byte). The value of this byte is one less than the number
of character rows displayed on the screen. The BIOS can refer to this value
to determine how many character rows of data to erase when the screen is
cleared or how many rows to print when Shift-PrtSc is pressed.

0040:0085H (2 bytes). This word indicates the height, in scan lines, of
characters on the screen.

0040:0087H (4 bytes). These 4 bytes are used by the BIOS video support
routines to indicate the amount of video RAM available, the initial settings
of the EGA configuration switches, and other miscellaneous video status
information.

0040:008BH (11 bytes). The ROM BIOS uses this data area for control
and status information regarding the diskette and fixed-disk drives.

0040:0098H (9 bytes). This data area is used by the PC/AT and PS/2 BIOS
to control certain functions of the real-time clock.

0040:00A8H (4 bytes). In the EGA and PS/2 BIOS, these bytes contain the
segmented address of a table of video parameters and overrides for default
ROM BIOS video configuration values. The actual contents of the table vary,
depending on which video hardware you are using. The IBM ROM BIOS Inter-
face Technical Reference Manual describes this table in detail.
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0050:0000H (1 byte). This byte is used by the ROM BIOS to indicate the
status of a print-screen operation. Three possible hex values are stored in
this location:

00H Indicates OK status
01H Indicates a print-screen operation is currently in progress
FFH Indicates an error occurred during a print-screen operation

0050:0004H (1 byte). This byte is used by DOS when a single-diskette
system mimics a two-diskette system. The value indicates whether the one
physical drive is acting as drive A or drive B. These values are used:

00H Acting as drive A
01H Acting as drive B

0050:0010H (a 2-byte word). This area is used by ROM BASIC to hold its
default data segment (DS) value.

BASIC lets you set your own data segment value with the DEF SEG =
value statement. (The offset into the segment is specified by the PEEK or
POKE function.) You can also reset the data segment to its default setting by
using the DEF SEG statement without a value. Although BASIC does not give
you a simple way to find the default value stored in this location, you can
get it by using this little routine:

DEF SEG = &H50
DATA.SEGMENT = PEEK(&H11) * 256 + PEEK(&H10)

Q NOTE: BASIC administers its own internal data based on the
default data segment value. Attempting to change this value is likely
to sabotage BASIC' s operation.

0050:0012H (4 bytes). In some versions of ROM BASIC, these 4 bytes
contain the segment and offset address of BASIC’s clock-tick interrupt
handler.

Q NOTE: In order to perform better, BASIC runs the system clock at
four times the standard rate, so BASIC must replace the ROM BIOS
clock interrupt routine with its own. The standard BIOS interrupt
routine is invoked by BASIC at the normal rate; that is, once for
every four fast ticks. There’s more about this on page 146.

0050:0016H (4 bytes). This area contains the address of ROM BASIC’s
break-key handling routine.
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0050:001AH (4 bytes). This area contains the address of ROM BASIC’s
diskette error-handling routine.

The Intra-Application Communications Area

In the PC/XT/AT family, the 16 bytes starting at 0040:00FOH are reserved as
an intra-application communication area (ICA). This data area provides an
area of RAM at a known address that an application can use for sharing data
among separate program modules. In the PS/2 BIOS, however, the ICA is no
longer documented.

Few applications actually use the ICA because the amount of RAM is
so small and because the data within the ICA can be unexpectedly modified
when more than one program uses it. If you do write a program that uses the
ICA, we recommend that you include a checksum and also a signature so
that you can ensure that the data in the ICA is yours and that it has not been
changed by another program.

O WARNING: The ICA is definitely located in the 16 bytes from
0040:00FOH through 0040:00FFH. A typographic error in some
editions of the 1BM PC Technical Reference Manual places it at
0050:0000H through 0050:00FFH. This is incorrect.

The BIOS Extended Data Area

The PS/2 ROM BIOS start-up routines allocate an additional area of RAM for
their own use. The BIOS routines use this extended data area for transient
data storage. For example, the BIOS routines that support the pointing-
device (mouse) controller hardware use part of the extended data area for
temporary storage.

You can determine the starting address of the extended data area by
using a system service available through ROM BIOS interrupt 15H. (See
Chapter 12.) The first byte in the extended data area contains the size of the
data area in KB.

The ROM Version and Machine-ID Markers
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Because the BIOS programs are fixed in memory, they can’t be easily
changed when additions or corrections are needed. This means that ROM
programs must be tested very carefully before they are frozen onto memory
chips. Although there is a good chance for serious errors to exist in a
system’s ROM programs, IBM has a fine track record; so far, only small and
relatively unimportant errors have been found in the PC family’s ROM
programs, and IBM has done well to correct errors by revising the BIOS.
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The different versions of ROM software could present a small
challenge to programmers who discover that the differences affect the
operating characteristics of their programs. But an even greater challenge
for programmers is that the PC, XT, AT, and PS/2s each have a slightly
different set of ROM BIOS routines.

To ensure that programs can work with the appropriate ROM programs
and the right computer, IBM has supplied two identifying markers that are
permanently available at the end of memory in the system ROM. One
marker identifies the ROM release date, which can be used to identify the
BIOS version, and the other gives the machine model. These markers are
always present in IBM’s own machines and you’ll also find them supplied
by the manufacturers of a few PC compatibles. The following paragraphs
describe these markers in detail.

The ROM release date can be found in an 8-byte storage area from
FOOO0:FFF5H to FOO0:FFFCH (2 bytes before the machine ID byte). It consists
of ASCII characters in the common American date format; for example,
06/01/83 stands for June 1, 1983. This release marker is a common feature of
the IBM personal computers, but is present in only a few IBM compatibles.
For example, the Compaq Portable I does not have it, but the Panasonic
Senior Partner does.

You can look at the release date with DEBUG by using the following
command:

DEBUG
D FOOO:FFF5 L 8

Or you can let your program look at the bytes using this technique:

10 DEF SEG = &HFO000

20 FOR I =0 TO 7

30  PRINT CHR$(PEEK(&HFFF5 + I));
40 NEXT

50 END

The model ID is a byte located at FOOO:FFFEH. This byte identifies
which model of PC or PS/2 you are using. (See Figure 3-5.) In addition,
a ROM BIOS service in the PC/AT and PS/2s returns more detailed
identification information, including the submodel byte listed in the figure.
(See Chapter 12.)
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Machine Date Model Submodel BIOS Revision Notes
PC 04/24/81 FFH  ** 00
10/19/81 FFH *k 01 Some BIOS bugs
fixed
10/27/82 FFH *k 02 Upgrade of PC BIOS
to XT level
PC/XT 11/08/82  FEH *k 00
01/10/86  FBH 00 01 256/640 KB system
board
05/09/86 FBH 00 02
PC/AT 01/10/84 FCH *ok 00 6 MHz 80286
06/10/85 FCH 00 01 '
11/15/85 FCH 01 00 8 MHz 80286
PS/2 Model 25 06/26/87 FAH 01 00
PS/2 Model 30 09/02/86  FAH 00 00
12/12/86 FAH 00 01
PS/2 Model 50 02/13/87 FCH 04 00
PS/2 Model 60 02/13/87 FCH 05 00
PS/2 Model 80 03/30/87 F8H 00 00 16 MHz 80386
PS/2 Model 80 10/07/87 F8H 01 00 20 MHz 80386
PCjr 06/01/83 FDH il 00
PC Convertible  09/13/85 FOH 00 00
PC/XT Model
286 04/21/86  FCH 02 00

** not applicable

Figure 3-5. Machine and ROM BIOS version identification.

It is possible that IBM-compatible computers can be identified in the
same way, but we do not know of any reliable published information. You
may need to rely on improvised methods to identify non-IBM compatibles.

You can examine the machine ID byte with DEBUG by using the
following command:

DEBUG

D FOOO:FFFE L 1
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A BASIC program can inspect this byte using techniques such as this:

10 DEF SEG = &HF000

20 MODEL = PEEK(&HFFFE)

30 IF MODEL < &HF8 THEN PRINT "I'm not an IBM computer" : STOP

40 ON (MODEL - &HF7) GOTO 100,110,120,130,140,150,160,170

100 PRINT "I'm a PS/2 Model 80" : STOP

110 PRINT "I'm a PC convertible" : STOP

120 PRINT "I'm a PS/2 Model 30" : STOP

130 PRINT "I'm a PC/XT" : STOP

140 PRINT “I'm an 80286-based machine (PC/AT, PS/2 Model 50 or 60)" :
STOP

150 PRINT "I'm a PCjr" : STOP

160 PRINT "I'm a PC/XT" : STOP

170 PRINT "I'm a PC" : STOP

The ROM BASIC

Now we move on to the third element of ROM: the ROM BASIC. The ROM
BASIC acts in two ways. First, it provides the core of the BASIC language,
which includes most of the commands and the underlying foundation—
such as memory management—that BASIC uses. The disk versions of
interpreted BASIC, which are found in the program files BASIC.COM and
BASICA.COM, are essentially supplements to ROM BASIC, and they rely on
ROM BASIC to get much of their work done. The second role of ROM BASIC
is to provide what IBM calls ‘‘cassette’’ BASIC — the BASIC that is activated
when you start up your computer without a disk.

Whenever you use any of the interpreted, disk-based BASICs, the ROM
BASIC programs are also used—although there’s nothing to make you
aware of it. On the other hand, compiled BASIC programs don’t make use of
the ROM BASIC.

The ROM Extensions

The fourth element of the ROM has more to do with the PC’s design than
with the actual contents of its memory. The PC was designed to allow for
installable extensions to the built-in software in ROM. The additional ROM
is usually located on a plug-in adapter such as the Enhanced Graphics
Adapter or a fixed-disk controller card. Computers in the PC/XT/AT family
also have empty sockets on their system boards to accommodate additional
ROM chips. Because the original ROM BIOS could not include support
programs for future hardware, ROM extensions are obviously a necessary
and helpful addition.
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Several memory areas are reserved for ROM extensions. Addresses
C000:0000H through C000:7FFFH are reserved for video adapter ROM. The
area between C800:0000H and DOOO:FFFFH can be used by nonvideo
adapters. (For example, the IBM XT fixed-disk adapter occupies addresses
starting at C800:0000H.) Finally, ROM extensions on chips placed onto the
system board of a PC, XT, or AT occupy the address range E000:0000H
through E000:FFFFH. In the PS/2 models 50, 60, and 80, you cannot add ROM
chips to the system board. The system ROM in these computers occupies the
entire address range between E000:0000H and FO00:FFFFH.

Comments
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As the PC family has evolved, the amount and complexity of the ROM
software has increased to accommodate the greater sophistication of the
computer hardware. The source code listings in the PC, XT, and AT
technical reference manuals consist of tens of thousands of assembly-
language instructions. Despite the size of the ROM BIOS, a browse through
the source code can be fun and enlightening.

We have made every effort in this book to point out when and how to
use the ROM BIOS routines. We recommend that you read Chapters 8
through 13 before you begin your own exploration of the ROM BIOS.
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To many people, the video display is the computer. Programs are often
judged by their display quality and visual design alone. In this chapter,
you’ll see what kinds of video display output the IBM PC family can pro-
duce. More importantly, we’ll describe how to manipulate the video dis-
plays to get the effects you want.

The Video Subsystems

68

Every PC and PS/2 has a video subsystem responsible for producing the
image that appears on the screen. At the heart of the video subsystem is the
special-purpose circuitry that must be programmed to generate the electri-
cal signals that control the video display. Most members of the PC/XT/AT
family require you to install a display adapter, a special video circuit board
that plugs into one of the computer’s expansion slots. On the other hand, all
PS/2s are equipped with built-in video circuitry and, therefore, require no
display adapter.

The video circuitry consists of a group of interrelated components that
control signal timing, colors, and the generation of text characters. All IBM
video subsystems have a video buffer, a block of dedicated memory that
holds the text or graphics information displayed on the screen. The video
subsystem performs the unique task of translating the raw data in the video
buffer into the signals that drive the video display.

The various video subsystems used in PCs and PS/2s all evolved from
the two video adapters originally released by IBM for the PC: the Mono-
chrome Display Adapter (MDA) and the Color Graphics Adapter (CGA).
IBM later released its Enhanced Graphics Adapter (EGA), a more powerful
successor to the MDA and CGA.

When the PS/2s appeared, IBM introduced two more video sub-
systems: the Multi-Color Graphics Array (MCGA), built into the PS/2
models 25 and 30, and the Video Graphics Array (VGA), built into the PS/2
models 50, 60, and 80. At the same time the PS/2s appeared, IBM introduced
a VGA adapter that can be used in the PC/XT/AT family as well as in the
PS/2 Model 30.

We’ll be discussing all five of these IBM subsystems — MDA, CGA,
EGA, MCGA, and VGA —in this chapter. Although clear differences in hard-
ware design exist between the various video subsystems, their strong family
resemblance should encourage you to consider what they have in common
before worrying about the differences between them.

Most of the five video subsystems can be programmed into two funda-
mentally different modes, called text mode and graphics mode by 1BM. (The
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lone exception is the MDA, which operates only in text mode.) In text mode
you can display only text characters, though many of these characters are
suitable for producing simple line drawings. (See Appendix C for more on
characters.) Graphics mode is mainly used for complex drawings but you
can also use it to draw text characters in a variety of shapes and sizes.

The CGA can operate in both text and graphics modes to produce
drawings and characters in several formats and colors. By contrast, the MDA
can operate only in text mode, using a stored set of ASCII alphanumeric and
graphics characters and displaying them in only one color. The MDA works
only with the IBM Monochrome Monitor (or its equivalent) while the CGA
must be connected to either a direct-drive or a composite color monitor.
(See page 74 for more on monitors.) Many business and professional users
prefer a monochrome display to a color display because a monochrome
screen is easier on the eyes and less expensive than an equivalent color dis-
play. But in choosing monochrome, they sacrifice color, a valuable asset for
any computer display.

The MDA’s most obvious drawback is its inability to display images in
graphics mode. For this reason, PC/XT/AT users who prefer a monochrome
display, yet need to view graphics, must turn to an EGA or to a non-IBM
adapter like the Hercules Graphics Card, which emulates the MDA’s text
mode but supports a monochrome graphics mode as well.

Roughly two-thirds of all PCs are equipped with the standard MDA
and therefore have no graphics or color capability. While there are real ad-
vantages to using color and graphics, most PCs get along nicely without ei-
ther. Although the clear trend is foward higher-performance video sub-
systems that can display graphics as well as text, keep in mind as you plan
computer applications that many PCs display text only.

The best way to understand the video capabilities of the PCs and PS/2s
is to cover the features that their various video subsystems have in common.
As we go along, we’ll point out the differences and improvements that dis-
tinguish the newer and more complicated subsystems (EGA, MCGA, and
VGA) from their predecessors (MDA and CGA).

Memory and the Video Subsystems
The video buffer memory is connected directly to the display circuitry so
that the data in the video buffer can be repeatedly read out of the buffer and
displayed. However, the video buffer is also logically (to the CPU) a part of
the computer’s main memory address space. A full 128 KB of the memory
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address space is set aside for use as video buffers, at addresses AG00:0000H
through BOO0O:FFFFH, but the two original display adapters use only two
small parts of this memory area. The Monochrome Display Adapter (MDA)
provides 4 KB of display memory located at segment BOOOH. The original
CGA provides 16 KB of display memory located at segment B80OH.

With the other IBM video subsystems, the address at which video
memory is located isn’t fixed—it depends on how the subsystem is con-
figured. For example, when an EGA is used with a monochrome display, its
text-mode video buffer is placed at BOOOH, just as with an MDA. When an
EGA is attached to a color display, its video buffer can be addressed at
B800H. And when you use an EGA in non-CGA graphics modes, the starting
buffer address is A00OH. Like the EGA, the MCGA and the VGA also support
this chameleon-like method of buffer addressing.

Creating the Screen Image

70

You can describe the screen display created by IBM video subsystems as a
memory-mapped display, because each address in the display memory corre-
sponds to a specific location on the screen. (See Figure 4-1.) The display cir-
cuitry repeatedly reads information from memory and places it on the
screen. The information can be changed as quickly as the computer can

K N
o0 000 o oooe coco0e oo Plxels or
characters
on screen
/

LI T T T T TTITITTITTITT1
Successive locations in RAM

Figure 4-1. The memory-mapped display.
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write new information from your programs into memory. The display cir-
cuitry translates the stream of bits it receives from memory into bursts of
light at particular locations on the screen.

These dots of light are called pixels and are produced by an electron
beam striking the phosphorescent surface of the CRT. The electron beam is
produced by an electron gun that scans the screen line by line. As the gun
moves across and down the screen in a fixed path called a raster scan, the
video subsystem generates video control signals that turn the beam on and
off, matching the pattern of the bits in memory.

The video circuitry refreshes the screen between 50 and 70 times a
second (depending on the video mode), making the changing images appear
clear and steady. At the end of each screen-refresh cycle, the electron beam
must move from the bottom right corner to the top left corner of the screen
to begin a new cycle. This movement is called the vertical retrace. During
the retrace, the beam is blanked and no pixels are written to the screen.

The vertical retrace period (about 1.25 milliseconds) is important to
programmers for one main reason, which requires some explanation. The
special dual-ported design of the video memory gives the CPU and the
display-refresh circuitry equal access to the display memory. This allows
the CPU and the display circuitry to access video memory at the same time.

This causes a problem on the Color Graphics Adapter (CGA). If the
CPU happens to read or write to the video buffer at the same time the dis-
play circuitry is copying data out of the buffer to display onscreen, a
“‘snow’’ effect may briefly appear on the screen. However, if you instruct
the CPU to access memory only during vertical retrace, when the display
circuitry is not accessing the video buffer, then snow can be eliminated. A
program running on a CGA can test the value of bit 3 in the adapter’s I/O
port at 3DAH. This bit is set on at the beginning of vertical retrace and then
set off at the end. During this 1.25-millisecond pause, you can have your
programs write as much data as possible to the video display memory. At
the end of the retrace, the display circuitry can write this data to the screen
without snow.

This technique is useful for any application that directly accesses data
in the video buffer in text mode on a CGA. Fortunately, the hardware design
of all other IBM video subsystems avoids this access conflict and makes this
specialized programming technique unnecessary.
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The Video Display Modes

Originally, there were eight video modes defined for the IBM personal com-
puters: seven on the CGA and one on the MDA. The more sophisticated EGA,
MCGA, and VGA introduced several new modes plus variations on the origi-
nal eight. As a result, among the five IBM video subsystems are 12 text and
graphics modes and, depending how you count them, seven or eight varia-
tions—and that’s not counting the extra modes available with non-IBM
video hardware and with defunct IBM systems like the PCjr. There’s plenty
of variety when you’re working with IBM video subsystems.

Despite the perplexing proliferation of video modes, what is striking
about the different modes is not their differences but their similarities
(Figure 4-2): All video modes are related in resolution and in video buffer
organization to the original MDA and CGA modes.

The MDA’s 80-column, 25-row monochrome text mode is supported on
the EGA and VGA. Similarly, the CGA’s two text modes (40 X 25 and 80 X 25
16-color modes) are also supported on the EGA, MCGA, and VGA. Don’t let
the redundant mode numbers in Figure 4-2 confuse you: The difference be-
tween mode 0 and mode 1, for example, is that the composite color signal on

BIOS Mode Number :
Hex Dec Type Resolution Colors  Video Subsystem
00H,01H 0,1 Text 40x 25 16 CGA, EGA, MCGA, VGA
02H,03H 2,3 Text 80x25 16 CGA, EGA, MCGA, VGA
04H,05H 4,5 Graphics 320 %200 4 CGA, EGA, MCGA, VGA
06H 6 Graphics 640 x 200 2 CGA, EGA, MCGA, VGA
07H 7 Text 80 x 25 Mono MDA, EGA, VGA
08H,09H,0AH 8,9, 10 (PCjr only)
0BH,0CH 11,12 (Used internally by EGA BIOS)
ODH 13 Graphics 320 %200 16 EGA,VGA
OEH 14 Graphics 640 x 200 16 EGA,VGA
OFH 15 Graphics 640 x 350 Mono EGA,VGA

10H 16 Graphics 640 x 350 16 EGA,VGA

11H 17 Graphics 640 x 480 2 MCGA,VGA

12H 18 Graphics 640 x 480 16 VGA

13H 19 Graphics 320 x 200 256 MCGA,VGA

Figure 4-2. Video modes available on IBM video subsystems.
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the CGA is modified for composite monochrome monitors in mode 0. (See
page 74 for more on monitors.) With all other monitors and in all other
video subsystems, modes 0 and 1 are the same, as are modes 2 and 3 and
modes 4 and 5.

The evolutionary pattern is the same for graphics modes. The CGA
supports two graphics modes, a 320 X 200 pixel, 4-color mode and a 640 X
200, 2-color mode. These same two modes are supported on the EGA, MCGA,
and VGA. The EGA introduced three new graphics modes with more colors
and better resolution than the original CGA graphics modes: the 320 X 200,
16-color; 640 X 200, 16-color; and 640 X 350, 16-color modes. The EGA also
introduced a 640 x 350 monochrome graphics mode that could be used only
with an MDA-compatible monochrome display.

When the PS/2s appeared, their video subsystems supported the same
modes as did the MDA, CGA, and EGA—but again, a few new graphics
modes were introduced. The MCGA in the PS/2 models 25 and 30 followed
the CGA tradition: It supported all CGA modes, plus new 640 X 480, 2-color
and 320 X 200, 256-color graphics modes. The VGA in the other PS/2 models
strongly resembles the EGA. It provides all the EGA’s text and graphics
modes, the two new MCGA graphics modes, and one more graphics mode
not supported by the other subsystems —a 640 X 480, 16-color mode.

How do you know which mode to use in a program? Clearly, if broad
compatibility is a concern, the MDA and CGA modes are the least common
denominator. If you need more colors or better graphics resolution than the
CGA modes provide, you can turn to one of the EGA, MCGA, or VGA
graphics modes. Of course, if your program requires an EGA or a VGA to
run, users who have only a CGA will be out of luck.

Many commercial software vendors solve this problem by distributing
installable video output routines along with their products. Before you can
use a package like Microsoft Windows or Lotus 1-2-3, for example, you
must run a special installation program that binds output routines for your
particular video hardware to the software application. This approach is
more work for both the people who write software and the people who use
it, but it is a good way to make applications deliver the best possible video
performance without stumbling over the diversity of video hardware and
video modes.

Video Mode Control

Before we get into the details about resolution and color in video modes,
let’s consider how you select which video mode to use. The most efficient
way to set up a video mode is to use assembly language to call the ROM
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74

BIOS. ROM BIOS interrupt 10H (decimal 16), service 00H, provides a way to
select a video mode using the mode numbers listed in Figure 4-2. (See
Chapter 9 for more details on this.)

Many programming languages also offer high-level commands that
select video modes for you. For example, BASIC gives you control over the
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video modes through the SCREEN statement but refers to them in its own
way, using different mode numbers than the ROM BIOS routines. You can
also control some of the video modes through the DOS MODE command.
(See Figure 4-3.)
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BIOS Mode Number BASIC Statement to DOS Statement to
Hex Dec Change Mode Change Mode
00H 0 SCREEN 0,0: WIDTH 40 MODE BW40

01H 1 SCREEN 0,1:WIDTH 40 MODE C040

02H 2 SCREEN 0,0: WIDTH 80 MODE BW80

03H 3 SCREEN 0,1:WIDTH 80 MODE CO080

04H 4 SCREEN 1,0 n/a

05H 5 SCREEN 1,1 n/a

06H 6 SCREEN 2 n/a

07H 7 n/a MODE MONO

Figure 4-3. The BASIC and DOS commands used to change video modes.

Display Resolution ‘
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Video images consist of a large number of closely spaced pixels. The dis-
play resolution is defined by the number of pixel rows, or scan lines, from
top to bottom and the number of pixels from left to right in each scan line.
The horizontal and vertical resolution is limited by the capabilities of the
video monitor as well as the display circuitry inside the computer. The
video modes available on the different subsystems were carefully designed
so that the horizontal and vertical resolution in each mode is within the
limits imposed by the hardware.

The MDA’s single text mode has 720 X 350 pixel resolution; that is, the
screen has 350 scan lines, each of which contains 720 pixels. Because 25
rows of 80 characters of text are displayed in this mode, each character is 9
pixels wide (720 + 80) and 14 pixels high (350 + 25). The CGA’s text modes
are a bit lower resolution, because the CGA’s pixel resolution is only 640 X
200. Thus the 25 rows of 80-character text on a CGA consist of characters that
are only 8 pixels wide (640 + 80) and 8 pixels high (200 + 25). That’s why text
looks sharper on an MDA screen than on a CGA.

The trend in the newer IBM video subsystems is to provide better ver-
tical resolution. For example, the EGA’s 80 X 25 text mode has 640 X 350
pixel resolution, so text characters are 8 X 14 pixels. On the MCGA, the
default 80 X 25 text mode has 640 X 400 resolution (8 X 16 characters), and on
the VGA the same text mode has 720 X 400 resolution, so characters are each
9 pixels wide and 16 pixels high. From a program’s point of view, the 80 X
25 text mode is the same on the CGA, the MCGA, and the VGA —it’s display
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mode 3 in all cases—but a user sees much higher resolution when using a
VGA or MCGA than when using one of the older subsystems.

You see the same trend towards better resolution when you examine
the graphics modes available with the newer video subsystems. The VGA’s
640 X 480, 16-color mode has more than twice as many pixels on the screen
as the original CGA’s 640 X 200 graphics mode. It’s ironic that this CGA
mode was known as a ‘‘high-resolution’’ mode when the CGA was new.

- The Use of Color

A variety of colors is available in every video mode except of course on a
monochrome display. You may have noticed that among the various modes
there are substantial differences in the number of colors available. In this
section, we will describe the color options for the video modes.

Colors for the video display screens are produced by combinations of
four elements: three color components —red, green, and blue—plus an in-
tensity, or brightness, component. Text and graphics modes use the same
colors and intensity options, but they combine them in different ways to
produce their colored displays. The text modes, whose basic unit is a char-
acter composed of several pixels, use an entire byte to set the color, the in-
tensity, and the blinking characteristics of the character and its background.
In graphics modes, each pixel is represented by a group of 1 through 8 bits
whose value determines the color and brightness of the displayed pixel.

In 16-color text and graphics modes, the four basic color and bright-
ness components can be combined in 16 ways. Colors are specified by a
group of 4 bits. Each bit designates whether a particular color component is
on or off. The result is 16 color combinations that correspond to the 16 4-bit
binary numbers. (See Figure 4-4.)

In some video modes, the data in the video buffer consists of 4-bit at-
tribute values that correspond exactly to the 16 possible color combinations
on the screen. In other video modes, the attribute values do not directly
specify colors. For example, on the EGA, each attribute value designates one
of 16 palette registers, each of which contains a color value. (See Figure
4-5.) It is the palette color values that determine the color combinations dis-
played on the screen.

The use of palettes makes it possible to specify one of a broad range of
colors using relatively few bits of data in the video buffer. Each of the
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Intensity Red Green Blue Binary Hex Description

0 0 0 0 0000B O00H Black

0 0 0 1 0001B OIH Blue

0 0 1 0 , 0010B 02H Green

0 0 1 1 0011B  03H Cyan (blue-green)

0 1 0 0 0100B 04H Red

0 1 0 1 0101B O05H Magenta

0 1 1 0 0110B 06H Brown (or dark yellow)

0 1 1 1 0111B 07H Light gray (or ordinary white)

1 0 0 0 1000B O08H Dark gray (black on many
screens)

1 0 0 1 1001B  09H Light blue

1 0 1 0 1010B  OAH Light green

1 0 1 1 1011B  OBH Lightcyan

1 1 0 0 1100B  OCH Lightred

1 1 0 1 1101B  ODH Light magenta

1 1 1 0 1110B  OEH Yellow (or light yellow)

1 1 1 1 1111B OFH Bright white

Figure 4-4. Default colors available in 16-color text and graphics modes.

0110 1010 10100111 0101 0101 1101

Color value [

v

Attribute value in - : i Color on
video buffer Palette registers screen

Figure 4-5. How EGA colors are specified using palette registers. Each attribute value in
the video buffer designates a palette register whose contents specify a color.
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'EGA’s 16 palette registers, for example, can contain one of 64 different 6-bit
color values. In this way, any 2 of 64 different colors can be used in a
2-color EGA video mode, any 4 out of 64 can be used in a 4-color mode, and
any 16 of 64 can be used in a 16-color mode.

All IBM video subsystems except the MDA can use palettes to display
colors. The CGA has three built-in, 4-color palettes for use in 320 x 200,
4-color mode. The EGA, as we have seen, has a 16-color palette in which
each color can be selected from a set of 64 colors. The MCGA and the VGA, -
which can display an even wider range of colors, use a separate palette-like
component, the video digital to analog converter (video DAC), to send color
signals to the screen.

The video DAC contains 256 color registers, each of which contains
6-bit color values for red, green, and blue. Since there are 64 possible values
for each of the RGB components, each video DAC color register can contain
one of 64 X 64 X 64, or 262,144 different color values. That wide range of
colors can help you display very subtle color shades and contours.

With the MCGA, the video DAC color registers serve much the same
purpose as the palette registers do with the EGA. Attribute values in the
video buffer designate video DAC color registers whose contents specify the
colors that appear on the screen. Unfortunately, only one MCGA video mode
can take full advantage of the video DAC’s capabilities: 320 x 200, 256-color
mode. Only this video mode uses 8-bit attribute values that can specify all
256 of the video DAC’s color registers. All remaining video modes use at-
tribute values that have no more than 4 bits, so only the first 16 video DAC
color registers are used.

The VGA gets around this limitation (and complicates matters
somewhat) by using a set of 16 palette registers like the EGA’s, as well as a
set of 256 video DAC color registers like the MCGA’s. An attribute value in
the video buffer selects one of the 16 palette registers, whose contents select
one of the 256 video DAC color registers — whose contents “‘in turn’’ deter-
mine the color displayed on the screen. (See Figure 4-6.)

Specifying colors on an EGA, MCGA, or VGA is clearly more compli-
cated than it is on the CGA. To simplify this process, however, the ROM BIOS
loads the palette registers (on the EGA and VGA) and the video DAC color
registers (on the MCGA and VGA) with color values that exactly match those
available on the CGA. If you use CGA-compatible text and graphics modes
on the newer subsystems and ignore the palette and video DAC registers,
you’ll see the same colors you would on a CGA.
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0110 10100111 0101 0101 1101
| M—

Attribute value in
video buffer

Color on

Palette registers screen

Video DAC color registers
Figure 4-6. How VGA colors are specified using palette registers and the video DAC.

For this reason it’s usually best to ignore the palette and video DAC
registers when you start developing an application. Once your application
works properly with the CGA-compatible colors, you can add program code
that changes the palette and/or the video DAC colors. The ROM BIOS pro-
vides a complete set of services that let you access the palette and video DAC
registers. Chapter 9 covers these services in detail.

In considering color, read each of the remaining sections, which
discuss important color-related items.

Color-Suppressed Modes

In an effort to make the graphics modes compatible with a wide range of
monitors, both color and monochrome, IBM included a few modes on the
Color Graphics Adapter that do not produce color: color-suppressed modes.
There are three color-suppressed modes: modes 0, 2, and 5. In these modes,
colors are converted into shades of gray, or whatever color the screen
phosphor produces. There are four gray shades in mode 5, and a variety of

80



Chapter 4: Video Basics

shades in modes 0 and 2. CGA’s color is suppressed in the composite output
but not in its RGB output. This inconsistency is the result of an unavoidable
technical limitation.

Q NOTE: For each color-suppressed mode, there is a correspond-
ing color mode, so modes 0 and 1 correspond to 40-column text,
modes 2 and 3 to 80-column text, and modes 4 and 5 to medium-
resolution graphics. The fact that modes 4 and 5 reverse the pattern
of modes 0 and 1 and modes 2 and 3, where the color-suppressed
mode comes first, has led to a complication in BASIC. The burst
parameter of the BASIC SCREEN statement controls color. The
meaning of this parameter is reversed for modes 4 and 5 so that the
statement SCREEN,I activates color in the text modes (0, 1, 2, and 3)
but suppresses color in the graphics modes (4 and 5). This inconsis-
tency may have been a programming error at first, but it is now
part of the official definition of the SCREEN statement.

Color in Text and Graphics Modes

Text and graphics modes use the same color-decoding circuitry, but differ
in the way they store the color attribute data in the video buffer. In text
modes, no matter what video subsystem you use, the foreground and back-
ground colors of each character are specified by two 4-bit fields in a single
attribute byte. (See Figure 4-7.) Together, the foreground and background
attributes describe all of a character’s pixels: All foreground pixels are dis-
played with the character’s foreground attribute, and all background pixels
assume the background attribute.

Bit
76543210 Use

1. ... .. Blinking of foreground character or intensity
component of background color

1. ... .. Red component of background color
1. .. .. Green component of background color
1. ... Blue component of background color
R S Intensity component of foreground color
..... 1. . Red component of foreground color
...... 1. Green component of foregrourid color
....... 1 Blue component of foreground color

Figure 4-7. The coding of the color attribute byte.
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In graphics modes, each pixel’s attribute is determined by the con-
tents of a bit field in the video buffer. The size and format of a pixel’s bit
field depend on the video mode: The smallest bit fields are only 1 bit wide
(as in 640 X 200, 2-color mode), and the largest bit fields are 8 bits wide (as
in 320 X 200, 256-color mode).

The reason for having both text and graphics modes becomes clear if
you think about how much data it takes to describe the pixels on the screen.
In graphics modes, you need between 1 and 8 bits of data in the video buffer
for every pixel you display. In 640 x 350, 16-color mode, for instance, with 4
bits per pixel, you need 640 X 350 X 4 + 8 (112,000) bytes to represent one
screenful of video data. But if you display 25 rows of 80 characters in a text
mode with the same resolution, you need only 80 X 25 X 2, or 4000, bytes.

The tradeoff is clear: Text modes consume less memory and require
less data manipulation than do graphics modes —but you can manipulate
each pixel independently in graphics modes, as opposed to manipulating
entire characters in text modes. '

Setting color in text modes

Let’s take a closer look at how you control colors in text modes. (We’ll get
back to graphics modes later in this chapter.) In text modes, each character
position on the display screen is controlled by a pair of adjacent bytes in the
video buffer. The first byte contains the ASCII code for the character that
will be displayed. (See Appendix C for a chart of characters.) The second
byte is the character’s attribute byte. It controls how the character will ap-
pear, that is, its colors, brightness (intensity), and blinking. .

We’ve already mentioned two attributes that affect a character’s ap-
pearance: color and intensity (brightness). You can assign several other
attributes to text characters, depending on which video subsystem you’re
using. With all IBM video subsystems, text characters can blink. On mono-
chrome-capable subsystems (the MDA, EGA, and VGA), characters can also
be underlined. Also, on some non-IBM subsystems like the Hercules
Graphics Card Plus, characters can have attributes such as overstrike and
boldface.

In all cases, you assign these alternate attributes by using the same
4-bit attributes that specify color. A case in point is the blinking attribute.
Character blinking is controlled by setting a bit in a special register in the
video subsystem. (On the CGA, for example, this enable-blink bit is bit 5 of
the 8-bit register mapped at input/output port 3D8H.) When this bit is set to
1, the high-order bit of each character’s attribute byte is not interpreted as
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part of the character’s background color specification. Instead, this bit indi-
cates whether the character should blink.

If you have a CGA, watch what happens when you run the following
BASIC program:

10 DEF SEG = &HB800 ' point to start of video buffer
20 POKE 0,ASC("A") ' store the ASCII code for A in the buffer
30 POKE 1,&H97 ' foreground attribute = 7 (white)

' background attribute = 9 (intense blue)

You’ll see a blinking white letter A on a blue background. If you add
the following statement to the program, you’ll clear the enable-blink bit and
cause the CGA to interpret the background attribute as intense blue:

40 OUT &H3D8,&H09 ' clear the "enable-blink" bit

The default attribute used by DOS and BASIC is 07H, normal white (7)
on black (0), without blinking, but you can use any combination of 4-bit
foreground and background attributes for each character displayed in a text
mode. If you exchange a character’s foreground and background attributes,
the character is displayed in ‘‘reverse video.” If the foreground and
background attributes are the same, the character is ‘‘invisible.”’

Setting attributes in the monochrome mode

The monochrome mode (mode 7) used by the Monochrome Display Adapter
has a limited selection of attributes that take the place of color. Like the
CGA, the MDA uses 4-bit foreground and background attributes, but their
values are interpreted differently by the MDA attribute decoding circuitry.

Only certain combinations of foreground and background attributes
are recognized by the MDA. (See Figure 4-8.) Other useful combinations,
like ‘‘invisible’’ (white-on-white) or a reverse-video/underlined combina-
tion, aren’t supported by the hardware.

Like the CGA, the MDA has an enable-blink bit that determines
whether the high-order bit of each character’s attribute byte controls blink-
ing or the intensity of the background attribute. On the MDA, the enable-
blink bit is bit 5 of the register at port 3B8H. As on the CGA, the enable-blink
bit is set by the ROM BIOS when it establishes monochrome text mode 7, so
you must explicitly clear this bit if you want to disable blinking and display
characters with intensified background.

With the EGA, MCGA, and VGA, text-mode attributes work the same as
with the MDA and CGA. Although the enable-blink bit is not in the same
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Attribute Description
O00H Nondisplayed
01H Underlined
07H Normal (white on black)
09H High-intensity underlined
OFH High-intensity
70H White background, black foreground (‘‘reverse video’’)
87H* Blinking white on black (if blinking enabled)
Dim background, normal foreground (if blinking disabled)
8FH* ’ Blinking high-intensity (if blinking enabled)
Dim background, high-intensity foreground (if blinking disabled)
FOH Blinking *‘reverse video’’ (if blinking enabled)

High-intensity background, black foreground (if blinking disabled)

* Not displayed by all monochrome monitors

Figure 4-8. Monochrome text-mode attributes. The appearance of some attributes
depends on the setting of the enable-blink bit at 1/0 port 3B8H.

hardware register in the newer subsystems, the ROM BIOS offers a service
through interrupt 10H that toggles the bit on an EGA, MCGA, or VGA. (See
Chapter 9, page 178 for more information about this service.)

Setting color in graphics modes

So far, we’ve seen how to set color (and the monochrome equivalent of
color) in text modes. Setting color in graphics modes is quite different. In
graphics modes, each pixel is associated with a color. The color is set the
same way attributes are set in text mode, but there are important differ-
ences. First, since each pixel is a discrete dot of color, there is no fore-
ground and background—each pixel is simply one color or another.
Second, pixel attributes are not always 4 bits in size— we’ve already men-
tioned that pixel attributes can range from 1 to 8 bits, depending on the
video mode being used. These differences give graphics-mode programs a
subtly different ‘‘feel’’ than they have in text modes, both to programmers
and to users.

The most important difference between text-mode and graphics-mode
attributes, however, is this: In graphics modes you can control the color of
each pixel. This lets you use colors much more effectively than you can in
text modes. This isn’t so obvious with the CGA and its limited color
capabilities, but with an MCGA or VGA it’s quite apparent.
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Let’s start with the CGA. The CGA’s two graphics modes are relatively
limited in terms of color: In 320 X 200, 4-color mode, pixel attributes are
only 2 bits wide, and you can display only four different colors at a time. In
640 X 200, 2-color mode, you have only 1 bit per pixel, so you can display
only two different colors. Also, the range of colors you can display in CGA
graphics modes is severely limited.

In 320 X 200, 4-color mode, pixels can have value 0, 1, 2, or 3, corre-
sponding to the 2-bit binary values 00B, 01B, 10B, and 11B. You can assign
any one of the CGA’s 16 color combinations to zero-value pixels, but colors
for nonzero pixels are derived from one of three built-in palettes. (See
Figure 4-9.) In 640 X 200, 2-color mode, nonzero pixels can be assigned any
one of the 16 color combinations, but zero-value pixels are always black. In
both modes, you can assign palette colors using ROM BIOS interrupt 10H
services described in Chapter 9. '

The EGA, MCGA, and VGA are considerably more flexible in terms of
color management, because you can assign any color combination to any
palette or video DAC color register. Equally important is the fact that you
have larger pixel values and therefore more colors to work with on the

Pixel Bits  Pixel Value Pixel Color

Mode 4, palette 0:

01 1 Green
10 2 Red

11 3 Yellow or brown
Mode 4, palette 1:

01 1 Cyan
10 2 Magenta
11 3 White
Mode 5:

01 1 ‘Cyan
10 2 Red

11 3 White

Figure 4-9. Palettes in CGA 320 x 200, 4-color graphics mode.
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screen. The most frequently used graphics modes on the EGA and VGA are
the 16-color modes with pixels that require 4 bits to define the colors. In
most applications, 16 colors are adequate, because you can select those 16
colors from the entire range of color combinations the hardware can display
(64 colors on the EGA and 262,144 colors on the MCGA and VGA). Again, the
ROM BIOS provides services that let you assign arbitrary color combinations
to the palette and video DAC color registers on the EGA, MCGA, and VGA.
See Chapter 9 for details.

Inside the Display Memory

86

Now we come to the inner workings of the video buffer map. In this sec-
tion, we’ll see how the information in the video memory is related to the
display screen.

Although the video buffer memory map varies according to the video
mode you use, a clear family resemblance exists among the video modes. In
text modes, the video buffer map in all IBM video subsystems is the same.
In graphics modes, there are two general layouts, a linear map based on the
map used with the original CGA graphics modes and a parallel map that was
first used in EGA graphics modes.

Starting Paragraph  Memory Used

Video Mode  Address (hex) (bytes) Subsystem

0OH, 01H B8OOH 2000 CGA, EGA, MCGA, VGA
02H, 03H B8COH 4000 CGA, EGA, MCGA, VGA
04H, 05SH B8COH 16,000 CGA, EGA, MCGA, VGA
06H B80OOH 16,000 CGA, EGA, MCGA, VGA
07H BOOOH 4000 MDA, EGA, VGA

ODH AO000H 32,000 EGA, VGA

OEH AO00H 64,000 EGA, VGA

OFH ACOOH 56,000 EGA, VGA

10H AO000H 112,000 EGA, VGA

11H AOOOH 38,400 MCGA, VGA

12H AOOOH 153,600 VGA

13H AO00H 64,000 MCGA, VGA

Figure 4-10. Video buffer addresses in IBM video modes.
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Before we examine the actual map of the video buffer, let’s look at the
addresses where the video buffer is located. (See Figure 4-10.) The break-
down is straightforward: Color text modes start at paragraph address B800H,
and monochrome text mode starts at BOOOH. CGA-compatible graphics
modes start at B80OH. All other graphics modes start at AOCOH. The amount
of RAM required to hold a screenful of data varies according to the number
of characters or pixels displayed, and, in the case of graphics modes, with
the number of bits that represent a pixel.

Display Pages in Text Modes

The amount of RAM physically installed in the various video subsystems is
frequently more than enough to contain more than one screen’s worth of
video data. In video modes where this is true, all IBM video subsystems sup-
port multiple display pages. When you use display pages, the video buffer is
mapped into two or more areas, and the video hardware is set up to selec-
tively display any one of these areas in the map.

Because only one page is displayed at any given time, you can write
information into nondisplayed pages as well as directly to the displayed
page. Using this technique you can build a screen on an invisible page
while another page is being displayed and then switch to the new page when
the appropriate time comes. Switching screen images this way makes
screen updates seem instantaneous.

The display pages are numbered 0 through 7, with page 0 starting at
the beginning of the video buffer. Of course, the amount of available RAM
may be insufficient to support eight full display pages; the actual number of
pages you can use (see Figure 4-11) depends on how much video RAM is
available and on how much memory is required for one screenful of data.
Each page begins on an even kilobyte memory boundary. The display page
offset addresses are shown in Figure 4-12.

To select a display page, use ROM BIOS interrupt 10H, service 05H. To
determine which page is actively displayed, use interrupt 10H, service OFH.
(See Chapter 9 for information about these ROM BIOS services.)

In any of these modes, if the pages are not actively used (actually
displayed on the screen), then the unused part of the display memory can
conceivably be used for data besides text or pixels, although this usage is
neither normal nor advisable. Making any other use of this potentially free
memory is asking for trouble in the future.
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Number of
Video Mode Subsystem Pages Notes

00H, 01H CGA, EGA, MCGA, VGA 8
02H, 03H CGA 4
EGA, MCGA, VGA 8
04H, 0SH CGA, MCGA 1
EGA, VGA 2 Not fully supported
by ROM BIOS
06H CGA, EGA, MCGA, VGA 1
07H MDA 1
EGA, VGA 8
ODH EGA, VGA 8
OEH EGA, VGA 4
OFH EGA, VGA 2
10H EGA, VGA 2
11H MCGA, VGA 1
12H VGA 1
13H MCGA, VGA 1

Figure 4-11. Display pages available in IBM video subsystems.
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Page 40 x 25, 16-color 80 x 25, 16-color 80 x 25 Mono
0 B800:0000H B800:0000H B000:0000H

1 B800:0800H B800:1000H B000:1000H*
2 B800:1000H B800:2000H B000:2000H*
3 B800:1800H B800:3000H B000:3000H*
4 B800:2000H B800:4000H* B000:4000H*
5 B800:2800H B800:5000H* B000:5000H*
6 B800:3000H B800:6000H* B000:6000H*
7 B800:3800H B800:7000H* B000:7000H*
* EGA and VGA only

Figure 4-12. Start addresses for text-mode display pages in IBM video subsystems.
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Display Pages in Graphics Modes
For the EGA, the MCGA, and the VGA, the page concept is as readily avail-
able in graphics modes as in text modes. Obviously there is no reason not to
have graphics pages if the memory is there to support them.

The main benefit of using multiple pages for either graphics or text is
to be able to switch instantly from one display screen to another without
taking the time to build the display information from scratch. In theory,
multiple pages could be used in graphics mode to produce smooth and fine-
grained animation effects, but there aren’t enough display pages to take the
animation very far.

Displaying Characters in Text and Graphics Modes

As you have learned, in text modes no character images are stored in video
memory. Instead, each character is represented in the video buffer by a pair
of bytes containing the character’s ASCII value and display attributes. The
pixels that make up the character are drawn on the screen by a character
generator that is part of the display circuitry. The Color Graphics Adapter
has a character generator that produces characters in an 8 X 8 pixel block
format, while the Monochrome Display Adapter’s character generator uses
a 9 x 14 pixel block format. The larger format is one of the factors that
makes the MDA’s display output easier to read.

The standard ASCII characters (01H through 7FH [decimal 1 through
127]) represent only half of the ASCII characters available in the text modes.
An additional 128 graphics characters (80H through FFH [decimal 128
through 255]) are available through the same character generator. More than
half of them can be used to make simple line drawings. A complete list of
both the standard ASCII characters and the graphics characters provided by
IBM is given in Appendix C.

The graphics modes can also display characters, but they are produced
quite differently. Graphics-mode characters are drawn, pixel by pixel, by a
ROM BIOS software character generator, instead of by a hardware character
generator. (ROM BIOS interrupt 10H provides this service; see Chapter 9.)
The software character generator refers to a table of bit patterns to deter-
mine which pixels to draw for each character. The ROM of every PC and
PS/2 contains a default table of character bit patterns, but you can also place
a custom bit pattern table in RAM and instruct the BIOS to use it to display
your own character set.

In CGA-compatible graphics modes (640 X 200, 2-color and 320 X 200,
4-color), the bit patterns for the second 128 ASCII characters are always
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found at the address stored in the interrupt 1FH vector at 0000:007CH. If you
store a table of bit patterns in a buffer and then store the buffer’s segment
and offset at 0000:007CH, the ROM BIOS will use the bit patterns in the buffer
for ASCII characters 80H through FFH (decimal 128 through 255). In other
graphics modes on the EGA, MCGA, and VGA, the ROM BIOS provides a ser-
vice through interrupt 10H that lets you pass the address of a RAM-based
table of character bit patterns for all 256 characters.

Mapping characters in text modes
In text modes, the memory map begins with the top left corner of the
screen, using 2 bytes per screen position. The memory bytes for succeeding
characters immediately follow in the order you would read them —from
left to right and from top to bottom.

Modes 0 and 1 are text modes with a screen format of 40 columns by
25 rows. Each row occupies 40 X 2 = 80 bytes. A screen occupies only 2 KB
in modes 0 and 1, which means the CGA’s 16 KB memory can accommodate
eight display pages. If the rows are numbered 0 through 24 and the columns
numbered 0 through 39, then the offset to any screen character in the first
display page is given by the following BASIC formula:

CHARACTER.OFFSET = (ROW.NUMBER * 80) + (COLUMN.NUMBER * 2)

Since the attribute byte for any character is in the memory location
next to the ASCII character value, you can locate it by simply adding 1 to the
character offset.

Modes 2, 3, and 7 are also text modes, but with 80 columns in each row
instead of 40. The byte layout is the same, but each row requires twice as
many bytes, or 80 X 2 = 160 bytes. Consequently, the 80 X 25 screen format
uses 4 KB, and the 16 KB memory can accommodate four display pages. The
offset to any screen location in the first display page is given by the
following BASIC formula:

CHARACTER.OFFSET = (ROW.NUMBER * 160) + (COLUMN.NUMBER * 2)

The beginning of each text display page traditionally starts at an even
kilobyte boundary. Because each screen page in the text modes actually
uses only 2000 or 4000 bytes, some unused bytes follow each page: either 48
or 96 bytes, depending on the size of the page. So, to locate any screen
position on any page in text mode, use the general formula shown on the
next page.
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LOCATION = (SEGMENT.PARAGRAPH * 16)
+ (PAGE.NUMBER * PAGE.SIZE) + (ROW.NUMBER * ROW.WIDTH * 2)
+ (COLUMN.NUMBER * 2) + WHICH

LOCATION is the 20-bit address of the screen information.
SEGMENT. PARAGRAPH is the location of the video display memory
(for example, BOOOH or B80OH).

PAGE.NUMBER is in the range 0 through 3 or 0 through 7.

PAGE.SIZE is 2000 or 4000.

Row. NumBER is from O through 24.

ROW.WIDTH is 40 or 80.

coLumn. NumMBeR is from 0 through 39 or 0 through 79.

wHIcH is 0 for the display character or 1 for the display attribute.

Mapping pixels in graphics modes

When you use a graphics mode, pixels are stored as a series of bit fields,
with a one-to-one correlation between the bit fields in memory and the
pixels on the screen. The actual mapping of bit fields in the video buffer
depends on the video mode.

In CGA-compatible graphics modes, the display is organized into 200
lines, numbered 0 through 199. Each line of pixels is represented in the
video buffer in 80 bytes of data. In 640 x 200, 2-color mode, each bit
represents one pixel on the screen, while in 320 x 200, 4-color mode, each
pixel is represented by a pair of bits in the buffer. (See Figure 4-13.) Thus
there are eight pixels to each byte in 640 X 200, 2-color mode, and 80 X 8, or
640, pixels per row. Similarly, there are four pixels to each byte in 320 X 200,
4-color mode, and 80 X 4, or 320, pixels per row.

The storage for the pixel rows is interleaved:

e Pixels in even-numbered rows are stored in the first half of the
video buffer, starting at B800:0000H.

e Pixels in odd-numbered rows are stored starting at B860:2000H.

For example, in 640 X 200, 2-color mode, the first pixel in the first row
(in the upper-left corner of the screen) is represented by the leftmost bit (bit
7) in the byte at B800:0000H. The second pixel in the row is represented by
bit 6 of the same byte. Because of the interleaved buffer map, however, the
pixel immediately below the first pixel is represented in bit 7 of the byte at
B800:2000H.
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640 x 200, 2-color. mode 320 x 200, 4-color mode
bit bit
76543210 76543210
001111 11000101

vy
0. 8@

Figure 4-13. Pixel mapping in CGA-compatible graphics modes.

In all other graphics modes, the buffer map is linear, as it is in text
modes. Pixels are stored from left to right in each byte, and one row of pix-
els immediately follows another in the video buffer. On the MCGA and VGA,
for example, the 1-bit pixels in 640 X 480, 2-color mode and the 8-bit pixels
in 320 X 200, 256-color mode are stored starting at A000:0000H and proceed-
ing linearly through the buffer.

The catch is that pixel bit fields are not always mapped linearly in all
video modes. On the EGA and VGA, the video buffer in 16-color graphics
modes is arranged as a set of four parallel memory maps. In effect, the
video memory is configured to have four 64 KB memory maps spanning the
same range of addresses starting at A000:0000H. The EGA and VGA have
special circuitry that accesses all four memory maps in parallel. Thus in 16-
color EGA and VGA graphics modes, each 4-bit pixel is stored with 1 bit in
each memory map. (See Figure 4-14.) Another way to visualize this is that a
4-bit pixel value is formed by concatenating corresponding bits from the
same address in each memory map.

There is a good reason why the EGA and VGA were designed to use
paralle] memory maps in graphics modes. Consider the situation in 640 X
350, 16-color mode: With 4 bits per pixel, you need 640 X 350 X 4 (896,000)
bits to store one screenful of pixels. That comes out to 112,000 bytes, which
is bigger than the 64 KB maximum size of one 8086 segment. If you organize
the pixel data in parallel, however, you only need 112,000 + 4 (28,000) bytes
in each memory map.

With this variety of memory maps and pixel sizes, it’s fortunate that
the ROM BIOS provides services that let you read and write individual pixels
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Figure 4-14. Pixel mapping in 16-color EGA and VGA graphics modes.

regardless of the video mode. (Chapter 9 describes these services.) Unfortu-
nately, these ROM BIOS pixel-manipulation services are pretty slow. If
you’re working in graphics modes, you’ll probably find that the graphics
drawing functions provided in your programming language (such as the
PSET, LINE, and CIRCLE functions in BASIC) are the best tools for creating
graphics-mode screens.

Controlling the Video Display

In general, control of the display screen, like most other computer opera-
tions, can be done in four ways:

e By using the programming-language services (for example,
BASIC’s SCREEN statement)

e By using the DOS services (see Chapters 16 and 17)
e By using the ROM BIOS video services (see Chapter 9)
e By direct manipulation of the hardware via memory or I/O ports

The video services available through programming languages, DOS,
and the ROM BIOS automatically place screen output data in the video
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buffer, with each type of service offering varying levels of control. The
ROM BIOS services are particularly powerful, providing nearly all the func-
tions needed to generate display-screen output, control the cursor, and
manipulate screen information. (All video services are fully described in
Chapter 9.) For maximum control over the video display, you also have the
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option of bypassing the software services and placing data directly in the
video buffer — when you feel you have good reason to.

Before opting for direct video output, you should know that it does
interfere with windowing systems and more advanced multitasking
operating environments. All the same, many important programs for the PC
family generate direct video output— so many, in fact, that this has become
a standard and accepted way of creating output. So, even though in the long
run it’s probably not wise to place output directly in the video buffer;
everyone seems to be doing it.

Basically, you can’t mix programs that write directly into the display
memory and windowing systems because two programs would be fighting
over the control of the same memory and messing up each other’s data. But
because so many programs now generate direct video output, multitasking
operating systems like 0S/2 go to great lengths to accommodate programs
that write directly to the display memory. A system like OS/2 can make this
accommodation simply by keeping a separate copy of the program’s display
memory; when the program is running, the copy is moved into the display
buffer, and when the program is stopped, a fresh copy of the display buffer
is made. This technique allows OS/2 to run programs that work directly
with the display memory, but at a cost: First, computing and memory
overhead go up; second, the program can’t run in the background
simultaneously with other programs; and third, the display information
can’t be ‘‘windowed’’; that is, it can’t be moved or adjusted in size.

Programmers are faced with a conflict here: Direct output to the
screen has the benefit of speed and power, but using ROM BIOS or higher-
level services for screen output has the benefit of more flexibility for
adapting to windowing systems, new video hardware, and so on. The best
solution is to use both techniques, trading off portability whenever
maximum performance is an absolute priority.

Direct Hardware Control

Much of the information we’ve provided in this chapter, particularly infor-
mation on internal mapping of display memory, is meant to help you write
video information directly into the display memory. But remember that
direct programming has inherent risks, and you’ll find it both safer and
easier to use the highest available means to control the video display.
Lower-level means, particularly direct manipulation, can be very
disruptive.

More important, it’s not always easy to write ‘‘well-behaved”
programs that access video hardware directly. There are several reasons for
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this. One is simply that there is a lot of different video hardware to worry
about. Apart from the five IBM video subsystems we’ve discussed here,
many non-IBM video adapters and built-in video subsystems exist in
non-IBM computers. If you write a program that programs a particular IBM
video subsystem directly, the program probably won’t be portable to a
different IBM subsystem or to non-IBM hardware.

We’ve already mentioned another reason to avoid direct video
hardware programming: Multitasking or windowing operating systems
must work overtime to accommodate programs that directly access video
hardware. Of course, the designers of newer PC and PS/2 operating
environments are well aware of the need for good video performance, so
modern operating systems generally offer faster and more flexible video
output services than do older systems, such as DOS. Direct hardware
programming offers little advantage if the operating system’s video 1/O
services are fast enough.

Also, direct video hardware control can get you into trouble with the
ROM BIOS if you aren’t careful. The ROM BIOS keeps track of the video
hardware status in a set of variables in the data area in segment 40H. (See
Chapter 3 for a list of ROM BIOS video status variables.) If you program the
video hardware directly, you must be careful to update the ROM BIOS status
variables accordingly. :

For example, the simple routine we presented earlier for resetting the
CGA enable-blink bit bypasses a ROM BIOS status variable. To update the
enable-blink bit without causing the ROM BIOS to lose track of the video
hardware state, you would update the ROM BIOS status variable at
0040:0065H:

10 DEF SEG = &HB800O ' (same as before)
20 POKE 0,ASC("A")
30 POKE 1,&H97

40 DEF SEG = &H0040 ' address the BIOS data area
50 POKE &H0065, (PEEK(&H0065) AND NOT &H20) ' update BIOS status variable
60 OUT &H3D8,PEEK(&H0065) ' update hardware register

If you program carefully, controlling the video hardware directly can
be very rewarding. You can maximize the speed of your video output as
well as take full advantage of hardware capabilities such as smooth, pixel-
by-pixel panning or hardware-generated interrupts. But when you write
such a program, keep the pitfalls in mind.
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Compatibility Considerations

If you want your program to run on a wide variety of PCs and PS/2s, you
must design compatibility into the program. As the various IBM video sub-
systems have evolved, programmers have developed several approaches to
compatibility. These include

e Installable programs
e Self-installing programs
e Hardware-independent programming environments

We’ve already mentioned how many software vendors provide video
compatibility by distributing software that has its video output routines in
separate, installable modules: Before the software can be used, the video
routines must be linked to the rest of the application. This lets you write
programs that take full advantage of each video subsystem’s capabilities
without sacrificing compatibility.

' However, the installation process can be cumbersome, both for a pro-
grammer who must write the installation program and for an end-user who
must install video routines properly. You can eliminate the installation
process if you make your application self-installing. The key to doing this
is to incorporate a routine in your program that identifies which video sub-
system the program is running on. The program can then tailor its own
video output to the capabilities and limitations of the video hardware.

You can use several different programming techniques to identify the
video subsystem. In PS/2s, ROM BIOS offers a service that reports the video
hardware configuration (see Chapter 9), but in the PC/XT/AT family you
must rely on improvised hardware identification techniques documented in
the hardware technical manuals.

Once a program has determined the video hardware configuration, it
can produce appropriate output. For example, a program running on a
Monochrome Display Adapter can use only one video mode with mono-
chrome attributes. If the same program were running on a color subsystem,
it could run with color attributes in text modes. If the program needed to
produce graphics output, it could select a graphics mode with the highest
possible resolution based on its identification of the video subsystem.

In the simplest case, your program can use whatever video mode is in
use when the program starts up. ROM BIOS interrupt 10H, service OFH
reports the current video mode number. If you’re not using an assembly-
language interface to the ROM BIOS, however, you may find it easier simply
to use the program on the following page to inspect the ROM BIOS status
variable at 0040:0049H that contains the video mode number.
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10 DEF SEG = &H0040
20 VIDEO.MODE = PEEK(&H0049)

You can avoid video hardware dependence in your programs if you
use an operating environment like Digital Research’s GEM or Microsoft
Windows. These environments shield your program from the idiosyncrasies
of video hardware by providing a set of consistent, hardware-independent
subroutines to perform video 1/0. The problem, of course, is that the end-
user must also have a copy of the operating environment to be able to run
your program. .

Whatever approach you take to video compatibility, be sure to
consider several compatibility criteria. These criteria are not completely
consistent with each other, reflecting the internal inconsistency in the
design of the IBM personal computer and the variety of display formats that
can be used. Still, there are overall guidelines for compatibility, which
we’ll outline here.

First, text-only display output increases compatibility. Many PCs are
still equipped with Monochrome Display Adapters, which cannot show
graphic output. If you are weighing a text-versus-graphics decision in the
design of a program, there are two factors to consider. On one hand, as
many programs have dramatically demonstrated, you can create very
effective drawings using only standard IBM text characters. On the other
hand, it is more and more common for computers to include graphics
capability. So, in the future, text-only output will probably lose its
importance, and you’ll be able to use graphics in your programs without
worrying about compatibility.

Second, the less your programs depend on color, the wider the range
of computers with which they will be compatible. This does not mean that
you need to avoid color for compatibility; it simply means that for
maximum compatibility, programs: should use color as an enhancement
rather than as an essential ingredient. If programs can get along without
color, they will be compatible with computers that use monochrome
displays, including PCs with Monochrome Display Adapters, as well as
Compaq Portable computers with built-in monochrome displays.

In general, you must weigh the advantage of broad compatibility
against the convenience and simplicity of writing programs for a narrower
range of displays. Our own experience and judgment tell us that far too
often programmers err by opting for a narrower range of displays, thereby
greatly reducing the variety of computers their programs can be used on.
Be forewarned.
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Most computer systems have some way to store information permanently,
whether it is on punched paper tape, bar-coded print media, magnetic disks
or tape, or laser disks. By far the most widely used media in the PC and PS/2
family are diskettes (floppy disks) and fixed disks (hard disks). Diskettes and
fixed disks come in various sizes and capacities but they all work in
basically the same way: Information is magnetically encoded on their sur-
faces in patterns determined by the disk drive and by the software that con-
trols the drive.

When the PC family was introduced in 1981, it used one main type of
storage device: the 5'-inch diskette, which was double density, single sided,
and soft sectored, and stored only 160 kilobytes (KB). Since then, higher-
capacity 5'%-inch and 3'4-inch diskettes have become standard equipment on
PCs and PS/2s, as have fixed disks with capacities from 10 megabytes (MB)
on the PC/XT to 314 MB on the PS/2 Model 80.

Although the type of storage device is important, it is the way stored
information is laid out and managed that concerns programmers most. In
this chapter, we’ll focus on how information is organized and stored on
both diskettes and fixed disks. Much of the information provided in this
chapter applies to RAM disks —that is, the simulation of disk storage in
memory —as much as it does to conventional diskettes, fixed disks, and
disk cartridges.

Disk Data Mapping
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To understand how data is organized on a disk, consider the physical struc-
ture of the disk itself and the drive mechanism that reads from and writes to
it. We’ll start with diskettes, but both diskettes and fixed disks have the
same basic geometry.

Inside a diskette’s square plastic case is a circular platter made of
tough plastic coated with a magnetic medium. A diskette drive stores data
on the diskette by writing and reading magnetically encoded patterns that
represent digital data. Because both sides of the diskette are coated, both
sides can be used to store data.

A diskette drive contains a motor that rotates the diskette at a constant
speed. The drive has two read/write heads, one for each side of the diskette.
The heads are mounted on an arm that moves them in unison to any position
toward or away from the center of the disk. (The original IBM PC came with
a diskette drive that had only one read/write head and could access only one
side of a diskette. Most PC users perceived this as wasteful, so single-sided
diskette drives gradually went the way of the dinosaur.)



Chapter 5: Disk Basics

~ Like the tape heads in a common tape recorder, a diskette drive’s
read/write heads can magnetize the diskette medium to store data on the dis-
kette; they can also retrieve data from the diskette by decoding the mag-
netically encoded patterns in the diskette medium.

The geometry of a fixed disk is similar to that of a diskette. Fixed
disks rotate much faster than diskettes, so the platters are made of mag-
netically coated metal or glass, not flexible plastic. Also, fixed disks
usually consist of a stack of several platters that rotate together, so fixed-
disk drives have multiple read/write heads — one for each disk surface.

Data Storage

The way data is mapped on diskettes and fixed disks is a natural result of
the geometry of the hardware. When a particular read/write head is held
motionless, a ring of magnetic medium moves past it as the disk rotates. For
each position of the read/write head, relative to the center of the disk, there
is a corresponding ring of disk medium on which data can be stored. These
rings are called tracks. (See Figure 5-1.)

Because each disk track can store 4 KB or more of data, each track of
data is divided into a number of smaller units called sectors. All sectors
hold the same amount of data— typically, 512 bytes for diskettes and most
fixed disks. The sectors and tracks are numbered sequentially, so you can
locate any particular byte of data on a disk surface by specifying its track
number and its sector number.

Because two-sided diskettes and fixed disks have more than one disk
surface, however, you need to think three-dimensionally to locate a byte of
data. So the position of the read/write heads for these disks is described by a
cylinder number. Like tracks, cylinders are numbered sequentially. If you
think of a cylinder as a stack of tracks at a given position of the read/write
heads, you can see that the location of a particular track is determined by
specifying a cylinder number plus a read/write head.

With this in mind, it’s easy to make sense of the various diskette for-
mats used in PC and PS/2 disk drives. (See Figure 5-2.) With the original
single-sided IBM PC diskette drives you could use diskettes formatted with
40 tracks, each of which contained eight sectors of data, so the capacity of
the diskette was 40 X 8 X 512, or 160 KB. Now, with more accurate diskette
drives and with high-density diskette media that can store more data per
track, you can use diskettes with higher-capacity formats. Fixed-disk drives
are mechanically more accurate than diskette drives, and their magnetic
media are of comparatively higher density, so the number of tracks and the
number of sectors per track are higher than for diskettes.
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Sectors

Disk Capacity Cylinders per Track Heads
5's-inch diskette 160 KB 40 8 1

180 KB 40 9 1

320KB 40 8 2

360 KB 40 9 2

1.2 MB 80 15 2
3'4-inch diskette 720 KB 80 9 2

1.44 MB 80 18 2

Figure 5-2. PC and PS/2 diskette formats.

Bootable Disks

Regardless of their data formats, all diskettes and disks are potentially boot-
able; that is, they can contain the information necessary to get an operating
system running at the time you start your computer. There is nothing spe-
cial about the format of a bootable disk; it’s just one that contains informa-
tion that lets the ROM BIOS boot the operating system. Here’s how it works.

On all PC and PS/2 diskettes and fixed disks, the first sector on the
disk — cylinder 0, head 0, sector 1—is reserved for a short bootstrap pro-
gram. (The program has to be short because the size of a sector is only 512
bytes.) The function of this bootstrap program is to read the bulk of the
operating system into memory from elsewhere on the disk and then to trans-
fer control to the operating system.

When you start or restart your computer, the last tasks performed by
the start-up ROM BIOS routines are reading the contents of the disk boot sec-
tor into memory and checking those contents for a bootstrap program. The
BIOS does this checking by examining the last 2 bytes of the boot sector for
a signature (55H and AAH) that indicates that the data in the boot sector rep-
resents a bootstrap program. If the signature value isn’t correct, the BIOS
assumes there’s no bootstrap program in the boot sector and, therefore, that
the disk isn’t bootable.

The bootstrap program’s job is to copy the start-up program for an
operating system from the disk into memory. There’s no restriction on the
size and location of the operating system’s start-up program, so this step-
wise transfer of control— from ROM BIOS to boot sector to operating sys-
tem—can be used to start DOS, XENIX, OS/2, or even a stand-alone
application.

103



PROGRAMMER'’S GUIDE TO THE IBM PC AND PS/2

DOS Disk Formats

The diskette formats listed in Figure 5-2 aren’t the only ones you can use for
diskettes, but because diskettes are intended to be portable, the number of
diskette formats that DOS recognizes is limited to those in the list. In the
earliest releases of DOS, only the 160 KB and 320 KB formats could be used.
Later DOS versions recognize higher-capacity diskette formats and fixed
disks in addition to the original diskette formats (Figure 5-3).

Disk Capacity DOS Version Media Descriptor
5'-inch diskette 160 KB 1.0 FEH
320KB 1.1 FFH
180 KB 2.0 FCH
360 KB 2.0 FDH
1.2MB’ 3.0 F9H
3%k-inch diskette 720 KB 3.2 FOH
1.44 MB 33 FOH
Fixed disk 2.0 F8H

Figure 5-3. Standard DOS disk formats. The media descriptor value is used by DOS to
identify different disk formats.

Diskette Formats
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Beginning with version 2.0, DOS had the potential to recognize virtually
any physical disk format. This became possible because DOS versions 2.0
and later provide the necessary tools to write an installable device driver —
a machine-language routine that can configure a disk drive to read or write
different formats or allow you to hook up a non-IBM disk drive to your sys-
tem. (See Appendix A for more on installable device drivers.)

Fortunately, installable diskette device drivers have not led to a
proliferation of nonstandard, incompatible diskette formats. Instead, soft-
ware vendors and programmers have relied on the standard DOS formats
listed in Figure 5-3. On 5'%-inch diskettes, the 360 KB nine-sector format is
used most frequently, while on 3's-inch diskettes, the 720 KB format is most
common. These are not the highest capacity formats, but they can be used
on machines that aren’t equipped with higher-capacity diskette drives as
well as on those that are.

If you’re interested in creating your own diskette formats, or in under-
standing DOS diskette formats in more detail, be sure to read about ROM
BIOS disk services in Chapter 10.
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Fixed-Disk Formats

High-capacity fixed-disk systems present some special problems and oppor-
tunities. Fixed-disk formats vary much more than diskette formats do
(Figure 5-4). Still, data is organized on fixed disks by cylinder, head, and
sector numbers, just as it is on diskettes.

Sectors
Disk Capacity Cylinders per Track Heads
Typical PC/XT
fixed disk 10 MB 306 17 4
PC/AT fixed disk
type 20 30 MB 733 17 5
PS/2 Model 30
fixed disk, type26 20 MB 612 17 4
PS/2 Model 60
fixed disk, type 31 44 MB 732 17 7

Figure 5-4. Some typical fixed-disk formats. All use 512 bytes per sector.

Because the storage capacity of a fixed disk is relatively large, some
PC users prefer to use only part of the disk space for DOS and to use other
portions of the disk for other operating systems. To facilitate this, the avail-
able space on a fixed disk can be split into as many as four logical parti-
tions, each of which is accessed separately. Each partition’s data can be
kept completely separate from the data in the other partitions. Each parti-
tion can contain its own boot sector and operating system.

The first sector on a fixed disk contains a 64-byte partition table
(Figure 5-5) and a disk bootstrap program. The partition table indicates
where each partition is located on the disk. The table also designates one
bootable partition. The first sector in the bootable partition is a partition
boot sector that the ROM BIOS can use to load an operating system.

The disk bootstrap program examines the partition table to determine
which one of the partitions is bootable. It then reads the partition’s boot sec-
tor from the disk into memory. The partition boot sector contains a
bootstrap program that reads the operating system from the disk into
memory and transfers control to it.

Because bootable partitions are indicated in a table, you can select
among fixed-disk partitions simply by updating the table and restarting the
computer. All operating systems capable of supporting fixed disks provide
a utility program that lets you update the partition table. (The DOS utility
FDISK is such a program.)
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Offset from
Start of Entry Size (bytes) Meaning
00H 1 Boot indicator (80H = bootable, 0 = not bootable)
01H 1 Starting head number
02H 2 Starting cylinder number (10 bits) and sector
number (6 bits)
04H 1 System indicator:
1 =primary DOS, 12-bit FAT
2 =XENIX
4 = primary DOS, 16-bit FAT
5 = extended DOS
8 = other non-DOS
05H 1 Ending head number
06H 2 Ending cylinder and sector numbers
08H 4 Starting sector (relative to beginning of disk)
O0CH 4 Number of sectors in partition

Figure 5-5. The format of an entry in a fixed-disk partition table. The table consists of
Jfour such 16-byte entries, starting at offset IBEH in the disk boot sector.

QO NOTE: Be very careful if you access a fixed disk’s boot sector.
The information contained there is intended only for use by the ROM
BIOS bootstrap loader. Should the data in a disk’s boot sector be
erased or corrupted, the entire contents of the disk may become
inaccessible.

The Disk’s Logical Structure
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Regardless of the type of disk you use, all DOS disks are logically formatted
in the same way: The disk’s sides, tracks, and sectors are identified
numerically with the same notation, and certain sectors are always reserved
for special programs and indexes that DOS uses to manage disk operations.
Before we describe how DOS organizes space on a disk, we need to briefly
cover the conventional notation used by DOS and the ROM BIOS to locate
information.

Diskette cylinder numbers start from 0 at the outside edge of the disk
surface and increase toward the center of the disk. Read/write heads are also
numbered from 0, but sector numbers start with 1. Any location on the disk
can thus be described by a unique combination of cylinder, head, and sector
numbers. This in fact is how the ROM BIOS services access disk data.
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DOS, however, does not recognize cylinders, heads, and sectors. In-
stead, DOS sees a disk as a linear sequence of logical sectors. The sequence
of logical sectors begins with the first sector on a disk: Sector 1, cylinder 0,
head 0 (the boot sector) is DOS logical sector 0.

Logical sectors are numbered from track to track in the same cylinder,
and then are numbered from cylinder to cylinder. Thus the last sector in
cylinder 0, head 0, is followed by the first sector in cylinder 0, head 1; the
last sector in a cylinder is followed by the first sector in the next cylinder.
See page 300 for information on converting DOS notation to ROM BIOS nota-
tion and vice versa.

The use of logical sector numbers lets DOS avoid having to deal with
cylinder, head, and sector numbers that vary among different types of disk-
drive hardware. However, this same feature means that DOS is limited in
the amount of disk space it can access on a particular disk drive. Because
DOS maintains logical sector numbers as 16-bit integers, it can recognize, at
most, 65,536 logical sectors on a disk. Because the default size of a disk sec-
tor is 512 bytes, the largest disk DOS can manage is 65,536 X 512, or 32 MB.
This certainly is no problem on diskettes, but it’s an unwelcome limitation
for the many PC/AT and PS/2 users who have fixed disks larger than 32 MB.

To get around this restriction, DOS version 3.3 introduced the notion of
the extended DOS partition. With DOS 3.3, you can use the DOS utility pro-
gram FDISK to allocate a fixed-disk partition as an extended DOS partition.
You can format the extended partition as one or more separate logical
drives. Thus, for example, you could use both a primary and an extended
DOS partition on a fixed disk, with the primary partition as drive C and the
extended partition as drives D and E.

How DOS Organizes the Disk

When DOS formats a diskette, it erases and verifies every sector. In a fixed-
disk partition, DOS verifies the integrity of each sector without erasing pre-
existing data. (That is why a program like the Norton Utilities’ Format
Recover can retrieve data from a fixed disk after you have accidentally
reformatted it.) On both diskettes and fixed disks, the format program
reserves a certain amount of disk space to store control information and in-
dexes that DOS uses to organize the data you store on the disk.

Every DOS diskette or fixed-disk DOS partition is mapped into four
separate areas. These areas, in the order they are stored, are the reserved
area, the file allocation table (FAT), the root directory, and the files area. (See
Figure 5-6.) The size of each area varies among formats, but the structure
and the order of the areas don’t vary.
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Logical sector 0 Reserved area

File allocation table (FAT)

Root directory

Files area
(files and subdirectories)

Figure 5-6. DOS disk map.

The reserved area can be one or more sectors long; the first sector is
always the disk boot sector (logical sector 0). A table within the boot sector
specifies the size of the reserved area, the size (and number of copies) of the
file allocation table, as well as the number of entries in the root directory.
All diskettes have a reserved area of at least one sector, even if they aren’t
bootable.

The file allocation table, or FAT, immediately follows the reserved
area. The FAT maps the usage of all the disk space in the files area of the
disk, including space used for files, space that hasn’t been used, and space
that is unusable due to defects in the disk medium. Because the FAT maps
the entire usable data storage area of a disk, two identical copies of it are
stored in case one is damaged. The size of a FAT depends on the size of the
disk (or of the partition of a fixed disk): Larger disks usually require larger
FATs. Figure 5-7 shows FAT sizes for several different disk sizes.

Disk Capacity  Reserved Area FAT Root Directory
5'k-inch diskette 360 KB 1 sector 4 sectors 7 sectors
‘ 12MB 1 14 14
3'k-inch diskette 720 KB 1 6 7
1.44 MB 1 18 14

Figure 5-7. Reserved area, FAT, and root-directory overhead for some common DOS dis-
kette formats.
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The root directory is the next item on a DOS disk. It is used as a table
of contents, identifying each file on the disk with a directory entry that con-
tains several pieces of information, including the file’s name, size, and
location on the disk. The size of the root directory varies with the disk for-
mat. (See Figure 5-7.)

The files area, which occupies the bulk of the available disk space, is
used to store files; in DOS versions 2.0 and later, the files area may contain
subdirectories as well as files. For both files and subdirectories, space in the
files area is allocated as needed in chunks of contiguous sectors called clus-
ters. As with the sizes of the FAT and the root directory, a DOS disk’s cluster
size varies with the format. (See Figure 5-8.) The number of sectors in a
cluster is always a power of 2; generally, the cluster size is one sector for
single-sided diskettes, two sectors for double-sided diskettes, and four or
more for fixed disks.

Disk Capacity Cluster Size
5'-inch diskette 360 KB 2 sectors
1.2 MB 1
3'k-inch diskette 720 KB 2
1.44 MB 1
Typical PC/XT fixed disk 10 MB 8
PC/AT fixed disk, type 20 30 MB 4
PS/2 Model 30, fixed disk, type 26 20 MB 4
PS/2 Model 60, type 31 44 MB 4

Figure 5-8. Cluster size for some common DOS disk formats.

The Logical Structure in Detail

Now it’s time to delve a little more deeply into each of the four sections of a
disk: the boot sector, the root directory, the files area, and the FAT.

The Boot Sector

The boot sector on a DOS diskette or in a DOS partition on a fixed disk con-
sists primarily of a short machine-language program that starts the process
of loading DOS into memory. As we mentioned, to perform this task the
ROM BIOS checks to see whether the disk is bootable and then proceeds
accordingly.
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Q NOTE: A bootable disk contains the start-up programs for an
operating system or for a stand-alone application that runs without
operating-system support. In the case of DOS, a bootable disk con-
tains two hidden files that represent the DOS start-up routines and
essential low-level DOS functions. See Chapter 3, page 45 for details
about these files.

You can inspect the boot program by using the DOS DEBUG utility,
which combines the ability to read data from any sector on a disk with the
ability to disassemble — or unassemble —machine language into assembly-
language code. If you want to learn more about the boot program and you
aren’t intimidated by DEBUG’s terse command format, place a bootable dis-
kette in drive A and enter the following commands to display the diskette’s
boot program:

DEBUG
LOOO1 ; load first logical sector
uotLs3 ; unassemble and 1ist first and second bytes

At this point, DEBUG will display the first instruction in the boot
program, a JMP to the address that contains the rest of the program. Use
DEBUG’s U command with the address specified in the JMP to inspect the
rest of the boot program. For example, if the first instruction is JMP 0036,
enter

U 0036 ; unassemble and 1ist next portion of boot program

For all disk formats (except diskettes formatted with eight sectors per
track) you will find some key parameters in the boot sector, beginning with
the 11th byte. (See Figure 5-9.) These parameters are part of the BIOS
parameter block used by DOS to control any disk-type device. If you’'re
using DEBUG to inspect the boot sector of a diskette in drive A, you can see
a hexadecimal dump of the BIOS parameter block by entering the following
command:

DOBL 1B
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Offset Length Description

03H 8 bytes System ID

0BH 1 word Number of bytes per sector
ODH 1 byte Number of sectors per cluster
OEH 1 word Number of sectors in reserved area
10H 1 byte Number of copies of FAT

11H 1 word Number of root directory entries
13H . - 1word Total number of sectors

15H 1 byte DOS media descriptor

16H 1 word Number of sectors per FAT

18H 1 word Number of sectors per track
1AH 1 word Number of heads (sides)

1ICH 1 word Number of hidden sectors

Figure 5-9. The BIOS parameter block in the boot sector.

The Root Directory
The root directory on a diskette or in a fixed-disk partition is created by the
DOS FORMAT program. The root directory’s size is determined by FORMAT,
so the number of root directory entries is limited. (See Figure 5-10.)

Number of

Disk Capacity Size Entries
5'/s-inch diskette 180 KB 4 sectors 64

360 KB 7 112

1.2 MB 14 224
3'/-inch diskette 720 KB 7 112

1.44 MB 14 224
Typical PC/XT fixed disk 10 MB 32 512
PC/AT fixed disk, type 20 30MB 32 512
PS/2 Model 30, fixed disk, type 26 20 MB 32 512
PS/2 Model 60, fixed disk, type 31 44 MB 32 512

Figure 5-10. Root directory sizes for some common DOS disk formats.
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In DOS versions 1.0 and later, which did not support subdirectories, the
size of the root directory limited the number of files that could be stored on
a diskette. This restriction disappeared in DOS versions 2.0 and later, where
file names could be placed in subdirectories as well as in the root directory.

The root directory contains a series of 32-byte directory entries. Each
directory entry contains the name of a file, a subdirectory, or a disk volume
label. The directory entry for a file contains such basic information as the
file’s size, its location on the disk, and the time and date it was most re-
cently modified. This information is contained in the eight fields listed in
Figure 5-11.

Offset Description Size (bytes) Format

00H Filename 8 ASCII characters
08H Filename extension 3 ASCII characters
OBH Attribute 1 Bit coded

OCH Reserved 10 Unused; zeros
16H Time 2 Word, coded

18H Date 2 Word, coded
1AH Starting cluster number 2 Word

1CH File size 4 Integer

Figure 5-11. The eight parts of a directory entry.

Offset 00H: The filename

The first 8 bytes in a directory entry contain the filename, stored in ASCII
format. If the filename is less than eight characters, it is filled out to the
right with blanks (CHR$(32)). Letters should be uppercase, because lower-
case letters will not be properly recognized. Normally, blanks should not be
embedded in the filename, as in AA BB. Most DOS command programs, such
as DEL and COPY, will not recognize filenames with embedded blanks.
BASIC works successfully with these filenames, however, and DOS services
usually can too. (See Chapters 16 and 17.) This capability suggests some
useful tricks, such as creating files that cannot easily be erased.

Two codes, used to indicate special situations, may appear in the first
byte of the filename field. When a file is deleted, DOS sets the first byte of
the filename field in its directory entry to E5H to indicate that the directory
entry can be reused for another filename. In DOS versions 2.0 and later, the
first byte of a directory entry can also be set to 00H to indicate the end of
the list of directory entries.
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When a file is erased, only two things on the disk are affected: The
first byte of the directory entry is set to ESH, and the file’s space-allocation
chain in the FAT is wiped out (we’ll cover this in the section on the FAT). All
other directory information about the file is retained, including the rest of
its name, its size, and even its starting cluster number. The lost information
can be recovered, with suitably sophisticated methods, provided that the
directory entry has not been reused for anothgr file. Be forewarned, though,
that whenever a new directory entry is needed, DOS uses the first available
entry, quickly recycling an erased file’s entries and making recovery more
problematic.

Offset 08H: The filename extension

Directly following the filename is the standard filename extension, stored
in ASCII format. It is 3 bytes long and, like the filename, is padded with
blanks if it is less than the full three-character length. While a filename
must have at least one ordinary character in it, the extension can be all
blanks. Generally, the rules that apply to the filename also apply to the file-
name extension.

U NOTE: When the directory contains a volume ID label entry, the
filename and extension fields are treated as one combined field of
11 bytes. In this case, embedded blanks are permitted.

Offset 0BH: The file attribute

The third field of the directory entry is 1 byte long. The bits of the attribute
byte are individually coded as bits 0 through 7, as shown in Figure 5-12, and
each bit is used to categorize the directory entry.

Bit
76543210 Meaning

....... 1 Read-only
...... 1. Hidden
..... 1. . System
N Volume label
R Subdirectory
R Archive
B Unused
1..... .. Unused

Figure 5-12. The 8 file-attribute bits.
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Bit 0, the low-order bit, is set to mark a file as read-only. In this state,
the file is protected from being changed or deleted by any DOS operation.
We should point out that many DOS services ignore this attribute, so even
though bit 0 can provide worthwhile protection for data, it is not foolproof.

Bit 1 marks a file as hidden and bit 2 marks a file as a system file.
Files marked as hidden, system, or both, cannot be seen by ordinary DOS
operations, such as the DIR command. Programs can gain access to such
files only by using DOS services to search explicitly for hidden or system
files. There is no particular significance to the system attribute; it exists to
perpetuate a feature of CP/M and has absolutely nothing to do with DOS.

Bit 3 marks a directory entry as a volume label. A volume label entry
is properly recognized only in the root directory, and uses only a few of the
eight fields available in the directory entry: The label itself is stored in the
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filename and extension fields, which are treated as one unified field for this
purpose; the size and starting cluster fields are not used, but the date and
time fields are.

Bit 4, the subdirectory attribute, identifies a directory entry as a
subdirectory. Because subdirectories are stored like ordinary data files,
they need a supporting directory entry. All the directory fields are used for
these entries, except the file-size field, which is zero. The actual size of a
subdirectory can be found simply by following its space allocation chain in
the FAT.

Bit 5, the archive attribute, was created to assist in making backup
copies of the many files that can be stored on a fixed disk. This bit is 0 on
all files that haven’t changed since they were last backed up; DOS sets this
bit to 1 whenever a file is created or modified.
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Offset 0CH: Reserved
This 10-byte area is set aside for possible future uses. All 10 bytes are nor-
mally set to 0. '

Offset 16H: The time

This field contains a 2-byte value that marks the time that the file was cre-
ated or last changed. It is used in conjunction with the date field, and the
two together can be treated as a single 4-byte unsigned integer. This 4-byte
integer can be compared with those in other directory entries for greater-
than, less-than, or equal values. The time, by itself, is treated as an unsigned
word integer. It is based on a 24-hour clock and is built out of the hour,
minutes, and seconds with this formula:

Time=(Hourx2048)+(Minutesx32)+(Seconds+2)

The 2-byte word used to store the time is one bit too short to store all
the seconds, so seconds are stored in units of 2 seconds from 0 through 29; a
value of 5, for example, would represent 10 seconds. The time 11:32:10
would be stored as the value 5C05H (decimal 23557).

Offset 18H: The date

This field contains a 2-byte value that marks the date the file was created or
last changed. It is used in conjunction with the time field, and the two
together can be treated as a single 4-byte unsigned integer that can be
compared with those in other directory entries for greater-than, less-than, or
equal values. The date, by itself, is treated as an unsigned word integer that
is built out of the year, month, and day with this formula:

Date=((Year-1980)x512)+(Monthx32)+Day

This formula compresses the year by subtracting 1980 from it. Thus,
the year 1988 is calculated as a value of 8. Using this formula, a date such as
December 12, 1988 is stored by the formula as 118CH (decimal 4492):

(1988-1980)x512+12x32+12=4492

Although this scheme allows for years up through 2107, the highest
year supported by DOS is 2099.

Offset 1AH: The starting cluster number
The seventh field of a directory entry is a 2-byte value that gives the start-
ing cluster number for the file’s data space. This cluster number acts as the
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entry point into the file’s space allocation chain in the FAT. For files with
no space allocated and for volume-label entries, the starting cluster number
is 0.

Offset 1CH: The file size
The last field of a directory entry gives the size of the file in bytes. It is
coded as a 4-byte unsigned integer, which allows file sizes to grow very
large —4,294,967,295 bytes, to be exact—large enough for all practical
purposes.

DOS uses the file size in a file’s directory entry to determine the exact
size of the file. Because a file’s disk space is allocated in clusters of 512
bytes or more, the actual disk space occupied by a file is usually greater
than the value in the directory entry. On disk, the space between the end of
the file and the end of the last cluster in the file is wasted.

The Files Area

All data files and subdirectories are stored in the files area, which occupies
the last and largest part of each disk.

DOS allocates space to files, one cluster at a time, on an as-needed
basis. (Remember, a cluster is one or more consecutive sectors; the number
of sectors per cluster is a fixed characteristic of each disk format.) As a file
is being created, or as an existing file is extended, the file’s allocated space
grows. When more space is needed, DOS allocates another cluster to the
file. In DOS versions 1 and 2, the first available cluster is always allocated
to the file. Later versions of DOS select clusters by more complicated rules
that we won’t go into here.

Under ideal conditions, a file is stored in one contiguous block of
space. However, a file might be broken into several noncontiguous blocks,
especially if information is added to an existing file or a new file is stored
in the space left by an erased file. So it’s not unusual for one file’s data to be
scattered throughout the disk. :

This file fragmentation slows access to the file’s data to some degree.
Also, it is much harder to ‘‘unerase’’ a file you have unintentionally erased
if it is fragmented, simply because you have to do a lot more searching for
the individual clusters that make up the file’s data space. But fragmentation
has no other effect, and programs generally do not need to be concerned
about where on a disk their data is stored. To determine if a file is
fragmented, use CHKDSK or a program such as the Norton Utilities.

If you are concerned about diskette file fragmentation, the DOS COPY
command lets you transfer fragmented files to a newly formatted disk. DOS

-
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allocates contiguous space for the copied files. This simple technique also
works for fixed-disk files, but it is much less convenient unless you have an
extra, newly formatted fixed disk to use. If you think that fixed-disk file
fragmentation is slowing down a particular application, you can purchase
any of several fixed-disk utility programs to rearrange fragmented fixed-
disk files and make them contiguous. Most of the time, however, file
fragmentation has little impact on the speed of your programs.

Whether you ever look at your fragmented files or not, you should
know how DOS uses the file allocation table (FAT) to allocate disk space and
how the FAT forms a space allocation chain to connect all of the clusters that
make up a file.

The File Allocation Table

118

The file allocation table (FAT) is DOS’s map of how space is utilized in the
files area of a disk. We’ve already discussed how space for the FAT itself is
reserved on a diskette or in a fixed-disk partition. Now we’ll describe how
the FAT is formatted and used.

For most disk formats, DOS maintains two copies of the FAT, just in
case one of them is damaged or becomes unreadable. Curiously, the
CHKDSK program, which tests for most errors that can occur in the FAT and
in directories, does not even notice if the two FATs are different.

The organization of the FAT is simple: There is one entry in the FAT
for each cluster in the files area. A FAT entry can contain any of the values
listed in Figure 5-13. If the value in a FAT entry doesn’t mark an unused,
reserved, or defective cluster, then the cluster that corresponds to the FAT
entry is part of a file, and the value in the FAT entry itself indicates the next
cluster in the file.

This means that the space that belongs to a given file is mapped by a
chain of FAT entries, each of which points to the next entry in the chain.
(See Figure 5-14.) The first cluster number in the chain is the starting
cluster number in the file’s directory entry. When a file is created or
extended, DOS allocates clusters to the file by searching the FAT for unused

12-bit Value 16-bit Value Meaning

0 0 Unused cluster
FF0-FF6H FFFO-FFF6H Reserved cluster
FF7H FFF7TH Bad cluster
FF8-FFFH FFF8-FFFFH Last cluster in a file
(other values) Next cluster in a file

Figure 5-13. FAT values.



Chapter 5: Disk Basics

File- Extension Starting
. name cluster
Directory Al pRA[TXT] To003 | |
entry
FAT T 000000060000 [0000 [0000 [0008]FFFFH]|0000 |

2 3 4 5 6 7 8 9
Figure 5-14. Disk-space allocation using the FAT.

clusters (that is, clusters whose FAT entries are 0) and adding them to the
chain. Conversely, when a file is truncated or deleted, DOS frees the clusters
that had been allocated to the file by clearing the corresponding FAT entries.

The FAT can be formatted with either 12-bit or 16-bit entries. The 12-
bit format is used for diskettes and fixed-disk partitions with no more than
4078 clusters. (A fixed-disk’s partition table indicates whether a DOS parti-
tion’s FAT uses 12-bit or 16-bit entries.) The entries in a 12-bit FAT are harder
to access because they don’t fit neatly into the 16-bit word size of the 8086
family of microprocessors, but a 12-bit FAT takes up less room on a diskette,
where disk space is scarcer.

The first two entries in the FAT are reserved for use by DOS. The first
byte of the FAT contains the same media descriptor value that appears in the
BIOS parameter block in the disk boot sector. The remaining bytes of the
first two entries are filled with the value OFFH. Because the first two cluster
numbers (0 and 1) are reserved, cluster number 2 corresponds to the first
cluster of available disk space in the files area.

Reading the values in the FAT is simple enough for a 16-bit FAT:
Multiply a given cluster number by 2 to find the byte offset of the corre-
sponding FAT entry. In the 16-bit FAT in Figure 5-15a, for example, the byte
offset of the FAT entry for cluster 2 is 04H, and the value in that entry is 0003;
the byte offset of the FAT entry for cluster 3 is 06H, and the value in that
entry is 0004; and so on.

For a 12-bit FAT, the computation is a bit trickier, because each pair of
FAT entries occupies 3 bytes (0 and 1 occupy the first 3 bytes, 2 and 3 occupy
the next 3 bytes, and so forth). Given any cluster number, you can find the
FAT entry by multiplying the cluster number by 3, dividing by 2, and then
using the whole number of the result as a displacement into the FAT. By
grabbing a word at that address, you have the three hex digits of the FAT en-
try, plus one extraneous hex digit, which can be removed by any one of sev-
eral quick machine-language instructions. If the cluster number is even, you
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discard the high-order digit; if it is odd, you discard the low-order digit. Try
this on the 12-bit FAT in Figure 5-15b. You’ll find that the entries are the
same as in the 16-bit FAT in Figure 5-15a.

(a) 16-bit FAT

Reserved Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
2 3 4 5

e o e e ey e ey ey

F8 FF FF FF 03 00 04 00 05 00 06 00 OA 00 08 00 FF FF 23 01

(b) 12-bit FAT

Reserved Clusters Clusters Clusters Clusters

2and 3 4and5 6and7 8and 9

] ] | ] |
[ 10 [ 11 LR |

FO FF FF 03 40 00 05 60 00 OA 80 00 FF 3F 12

Figure 5-15. The first few entries in a 16-bit FAT (a) and in a 12-bit FAT (b).

As we have said, the first two FAT entries, in both 12-bit and 16-bit for-
mats, are not used to indicate the status of clusters; instead, they are set
aside so that the very first byte of the FAT can be used as a media descriptor
byte that indicates the format of the disk. (See Figure 5-16.) However, you
should not assume that these IDs uniquely identify formats: they don’t nec-
essarily. If you considered every disk format in use, you’d find quite a few
duplications. Beware.

Sectors Media

Disk Capacity Heads per Track Descriptor
S'-inch diskette 160 KB 1 8 FEH

320KB 2 8 FFH

180 KB 1 9 FCH

360 KB 2 9 FDH

1.2MB 2 15 FOH
3lk-inch diskette 720 KB 2 9 FOH

1.44 MB 2 18 FOH
Fixed disk F8H

Figure 5-16. DOS media descriptor values.
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Your programs can learn the format of a disk by reading and inspect-
ing the FAT media descriptor byte. The easy way to do this is to use DOS
function 1BH (decimal 27). For more information about this function, see
page 335.

-Special notes on the FAT

Normally, programs do not look at or change a disk’s FAT; they leave the
FAT completely under the supervision of DOS. The only exceptions are pro-
grams that perform space-allocation functions not supported by DOS —for
example, programs that recover erased files, such as the UnErase program
in the Norton Utilities program set.

Be aware that a FAT can be logically damaged; for example, an alloca-
tion chain can be circular, referring back to a previous link in the chain; or
two chains can converge on one cluster; or a cluster can be orphaned, mean-
ing that it is marked as in use even though it is not part of any valid alloca-
tion chain. Also, an end-of-file marker (FFFH or FFFFH) may be missing.
The DOS programs CHKDSK and RECOVER are designed to detect and
repair most of these problems as well as can reasonably be done.

For special notes on the interaction of the space allocation chain in the
FAT and DOS’s record of a file’s size, see page 116.

Comments

Although this chapter has included detailed information for direct use of
the logical structure of the disk itself, including the boot sector, FAT, and
directories, it is not a good idea to use these elements directly unless you
have a compelling reason. In fact, except where such use is completely
unavoidable, as in a copy-protection program, it’s unwise to incorporate any
knowledge of the disk format in your programs. On the whole, your best ap-
proach is to consider the standard hierarchy of operations and use the
highest level of services that can satisfy your needs:

e First choice: Language services (the facilities provided by your
programming language; for example, BASIC’s OPEN and CLOSE
statements)

e Second choice: DOS services (described in Chapters 16 and 17)
e Third choice: ROM BIOS disk services (described in Chapter 10)

e Last choice: Direct control (for example, direct programming of
the disk-drive controller through commands issued via I/O ports)
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Most disk operations for the PC family can be handled quite easily
with the services that your programming language provides. There are,
however, two obvious circumstances that can call for more exotic methods.
One, which we’ve already mentioned, occurs when your programming in-
volves control of a disk on the same level exercised by DOS. This level of
control would be called for if you were writing a program similar to DOS’s
CHKDSK or the Norton Utilities. The other circumstance involves copy pro-
tection. In one way or another, all diskette copy-protection schemes involve
some type of unconventional diskette I/0. This type of control usually leads
to the use of the ROM BIOS services, but may also lead to the extreme
measure of directly programming the disk-drive controller itself.

Copy Protection

122

A variety of copy-protection schemes are commercially available. Some are
simple, others are more complex. If you’re interested in devising your own
scheme, however, here are some things to consider.

For diskettes, there are dozens of ways to approach copy protection.
Perhaps the most common methods involve reformatting the sectors in cer-
tain tracks on the diskette by using the ROM BIOS format routines. Because
DOS cannot read sectors that don’t conform to its specific formats, the DOS
COPY program can’t copy a disk that has an occasional odd sector size in-
terspersed with normal sectors. This DOS limitation inspired a number of
companies to produce copy programs that can read and copy sectors of any
size, so it is not a particularly effective means of copy protection.

On a more advanced level, there are two special aspects of diskette
copy protection that are worth noting. First, some of the most exotic and
unbreakable protection schemes have been based on the discovery of un-
documented abilities hidden in the diskette-drive controller. Second, some
protection schemes are intentionally or unintentionally dependent upon the
particular characteristics of different diskette drives. This means that a
copy-protected program may function on one model of computer but fail to
function on another model, even though the copy protection has not been
tampered with. If you use a copy-protection scheme, keep this in mind.

Many of the copy-protection techniques used on diskettes are not ap-
propriate for fixed disks, mainly because most fixed-disk users need to be
able to make backup copies of programs on their fixed disks. This means
you should avoid copy-protection schemes that prevent fixed-disk backups
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by making it impossible for DOS or the ROM BIOS to read part of the disk.
Most of the fixed-disk copy-protection schemes in use today rely on data-
encryption techniques, which discourage software piracy without prevent-
ing legitimate copying.

In an encrypted program, the program’s executable code and data are
stored on the disk in an encrypted, hard-to-unravel format. When you exe-
cute the program, a special start-up program decrypts the encrypted code
and data so that it can be used. The start-up program might also rely on data
saved in hidden files or subdirectories to decrypt the main program.

There is no particular additional guidance that we can give you here,
except to remind you that variety and ingenuity are the keys to successful
copy protection.
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This chapter is about the IBM PC and PS/2 keyboards. The first part of this
chapter explains how the keyboard interacts with the computer on a hard-
ware and software level. In the second part, we’ll describe how the ROM
BIOS treats keyboard information and makes it available to programs.

U NOTE: If you plan to play around with keyboard control, we
urge you to read the comments on page 140 first and then apply the
information in this chapter to your programs only if you have a
reason to do so (for example, if you are creating a keyboard-
enhancer program to modify the operation of the keyboard; see the
sidebar on page 133 for more information on such programs). If you
have any such application in mind, take a look at the ROM BIOS key-
board services in Chapter 11.

The keyboard has undergone several modifications since the IBM PC
was released. The original IBM PC keyboard had 83 keys. The PC/AT was in-
troduced with an 84-key keyboard that changed the locations of several keys
on the 83-key keyboard and added one new key, the Sys Req key.

IBM later upgraded the AT with a 101/102-key keyboard that provided
extra function keys and a new keyboard layout. The 101/102-key keyboard
became standard equipment in the PS/2 series. The 101/102-key layout in-
cludes two extra function keys (F11 and F12), a number of duplicate shift
and control keys, and modifications to several keys and keyboard combina-
tions found in the 83- and 84-key layouts (Pause, Alt-Sys Req, and Print
Screen).

A trend in IBM’s keyboard design has been to increase the similarity
between the PC and PS/2 keyboards and the keyboards on their mainframe
display terminals. For example, the 101/102-key keyboard’s 12 function keys
(F1 through F12) are reminiscent of the Program Function (PF) keys on IBM
mainframe display terminals. Similarly, the Sys Req key is like the Sys Req
key in IBM mainframe terminals: A mainframe terminal-emulator program
running on a PC or PS/2 could use the Sys Req key for the same purpose a
mainframe terminal would —to switch among terminal sessions or to initi-
ate a keyboard reset function.

Another trend in IBM’s keyboard design has been to accommodate
non-English alphabets in the keyboard layout. The English-language ver-
sion of the 101/102-key keyboard released in the United States and United
Kingdom has 101 keys, but for other languages the same keyboard has an
extra key next to the left Shift key, a different arrangement of keys around
the Enter key, and a different map of ASCII characters to key locations.
From a programmer’s point of view, however, these two keyboards are so
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similar that IBM describes them together in its technical documentation —
and we’ll do the same in this chapter.

Keyboard Operation

The keyboard unit contains a dedicated microprocessor that performs a
variety of jobs, all of which help cut down on system overhead. The main
duty of the keyboard microprocessor is to watch the keys and report to the
main computer whenever a key is pressed or released. If any key is pressed
continuously, the keyboard microprocessor sends out a repeat action at
specific intervals. The keyboard microprocessor controller also has limited
diagnostic and error-checking capabilities and has a buffer that can store
key actions in the rare instance that the main computer is temporarily un-
able to accept them.

The PC/AT and PS/2s have sophisticated keyboard control circuitry
that can perform several functions the original IBM PC and PC/XT keyboard
cannot. These features include programmable typematic control, program-
mable scan-code sets, and improved hardware for error detection.

On the 83-key keyboard, the typematic delay and repeat rate are built
into the hardware: A key must be pressed for 0.5 seconds before auto-repeat
begins, and the repeat rate is about 10 characters per second. With the PC/AT
and PS/2 keyboards, you can modify the typematic delay and rate by pro-
gramming the keyboard controller. The most convenient way to do this is
through the ROM BIOS keyboard services described in Chapter 11.

The keyboard controller in the PC/AT and PS/2s can also assign any of
three different sets of scan-code values to the keys on the 84- and 101/102-
key layouts. By default, however, the ROM BIOS establishes a scan-code set
that is compatible with that used on the 83-key keyboard. You will probably
find use for the alternative scan-code sets only if your program bypasses the
ROM BIOS and processes scan codes directly. (See the PC/AT and PS/2
technical reference manuals for details.)

The improved error-detection ability of the AT and PS/2 keyboard
controllers is largely invisible to your programs; the keyboard hardware and
the ROM BIOS service routines are very reliable. The most common errors
you may encounter are a full ROM BIOS keyboard buffer or a key combina-
tion that the PS/2 ROM BIOS cannot process. In both situations, the ROM
BIOS generates a warning beep to inform you that something unusual has
occurred. (For example, try holding down both pairs of Ctrl and Alt keys
on a PS/2 keyboard.)
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Keystrokes and Scan Codes

Each time you press or release one of the keys on the keyboard, the key-
board circuits transmit a sequence of one or more 8-bit numbers through the
connector cable to the computer. This sequence, called a scan code, uniquely
identifies the key you pressed. The keyboard produces different scan codes,
depending on whether the key was pressed or released. Whenever you press
a key, the scan-code byte contains a number ranging from 01H through 58H.
When you release the key, the keyboard generates a scan code 80H higher
than the keystroke scan code by setting bit 7 of the scan-code byte to 1. For
example, when you press the letter Z, the keyboard generates a scan code of
2CH; when you release it, the keyboard generates a scan code of ACH (2CH +
80H). The keyboard diagrams in Figures 6-1, 6-2, and 6-3 show the standard
keyboard keys and their associated scan codes.

=

Figure 6-1. Scan codes for the 83-key keyboard (PC, PC/XT). Scan-code values are in
hex.
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Figure 6-2. Scan codes for the 84-key keyboard (PCIAT). Scan-code values are in hex.
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Figure 6-3. Scan codes for the 101/102-key keyboard (PCIAT and PS/2). Scan-code
values are in hex.

If you compare the scan codes for the 83-, 84-, and 101/102-key key-
boards, you’ll see that a key generates the same scan code regardless of its
location on the keyboard. For example, the Esc key has a scan code of 01H,
whether it’s next to the 1 key, next to the Num Lock key, or by itself in the
upper-left corner. (The 101/102-key keyboard can actually generate different
scan codes, but the start-up ROM BIOS suppresses this by configuring the
keyboard to be compatible with the 83-key keyboard.)

The 101/102-key layout contains duplicate shift and control keys that
don’t exist on the other keyboards. The 101/102-key keyboard distinguishes
between duplicate keys by transmitting multiple-byte scan codes. For ex-
ample, the two Alt shift keys have different scan codes: The left Alt key has
a scan code of 38H, and the right Alt key has a 2-byte scan code, EOH 38H.

Q NOTE: The multiple-byte scan codes for shift and control keys
can vary depending on whether one of the shift keys (Ctrl, Alt,
Shift), Num Lock, or Caps Lock is pressed at the same time. See
IBM’s PS/2 technical reference manuals for details.

The 101/102-key keyboard also assigns special scan codes to certain
keystroke combinations. The Alt-Sys Req combination is intended to be the
same as the Sys Req key on the 84-key layout, so the 101/102-key keyboard
transmits the same scan code, 54H. Because the Print Screen key has the
same function as the Shift-PrtSc combination in the other keyboard layouts,
the 101/102-key keyboard transmits a Shift key scan code (EOH 2AH) fol-
lowed by the PrtSc scan code (EOH 37H). The Pause key’s scan code, E1H
1DH 45H, resembles the scan-code sequence for the Ctrl-Num Lock com-
bination, but when you press Ctrl-Pause (that is, Ctrl-Break), the keyboard
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transmits EOH 46H EOH C6H, which is derived from the scan code for the
Scroll Lock (Break) key on the 83- and 84-key keyboards. Figure 6-4 lists
these keystroke combinations and their associated codes.

101/102-key Keyboard 84-key Keyboard Scan Code
Keystroke Combination = Equivalent Transmitted
Alt-Sys Req Sys Req 54H
Print Screen Shift-Print Screen EOH 2AH

EOH 37H
Ctrl-Break Ctrl-Break EOH 46H EOH C6H

Figure 6-4. Scan codes for special keystroke combinations on the 101/1 02-key keyboard.

U NOTE: The ‘““‘compact” keyboard available for the PSI2 Model 25
is really a 101/102-key keyboard in disguise. The numeric keypad is
mapped to a group of 14 keys on the main keyboard, and the Num
Lock key is the shift state of the Scroll Lock key. However, keyboard
scan codes and ROM BIOS processing are the same for the compact
version as for the full-size 101/102-key keyboard.

Any program that processes keyboard scan codes must be aware of
which machine it’s running on and which keyboard is in use. Fortunately,
few programs need to respond directly to keyboard scan codes — the ROM
BIOS keyboard service routines translate scan codes into meaningful infor-
mation that a program can use. The following sections describe this transla-
tion process more fully.

Communicating with the ROM BIOS
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The keyboard-controller circuitry on the computer’s system board monitors
the keyboard for input. The keyboard controller generates interrupt 09H
each time it receives a byte of data from the keyboard. The ROM BIOS con-
tains an interrupt 09H handler that reads the byte from the keyboard con-
troller and processes it. (I/O port 60H contains the keyboard data byte.) The
interrupt 09H handler translates scan codes into 2-byte values that are gener-
ally more useful to a program than the original scan codes.

The low-order byte of each 2-byte keyboard value contains the ASCII
value corresponding to each key pressed. The high-order byte usually con-
tains the corresponding keyboard scan code.

Special keys, such as the function keys and the numeric-keypad keys,
have a 0 in the low-order byte, with the keyboard scan code in the high-
order byte. (More about this later, on page 134.)
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The ROM BIOS routines place the translated byte-pairs in a queue,
which is kept in low memory in location 0040:001EH. The byte-pairs are
stored there until they are requested by a program, such as DOS or inter-
preted BASIC, that expects to read keyboard input.

Translating the Scan Codes

The scan-code translation job is moderately complicated because the IBM
keyboard recognizes two types of keys that change the meaning of a key-
stroke: shift keys and toggle keys.

The shift keys

Three keys — Ctrl, Shift, and Alt— are known as shift keys: They change
the shift state, and thereby the meaning, of whatever key they are used with.
For example, when you press Shift-C, you get a capital C; when you press
Ctrl-C, you generate the ‘‘break’” character. The ROM BIOS recognizes that
all subsequent key actions will be influenced by that shift state as long as a
shift key is pressed.

The toggle keys

In addition to the shift keys, two toggle keys also affect the keyboard’s shift
state: the Caps Lock key and the Num Lock key. When activated, Caps
Lock reverses the shift state of the alphabet keys; it doesn’t affect the other
keys. When activated, the Num Lock key disables cursor-control functions
on the numeric keypad. Toggle keys are activated with a single keystroke
and remain active until released by a second keystroke.

The shift-key and toggle-key status information is kept by the ROM
BIOS in a low-memory location (0040:0017H), where you can use or change
it. When you press a shift key or a toggle key, the ROM BIOS sets a specific
bit in one of these two bytes. When the ROM BIOS receives the release scan
code of a shift key, it switches the status bit back to its original shift state.

Whenever the ROM BIOS receives a scan code for an ordinary key-
stroke, such as the letter z or a right arrow key, it first checks the shift state
and then translates the key into the appropriate 2-byte code. (We’ll discuss
the status bytes in more detail on page 137.)

The combination keys

While the ROM BIOS routine is translating scan codes, it checks for Sys Req
keystrokes and for certain shift-key combinations; specifically, it checks for
the Ctrl-Alt-Del, Shift-PrtSc, Ctrl-Num Lock, and Ctrl-Break combina-
tions. These five command-like key actions cause the ROM BIOS to perform
a specific task immediately.
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Ctrl-Alt-Del causes the computer to reboot. Ctrl-Alt-Del is probably
used more often than any other special key combination. It works depend-
ably as long as the keyboard interrupt service is working. If the interrupt
service is not working, turn the power off, wait a few seconds, then turn it
on again; the power-on program resets all interrupt vectors and services.

Shift-PrtSc (Print Screen on the 101/102-key keyboard) causes the
ROM BIOS interrupt 09H handler to execute software interrupt 05H. The
default interrupt 05H handler is also part of the ROM BIOS; it prints a
“‘snapshot’’ of the current contents of the screen.

Ctrl-Num Lock (Pause on the 101/102-key keyboard) suspends opera-
tion of a program until another keystroke occurs.

Ctrl-Break causes the ROM BIOS to generate software interrupt 1BH
and to set bit 7 of the byte at 0040:0071H to 1. The default DOS handler for in-
terrupt 1BH simply sets a flag internal to DOS that causes DOS to interpret
Ctrl-Break as Ctrl-C. You can override the default DOS action for Ctrl-
Break by pointing the interrupt 1BH vector (located at 0000:006CH) to your
own interrupt handler.

Sys Req (on the 84-key keyboard) and Alt-Sys Req (on the 101/102-key
keyboard) cause the ROM BIOS to issue interrupt 15H with AH = 85H. Your
program can provide its own interrupt 15H handler that intercepts and pro-
cesses Sys Req keystrokes. (See Chapter 12 for details.)

These are the only key combinations that are especially meaningful to
the ROM BIOS. When an invalid combination is reported from the keyboard,
the ROM BIOS simply ignores it and moves on to the next valid key action.

Two more features of the PC keyboard should be presented before we
discuss the details of keyboard coding: repeat key action and duplicate keys.

Repeat key action

The PC keyboard features automatic repeat key action, a process called
typematic by IBM. The circuitry inside the keyboard monitors how long
each key is pressed, and if a key is held down longer than a defined interval,
the circuitry generates repeat key actions. This typematic action is reported
as successive keystroke scan codes, without the intervening key-release
codes. This makes it possible for an interrupt 09H handler to distinguish be-
tween actual keystrokes and typematic action. However, the ROM BIOS does
not always distinguish between the two. The ROM BIOS keyboard-handling
routine treats each automatic repeat key action as though the key were ac-
tually pressed and interprets the key accordingly.
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For example, if you press and hold the A key long enough for the key-
board to begin generating successive keystroke signals, then the ROM BIOS
will create a series of As to be passed on to whatever program is reading
keyboard data. On the other hand, when you press and hold a shift key, the
ROM BIOS sets bits in its status bytes in segment 40H. While you hold the
shift key down, the ROM BIOS continues to set the same bits to 1.

Keyboard-enhancer programs

Thanks to the flexible software design of the PC, it’s poss1ble to
create programs that customize the keyboard. Such programs are
called keyboard-enhancer programs.
Keyboard-enhancer programs monitor the scan codes that come
~ in from the keyboard and respond to them in ways that aren’t
supported by the ROM BIOS or by DOS. Typically, these programs
~are fed instructions, called keyboard macros, that tell them what
keystrokes to look for and what changes to make. The change might
involve suppressing a keystroke (acting as if it never happened),
replacing one keystroke with another, or replacing one keystroke with
a long series of keystrokes. The most common use of keyboard macros
is to abbreviate frequently used phrases; for example, you might
~ instruct a keyboard enhancer to convert a key combination, such as
Alt-S, into a salutation you use in your correspondence, such as
Sincerely yours. You can also use keyboard macros to condense
multiple-keystroke program commands to a single keystroke.
Keyboard enhancers work by combining the powers of two
special facilities—one that’s part of DOS and one that’s part of the
PC’s ROM BIOS. The DOS facility allows the enhancer program to
remain resident in the computer’s memory, quietly monitoring the
operation of the computer while the ordinary control of the computer
is turned over to a conventional program, such as a word processor.
The ROM BIOS facility lets programs divert the stream of keyboard
information so that it can be inspected and changed before it is passed
on to a program. These programs use the DOS Terminate and Stay
Resident facility to stay active in memory while other programs are
run; then they use the ROM BIOS keyboard-monitoring facility to
preview keyboard data and change it as needed.

133



PROGRAMMER’S GUIDE TO THE IBM PC AND PS/2

When you release the key, the ROM BIOS resets the status bits. All this boils
down to the simple fact that the ROM BIOS treats repeat key actions in a
sensible way, acting on them or ignoring them as needed.

Duplicate keys

We’ve already described how the keyboard differentiates duplicate keys by
assigning different scan codes to each. The ROM BIOS translates duplicate
keys into the same ASCII character codes. For example, if you press either
of the two asterisk keys, the ROM BIOS returns ASCII 2AH (the ASCII code
for an asterisk); if you press either of the two Ctrl keys on a 101/102-key
keyboard, the ROM BIOS sets the appropriate bit in its shift-state byte.

The ROM BIOS also lets programs tell the difference between
duplicate keys, in some cases. Remember that the ROM BIOS translates each
keystroke into a scan code as well as an ASCII code. A program that
requests a keystroke from the ROM BIOS can inspect the scan code to
determine which key was pressed. In the case of shift keys, a program can
inspect the BIOS shift-state bytes at 0040:0017H and 0040:0018H to determine
exactly which shift keys are pressed. (See the discussion of the shift-state
bytes on pages 137 and 138.)

Entering ASCII Codes Directly

We should mention that the PC keyboard, in conjunction with the ROM BIOS,
provides an alternate way to enter nearly any ASCII character code. This is
done by holding down the Alt key and then entering the decimal ASCII
character code from the numeric keypad on the right side of the keyboard.
This method lets you enter any ASCII code from 01H through FFH (decimal
1 through 255).

Keyboard Data Format

Once a keyboard action is translated, it is stored as a pair of bytes in the
ROM BIOS buffer. We call the low-order byte the main byte and the high-
order byte the auxiliary byte. The contents of these bytes will vary,
depending on whether an ASCII key or a special key was pressed.

The ASCII Keys
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When the main byte is an ASCII character value from 01H to FFH, one of
two events has occurred: One of the standard keyboard characters was
pressed, or an ASCII character was entered directly using the Alt-number
method mentioned above. (See Appendix C for the complete ASCII
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character set.) For these ASCII characters, the auxiliary byte contains the
scan code of the pressed key. (The scan code is 0 for characters entered with
Alt-number.) Usually you can ignore this scan code. DOS does not report
keyboard scan codes, nor do high-level programming language functions
like getch() in C or INKEY$ in BASIC. However, a program can examine the
auxiliary byte (scan code) to differentiate among duplicate keyboard
characters.

The Special Keys

When the main byte is null (00H), it means that a special, non-ASCII key
was pressed. The special keys include function keys, shifted function keys,
cursor-control keys such as Home and End, and some of the Ctrl- and Alt-
key combinations. When any of these keys are pressed by themselves or in
combination with other keys, the auxiliary byte contains a single value that
indicates which key was pressed. Figure 6-5 lists these values in a rough
mixture of logical and numeric order. (For a complete breakdown of ROM
BIOS key codes, see the IBM BIOS Interface Technical Reference Manual.)

Q NOTE: With the 101/102-key keyboard, the main byte value for
the gray cursor-control keys is EOH. This value distinguishes these
keys from their counterparts on the numeric keypad, which have a

main byte value of 00H.
Value Value Value

(hex) (dec) Keys Pressed (hex) (dec) Keys Pressed (hex) (dec) Keys Pressed
3BH 59 F1 S4H 84 Shift-F1 S5EH 94 Ctrl-F1

3CH 60 F2 55H 85 Shift-F2 SFH 95 Ctrl-F2

3DH 61 F3 S6H 86 Shift-F3 60H 96 Ctrl-F3

3EH 62 F4 STH 87 Shift-F4 61H 97 Ctrl-F4

3FH 63 F5 S8H 88 Shift-F5 62H 98 Ctrl-F5

40H 64 F6 S9H 89 Shift-F6 63H 99 Ctrl-F6

41H 65 F7 5AH 90 Shift-F7 64H 100  Ctrl-F7

42H 66 F8 5BH 91 Shift-F8 65H 101  Cul-F8

43H 67 F9 SCH 92 Shift-F9 66H 102  Ctrl-F9

44H 68 F10 SDH 93 Shift-F10 67H 103  Ctrl-FI0
85H 133  FII 87H 135  Shift-Fll 89H 137  Cul-F11

86H 134  FI2 88H 136  Shift-F12 8AH 138  Cul-F12

Figure 6-5. ROM BIOS auxiliary byte values for the special keys. (continued)
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Figure 6-5. continued

Value Value Value

(hex) (dec) Keys Pressed (hex) (dec) Keys Pressed (hex) (dec) Keys Pressed

68H 104  Alt-Fl 10H 16 Al-Q OFH 15 Shift-Tab

69H 105  Alt-F2 11H 17 Alt-W

6AH 106  Alt-F3 12H 18 Alt-E 4TH 71 Home

6BH 107  AltF4 13H 19 AltR 48H 72 Up arrow

6CH 108  AIlt-F5 14H 20 Alt-T 49H 73 PgUp

6DH 109  Alt-F6 15H 21 Alt-Y

6EH 110  AltF7 16H 22 AltU 4BH 75 Leftarrow

6FH 111  Alt-F8 17H 23 Alt-I 4DH 77 Right arrow

70H 112 Alt-F9 18 24 Alt-0

7IH 113  Alt-F10 19H 25 Alt-P 4FH 179 End

8BH 139  Alt-Fll

8CH 140  AIt-F12 IEH 30 Alt-A 50H 80 Down arrow
IFH 31 Alt-S 51H 81 PgDn

78H 120  Alt-l 20H 32 Alt-D 52H 82 Insert

79H 121 Alt-2 2IH 33 Al-F 53H 83 Del

7AH 122 Alt-3 2H 34 Alt-G

7BH 123  Alt4 23H 35 Alt-H 72H 114 Curl-PrtSc

7CH 124  Alt5 24H 36 Alt-] 73H 115  Ctrl-Left arrow

7DH 125  Alt-6 25H 37 Alt-K 74H 116  Ctrl-Right arrow

7EH 126  Alt-7 26H 38 Alt-L 75H 117 Cul-End

7FH 127 Alt-8 76H 118 Ctrl-PgDn

80H 128 Alt-9 2CH 44 Alt-Z 77H 119 Ctrl-Home

8IH 129  Alt-0 2DH 45 Alt-X

82H 130  Alt-Hyphen 2EH 46  Al-C 84H 132 Curl-PgUp

83H 131 Alt-= 2FH 47 Alt-V

30H 48 Alt-B
3IH 49 Alt-N
32H 50 Alt-M

Codes generated by the ROM BIOS for the complete set of charac-
ters and special keys are handled differently in different programming
languages. BASIC, for example, takes a mixed approach to the special keys.
When you use ordinary input statements, BASIC returns the ASCII
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characters and filters out any special keys. Some of these keys can be acted
on with the ON KEY statement, but you can use the BASIC INKEY$ function
to get directly to the ROM BIOS coding for keyboard characters and find out
immediately what special key was pressed. If the INKEYS$ function returns a
1-byte string, it is reporting an ordinary or extended ASCII keyboard
character. If INKEYS$ returns a 2-byte string, the first byte in the string is the
ROM BIOS’s main byte and will always be 00H; the second byte is the
auxiliary byte and will indicate which special key was pressed.

ROM BIOS Keyboard Control

The ROM BIOS stores keyboard status information in several portions of the
ROM BIOS data area in segment 40H in low memory. Your programs can use
some of the ROM BIOS status variables to check the keyboard status or to
modify ROM BIOS keyboard processing.

The two keyboard status bytes at locations 0040:0017H (shown in
Figure 6-6) and 0040:0018H (shown in Figure 6-7) are coded with individu-
ally meaningful bits that indicate which shift keys and toggle keys are
active. All the standard models of the PC family have these two bytes,
although the bits representing the Sys Req, left Alt, and left Ctrl keys are
updated only for the keyboards that support these keys.

The status byte at 0040:0017H is particularly useful because it
establishes the state of ROM BIOS keystroke processing. Changes to this
status byte affect the next keystroke that the ROM BIOS processes.

Bit
76543210 Meaning

D G Insert state: 1 = active; 0 = inactive

XL Caps Lock: 1 = active; 0 = inactive
XL Num Lock: 1 = active; 0 = inactive

D G Scroll Lock: 1 = active; 0 = inactive

oL o XL 1 = Alt pressed

..... X. . 1 = Ctrl pressed

...... X. 1 = Left Shift pressed

....... X 1 =Right Shift pressed

Figure 6-6. The coding of the keyboard status byte at location 0040:0017H. Bits 4-7 are
toggles; their values change each time the key is pressed. Bits 0-3 are set only while the
corresponding key is pressed.
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Bit
76543210 Meaning

X, . ... 1=1Ins pressed
XL 1 = Caps Lock pressed

XL oL 1 = Num Lock pressed

XL oL 1 = Scroll Lock pressed

D S 1 = Hold state active (Ctrl-Num Lock or Pause)
..... X. . 1 = Sys Req key pressed
...... X. 1 = Left Alt key pressed
....... X 1 = Left Ctrl key pressed

Figure 6-7. The coding of the keyboard status byte at location 0040:0018H. These bits are
set only while the corresponding key is pressed.

The Insert State

The ROM BIOS keeps track of the insert state in bit 7 of byte 0040:0017H.
However, every program we know of ignores this bit and keeps its own
record of the insert state. This means that you should not rely on this status
bit to tell you anything about the current state of Insert key processing.

The Caps Lock State

Some programmers force the Caps Lock state to be active by setting bit 6 of
byte 0040:0017H. This can confuse or irritate some program users, so we
don’t recommend it. However, this trick works reliably and precedent exists
for using it. If you do you’ll see that the ROM BIOS updates the LED indica-
tor on the 84- and 101/102-key keyboards accordingly. This also occurs when
you update the Num Lock or Scroll Lock states.

The Num Lock State

138

Because the Num Lock key’s location on the keyboard makes it susceptible
to inadvertent keystrokes, some programmers force the Num Lock toggle
(bit 5 of byte 0040:0017H) to a predetermined state at the beginning of a pro-
gram. For example, clearing the Num Lock status bit before requesting user
input from the keypad forces keypad keystrokes to be processed as direction
keys instead of numbers, even if the Num Lock key was pressed acciden-
tally. This can be particularly helpful with the 83-key keyboard for the IBM
PC and PC/XT because this keyboard has no status LEDs and provides no
visual indication of the Num Lock state.
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The Keyboard-Hold State

The ROM BIOS establishes the keyboard-hold (pause) state when it detects a
Ctrl-Num Lock or Pause keystroke. During keyboard hold, the ROM BIOS
executes a do-nothing loop until a printable key is pressed; it doesn’t return
control of the computer to whatever program is running until this happens.
This feature is used to suspend the operation of the computer.

During keyboard hold, all hardware interrupts are handled normally.
For example, if a disk drive generates an interrupt (signaling the comple-
tion of a disk operation), the disk interrupt handler receives the interrupt
and processes it normally. But when the interrupt handler finishes working,
it passes control back to whatever was happening when the interrupt took
place — which is that endless do-nothing loop inside the ROM BIOS. So, dur-
ing the keyboard hold, the computer can respond to external interrupts but
programs are normally completely suspended. The keyboard BIOS con-
tinues to handle interrupts that signal key actions, and when it detects a nor-
mal keystroke (for example, the Spacebar or a function key, but not just a
shift key), it ends the keyboard hold, finally returning control to whatever
program was running.

The keyboard-hold state is of no practical use in programming, except
that it provides a standard way for users of our programs to suspend a
program’s operation.

Be aware that the keyboard-hold state is not *‘bullet-proof.”” A pro-
gram can continue working through the keyboard hold by acting on an ex-
ternal interrupt, such as the clock-tick interrupt. If a program really wanted
to avoid being put on hold, it could set up an interrupt handler that would
work through the hold state, or it could simply turn the hold state off when-
ever the hold state was turned on.

The Toggle-Key States

Notice that bits 4 through 7 in the bytes at 0040:0017H and 0040:0018H refer to
the same keys. In the first byte, the bits show the current state of the toggle
keys; in the second byte, they show whether or not the corresponding toggle
key is pressed. )

You can read the status of any of these bits to your heart’s content, but
few, if any, are likely to be useful in your programs. With the partial excep-
tion of controlling the Caps Lock state, we don’t think it’s wise to change
any of the shift-state bits (bits 4 through 6 of byte 0040:0017H). And it is
potentially very disruptive to change any of the key-is-pressed bits (bits 0
through 3 of byte 0040:0017H or any bits in byte 0040:0018H).
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If you want to gain a deeper understanding of the PC’s keyboard operation,
study the ROM BIOS program listing in the IBM technical reference manuals
for the PC, PC/XT, or PC/AT. If you do this, be careful to avoid making a
simple mistake that is common when anyone first studies the ROM BIOS,
particularly the interrupts used by the ROM BIOS. The ROM BIOS provides
two different interrupts for the keyboard: one that responds to keyboard
hardware interrupts (interrupt 09H) and collects keyboard data into the low-
memory buffer, and one that responds to a software interrupt requesting
keyboard services (interrupt 16H, decimal 22) and passes data from the low-
memory buffer to DOS and your programs. It is easy to confuse the opera-
tion of these two interrupts, and it is just as easy to further confuse them
with the break-key interrupts, 1BH and 23H (decimal 27 and 35). The table in
Figure 6-8 lists the keyboard interrupts.

Interrupt

Hex Dec Origin of Interrupt  Use

09H 9 Keyboard Signals keyboard action.

16H 22 User program Invokes standard BIOS keyboard
services. (See Chapter 11.)

1BH 27 ROM BIOS Occurs when Ctrl-Break is pressed under
BIOS control; a routine is invoked if you
create it.

23H 35 DOS If you create it, an interrupt routine is

invoked when a break-key combination is
pressed under DOS control.

Figure 6-8. The interrupts related to keyboard action.

A general theme running throughout this book advises you not to play
fast and loose, but to play by the rules. This means, again, to write pro-
grams that are general to the IBM PC family rather than tied to the quirks of
any one model, and to write programs that use portable means (such as DOS
or ROM BIOS services) to manipulate data, instead of direct hardware pro-
gramming. These rules apply to keyboard programming as much as they do
to any other type of programming.
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Clocks and timers are the heartbeat of a computer. The computer’s essential
functions of computation and data transfer take place in step with the pulses
generated by electronic clocks. PCs and PS/2s play host to several clocks and
timers that you should know about:

e The system timer generates ‘‘clock-ticks’’ and other timing pulses
at precisely controlled intervals.

o The sound generator produces tones through a speaker with a wide
range of frequencies and durations.

o The real-time clock/calendar keeps track of the date and time and
can also serve as an ‘‘alarm clock.”” (This is supported only in the
PC/AT and PS/2s.)

To understand how to use the system timer, the sound generator, and
the real-time clock, you need to know about the basic clock and timing
mechanisms in PCs and PS/2s. That is what we’ll outline in this chapter.

Clocks and Timers

PCs and PS/2s. have several clocks and timers that run at different rates and
perform different functions. Some of them are intrinsic to the circuit design
of these computers; their operation is independent of software control.
Others are designed to support timing functions in software; the operation
of these timers can be controlled by software through ROM BIOS services or
by direct hardware programming.

The CPU Clock
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Probably the most basic of the timed events in a PC or PS/2 is the step-by-
step operation of the computer’s CPU, whose speed is determined by the fre-
quency of a special oscillator circuit that generates high-frequency pulses at
regular intervals. This frequency is the CPU’s clock speed, and it determines
how quickly the CPU can carry out its functions.

The CPU oscillator keeps time for the CPU in much the same way a
metronome keeps time for a musician. At each tick of the CPU clock (that is,
at each pulse in the CPU oscillator’s signal), the CPU carries out part of one
machine instruction. All instructions require two or more clock cycles to
complete. For example, the register INC instruction requires two clock
cycles to execute; more complicated instructions like CALL and MUL take a
longer amount of time.
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In IBM PCs and PC/XTs, the CPU’s clock speed is 4,772,727 cycles per
second, or about 4.77 megahertz. (A megahertz, or MHz, is one million
cycles per second.) One CPU clock cycle thus lasts about 1/4,772,727 of a sec-
ond, or about 210 nanoseconds (billionths of a second). With this clock fre-
quency, a 2-cycle INC instruction executes in roughly 420 nanoseconds (0.42
microseconds or millionths of a second).

The odd clock speed of 4.77 MHz was actually a convenient frequency
for the designers of the original PC to use. In fact, the CPU clock frequency
is derived from a basic oscillator frequency of 14.31818 MHz, which is com-
monly used in television circuitry. Dividing the basic frequency by 3 gives
the CPU clock frequency. Dividing by 4 gives a clock rate of 3.57955 MHz,
which is the frequency of the color burst signal used in color televisions and
in the PC’s Color Graphics Adapter. Dividing the basic frequency by 12
gives 1.19318 MHz, which is the clock frequency used by the PC’s system
timers.

In later, faster members of the PC and PS/2 family, the CPU clock
speed is higher, so the overall computational speed of these computers is
greater. The 80286 and 80386 processors also execute many machine instruc-
tions in fewer clock cycles than the 8088 used in the PC and PC/XT. For ex-
ample, the register PUSH instruction in the 8088 executes in 15 clock cycles;
in the 80286 the same instruction takes 3 cycles; and in the 80386 only 2
cycles. The combination of a higher CPU clock rate and faster machine in-
structions means that the 80286- and 80386-based members of the PC family
execute programs significantly faster than do the 8088- and 8086-based ma-
chines. (See Figure 7-1.)

Approximate Speed
CPU Clock Relative
Model cPU Frequency t04.77 MHz IBM PC
PC 8088 4.77 MHz 1.0
PC/XT 8088 4.77 MHz 1.0
PC/AT 80286 6 MHz 34
8 MHz 4.8
PS/2 models 25 and 30 8086 8 MHz 25
PS/2 models 50 and 60 80286 10 MHz* 6.1
PS/2 Model 80 80386 16 MHz 12.5
20 MHz 15.5

Figure 7-1. CPU clock frequencies and relative computation speeds for PCs and PS/ 2s.
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System Timers
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Apart from the operation of the CPU, other basic hardware and software
functions occur at regular intervals based on a preset clock frequency. For
example, the dynamic RAM chips that constitute the computer’s main
memory must be accessed at regular intervals to refresh the information
represented in them. Also, ROM BIOS and operating system functions such
as keeping track of the time of day require the computer to generate a
“‘clock-tick’’ signal at a predetermined rate. All PCs and PS/2s have cir-
cuitry that generates the necessary timing signals.

In the PC and PC/XT, an Intel 8253-5 programmable timer/counter chip
produces the RAM refresh and timer-tick signals. In the PC/AT, an Intel
8254-2 is used in the same way. The PS/2 models 25 and 30 use an 8253-5 for
the timer tick, but RAM refresh timing is a function of a custom integrated
circuit. In the PS/2 models 50, 60, and 80, all timing functions are imple-
mented in custom silicon. Despite these hardware variations, the timer pro-
gramming interface is the same in all PCs and PS/2s.

In the PC/XT/AT family, the timer chip has three output channels, each
with a particular dedicated function:

® Channel 0 is the system clock-tick timer. When the computer is
cold booted, the ROM BIOS programs the timer to oscillate with a
frequency of about 18.2 ticks per second. This signal is tied to the
computer’s interrupt controller in such a way that interrupt 08H is
generated each time the clock ticks.

e Channel 1 is always dedicated to producing the RAM refresh tim-
ing signal; it’s not intended for use in software applications.

o Channel 2 is used to control the computer’s speaker: The frequency
of the timer’s channel 2 signal determines the frequency of the
sound emitted by the loudspeaker. (We’ll come back to this later.)

PS/2 models 50, 60, and 80 also have a timer channel 3. The signal pro-
duced on channel 3 is tied to the computer’s nonmaskable interrupt (inter-
rupt 02H), and can be used by an operating system as a ‘‘watchdog’’ to
ensure that some other critical function, such as servicing a clock-tick inter-
rupt, does not crash the computer by taking too long to execute.
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Using the System Timer Tick

In all PCs and PS/2s, the input oscillator to the system timer circuit has a fre-
quency of 1.19318 MHz. On each cycle, the timer chip decrements the values
in a set of internal 16-bit counters, one for each of the timer’s output chan-
nels. When the value in a counter reaches 0, the chip generates a single out-
put pulse on the corresponding channel, resets: the count, and starts
counting down again.

When the ROM BIOS initializes the system timer, it stores a countdown
value of 0 in the count register for channel 0. This means that the timer chip
decrements the counter 216 times between output pulses on channel 0, so
output pulses occur 1,193,180/65,536, or about 18.2 times per second. The out-
put from timer channel 0 is used as the signal on interrupt request level 0
(IRQO), so interrupt 08H occurs whenever channel 0 of the system timer
counts down to 0—that is, 18.2 times per second.

The ROM BIOS contains an interrupt handler for interrupt 08H that in-
crements a running count of clock ticks at 0040:006CH in the BIOS data area.
This same interrupt handler also decrements the byte at 0040:0040H; if the
value in the byte reaches 0, the interrupt handler issues a command to the
diskette drive controller to turn off the diskette drive motor if it’s on.

The ROM BIOS interrupt 08H handler also issues software interrupt
1CH, which is intended for use in programs that want to be notified when a
system timer tick occurs. A program can detect when each timer tick occurs
simply by pointing the interrupt 1CH vector at 0000:0070H to its own inter-
rupt handler. If you use an interrupt 1CH handler in a program, however, be
aware that the ROM BIOS interrupt 08H handler does not allow subsequent
clock-tick interrupts on IRQO to occur until your interrupt 1CH handler
returns. If you install an interrupt 1CH handler, be certain that it doesn’t
keep IRQO disabled for too long or the system may crash.

The system timer tick and its interrupt are useful in programs that
must perform a simple task at a regular interval regardless of what else is
going on in the computer. The timer-tick interrupt has the highest priority
of any of the hardware interrupts (except the nonmaskable interrupt), so the
code in the corresponding interrupt 08H and 1CH handlers takes precedence
over all other system software.

For this reason, the timer tick is used primarily in operating system
software and in memory-resident ‘‘pop-up’’ programs like SideKick or the
Norton Guides. Such programs have their own timer-tick interrupt handlers
that check whether it is time to pop up on the screen. These programs gener-
ally rely on the system timer tick to occur at the default frequency of 18.2
ticks per second.
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Because timer-tick function is so essential to the proper operation of
the computer, you should change the output frequency of system timer
channel 0 only if you are careful to preserve the functionality of the ROM
BIOS interrupt 08H handler. For example, BASIC uses the timer tick to meas-
ure the duration of tones created with the PLAY or SOUND command. How-
ever, because the standard rate of 18.2 ticks per second is not fast enough to
provide the precision that some kinds of music demand, BASIC reprograms
the timer to tick four times faster, which causes interrupt 08H to occur 72.8
times per second instead of 18.2 times per second. When BASIC counts
against the quadruple rate, it is able to more accurately reproduce the proper
tempo of a piece of music.

BASIC can do this because it has a special interrupt 08H handler that
calls the default interrupt 08H handler on every fourth timer tick. This en-
sures that the usual interrupt 08H functions still occur 18.2 times per second.
If you reprogram system timer channel 0 to a nonstandard rate, your pro-
gram should use the same technique of preserving interrupt 08H
functionality.

Programming system timer channel 2, the sound frequency generator,
is not as demanding, because no ROM BIOS or operating system functions
rely on it. Before we cover the programming details, however, we’ll
describe some of the basic mechanics of creating sounds with a computer.

The Physics of Sound
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Sounds are simply regular pulses or vibrations in air pressure. Sound is pro-
duced when air particles are set into motion by a vibrating source. When
the vibrating source pushes out, it compresses the air particles around it. As
it pulls in, the pressure release pulls the particles apart. A vibration com-
posed of both the pressing and the pulling actions causes air particles to
bump into each other. This motion begins a chain reaction that carries the
vibration through the air away from the original source. Such a motion is
called a sound wave.

The speaker in the IBM PCs and PS/2s is made to vibrate by the electri-
cal impulses sent to it by the computer. Because computers normally deal
with binary numbers, the voltages they produce are either high or low.
Every transition from one voltage state to another either pushes the speaker
cone out or relaxes it. A sound is produced when the voltage to the speaker
goes from low to high to low again, causing the speaker to move out and
then in. This single vibration, consisting of a pulse out and a pulse in, is
called a cycle. Through the speaker, a single cycle of sound is heard as a
click. A continuous sound is produced when a continuous stream of pulses
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is sent to the speaker. As the pulse rate increases, so does the pitch of the
tone. For example, if you pulse the speaker in and out 261.63 times a second
(that is, at a rate of 261.63 hertz, or cycles per second), you hear the musical
note known as middle C. Figure 7-2 lists the frequencies required to generate
other musical notes.

Note  Frequency Note Frequency Note  Frequency Note  Frequency

C, 1635 C, 6541 C, 26163 Cs 1046.50
Coo 1732 C,, 6930 Cus  277.18 Cy  1108.73
D, 1835 D, 7342 D,  293.66 D, 117466
D,, 1945 D,, 7178 D,, 31113 D,, 124451
E,  20.60 E, 8241 E, 329.63 E, 1328.51
F, 21.83 F, 87.31 F, 349.23 Fq 1396.91
Fyo 2312 F,, 9250 Fye  369.99 F,s  1479.98
G, 2450 G,  98.00 G, 39200 Gs  1567.98
Gy 2596 G,, 103.83 Gy, 41530 Gys  1661.22
A, 2150 A, 11000 A, 44000 As  1760.00
Ao  29.14 A, 11654 Ay, 466.16 Ay 1864.66
B, 3087 B, 123.47 B, 49388 B 1975.53
c, 32.70 C, 130.81 Cs 52325 C,  2093.00
Cy 3465 Cuy 13859 Cus 55437 C.y 221746
D, 3671 D,  146.83 D; 58733 D,  2349.32
D, 3889 D,, 15556 D,s 62225 D,,  2489.02
E, 41.20 E, 164.81 Es 659.26 E, 2637.02
F, 43.65 F, 174.61 Fs 698.46 F, 2793.83
F,, 4625 F,, 18500 F,s  739.99 F,,  2959.96
G,  49.00 G,  196.00 Gs  783.99 G, 31359
G, 5191 Gys  207.65 Gys  830.61 G,, 332244
A, 5500 A, 22000 As  880.00 A, 352000
A, 5827 A, 23308 Ay 93233 Ay 372931
B, 61.74 B, 24694 Bs  987.77 B,  3951.07

Cy 418601

Note: Equal Tempered Chromatic Scale; A, = 440
American Standard pitch — adopted by the American Standards Association in 1936

Figure 7-2. Eight octaves of musical note frequencies.
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The average person can hear sounds ranging from roughly 20 to 20,000
hertz. The IBM PC can generate sounds through its speaker at frequencies
that could theoretically range from about 18 to more than a million hertz,
far beyond the range of human hearing. To give this frequency range some
perspective, compare it to an average human voice, which has a range of
only 125 to 1000 hertz.

The speaker that comes with the standard IBM personal computers has
no volume control and is not really intended for accurate sound reproduc-
tion. As a result, different frequencies will produce different effects; some
may sound louder than others and some may have a more accurate pitch.
This variation is a by-product of the speaker design and is not something
you can control.

How the Computer Produces Sound

You can generate sounds through the speaker in two ways, using one or both
of two different sound sources. One method is to write a program that turns
the speaker on and off by manipulating two speaker bits in the 1/O port that
provides access to the speaker-control circuitry. When you use this method,
your program controls the timing of the pulse and the resulting sound fre-
quency. The other method is to use channel 2 of the system timer chip to
pulse the speaker at a precise frequency. Using the timer chip is a more
popular method for two reasons: Because speaker pulses are controlled by
the timer chip instead of a program, the CPU can devote its time to the other
demands of the computer system; and the timer chip is not dependent on the
working speed of the CPU, which varies according to which PC or PS/2
model you use. The program method and timer method can be used together
or separately to create many simple and complex sounds.

Timer-Chip Sound Control
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The programmable timer chip is the heart of the standard PC models’
sound-making abilities. As we have seen, channel 2 of the timer chip is
dedicated to sound generation. To create sounds, you must program channel
2 properly and then use the pulses from channel 2 to drive the speaker.

The timer can be programmed to produce pulses at whatever fre-
quency you want, but because it does not keep track of how long the sound
continues, the sound will continue forever unless it is turned off. Therefore,
your programs must choose when to end a sound through some sort of
timing instruction.
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Programming the timer chip

To program timer channel 2, load the timer chip with an approprlate
countdown value for the channel 2 counter. (The timer chip holds this value
in an internal register so that it can reset the counter each time it reaches
zero.) The countdown value takes effect immediately after you load it into
the timer chip. The timer chip decrements the counter with each cycle of its
1.19318 MHz clock until the counter reaches zero, and then it sends an output
pulse on channel 2 to the sound generator circuitry and starts counting
down again.

In effect, the timer ‘‘divides’’ the countdown value into the clock fre-
quency to produce an output frequency. The result is that the timer sends out
a series of pulses that produce a sound of a certain frequency when you turn
on the speaker.

The controlling count and the resulting frequency have a reciprocal
relationship, as shown by these formulas:

Count=1,193,180+Frequency
Frequency=1,193,180+Count

You can see that a low-frequency (low-pitched) sound is produced by a high
count and that a high-frequency (high-pitched) sound is produced by a low
count. A count of 100 would produce a high pitch of roughly 11,931 cycles
per second, and a count of 10,000 would produce a low pitch of about 119
cycles per second.

You can produce just about any frequency, within the limitations of
16-bit arithmetic. The lowest frequency is 18.2 hertz with a divisor of 65,535
(FFFFH), and the highest is 1.193 megahertz with a divisor of 1. BASIC holds
this to a practical range of 37 through 32,767 hertz. The following program
demonstrates that the actual frequency range of the internal speaker is even
less than BASIC provides.

Once you calculate the count that you need for the frequency you
want, you send it to the timer channel 2 registers. This is done with three
port outputs. The first port output notifies the timer that the count is coming
by sending the value B6H (decimal 182) to port 43H (decimal 67). The next
two outputs send the low- and high-order bytes of the count, a 16-bit
unsigned word, to port 42H (decimal 66)— the low-order byte followed by
the high-order byte. The BASIC program on the following page illustrates
the process.
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10 COUNT = 1193280! / 3000 ' 3000 is the desired frequency
20 LO.COUNT = COUNT MOD 256 ' calculate low-order byte value
30 HI.COUNT = COUNT / 256 * calculate high-order byte value
40 OUT &H43, &HB6 ' get timer ready

50 OUT &H42, LO.COUNT ' load low-order byte

60 OUT &H42, HI.COUNT ' load high-order byte

Activating the speaker

After you have programmed the timer, you still need to activate the speaker
circuitry in order to use the signal that the timer is generating. As with most
other parts of the PC and PS/2, the speaker is manipulated by sending
certain values to a specific port, a process illustrated in Figure 7-3. The
speaker is controlled by changing the values of bits 0 and 1 at 1/0 port 61H
(decimal 97). Only 2 of the port’s 8 bits are used by the speaker: the low-
order bits numbered 0 and 1. The other 6 bits are used for other purposes, so
it is important that you don’t disturb them while working with the speaker.

Get
timer Port Send pulses
ready - 43H to speaker

Load 8253-5 ‘ !

frequency Port | Programmable
CPU count 42H|  timer Amplifier
Turn on Port
speaker 61H_

Figure 7-3. How sound frequencies are generated through the system timer and speaker.

The lowest bit, bit 0, controls transmission of the timer chip’s output
signal to the speaker. The second bit, bit 1, controls the pulsing of the
speaker. Both bits must be set to make the speaker respond to the timer
chip’s signal. You can turn them on without disturbing the nonspeaker bits
with an operation like this:

70 OLD.PORT = INP (&H61) ' read the value at port 61H
80 NEW.PORT = (OLD.PORT OR &H03) ' set bits 0 and 1
90 OUT &H61, NEW.PORT ' turn speaker on
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Direct Speaker Control

The timer controls the speaker by sending periodic signals that pulse the
speaker in and out. You can do the same thing with a program that sends in
or out signals directly to the speaker. Do this by setting bit 0 of port 61H
(decimal 97) to 0 to turn the speaker off and then alternately setting bit 1 on
and off to pulse the speaker. When you use this method, the speed of the
program determines the frequency of the sound; the faster the program exe-
cutes, the higher the pitch. The following BASIC program is an example of

this method:

10 X = INP (&H61) AND &HFC ' read port value, turn off bits 1 and 0
20 OUT &H61, X * pull speaker in

30 OUT &H61, X OR 2 ' push speaker out

40 GOTO 20

The actions in lines 20 and 30 pulse the speaker in and out. Each one is a
half-cycle, and the two together produce one complete sound cycle.

This example runs as fast as BASIC can process it, producing as high a
note as possible. If you needed more range in your application, you could
use a faster language and insert deliberate delays equal to half the frequency
cycle time between each complete cycle (half the cycle time, because each
ON or OFF operation is a half-cycle). No matter what language you use, you
must include a duration count to end the sound. To produce different sounds
at a particular frequency, such as clicking or buzzing sounds, just vary the
delays between pulses.

Despite all these wonderful possibilities, generating sounds through
the speaker by direct program action is not a good way to make sounds. It
has three big disadvantages compared to the use of the timer:

e A program requires the constant attention of the CPU, so the com-
puter has a hard time getting any other work done.

e The frequency is at the mercy of the speed of the computer; that is,
the same program would make a lower or higher sound on a slower
or faster model.

e The clock-tick interrupts interfere with the smoothness of the
sound, making a warble. The only way to avoid this is to suspend
the clock tick by disabling the interrupts —and that disrupts the
computer’s sense of time.
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As far as we know, there is only one advantage to making sounds
using the direct method: With the proper control over the program delays,
the direct method lets you make a low-fidelity polyphonic sound. Be
forewarned, though, that this requires some very clever and tedious
programming and, all in all, may not be worth the trouble.

Speaker Volume and Sound Quality
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The computer’s internal speaker has no volume control of any kind and,
like all speakers, varies in how well it responds to different frequencies;
some frequencies may sound louder than others. In the case of a crude
speaker like that found in most PCs and PS/2s, the loudness of the sound
varies widely with the frequency. You can use the following program to test
this — it may help you choose the best sound pitch for your purpose:

10 PLAY "MF" ' plays each sound separately
20 FREQUENCY = 37
30 WHILE FREQUENCY < 32000

use all frequencies to

32000 Hz

40  PRINT USING "#H,#HHF"; FREQUENCY ' display frequency

50  SOUND FREQUENCY, 5 produce sound with
duration of 5

60  FREQUENCY = FREQUENCY #* 1.1 ' increment frequency by 1/10

70 WEND

Be aware that the speakers in the various PC and PS/2 models may not
sound alike, partly because the materials of each system housing resonate
differently as speaker enclosures. Try the following samples on two
different models and be prepared for these variations in sound:

100 'sound samples

110 '

120 'warble (two rapidly alternating tones) .
130 FOR N% = 0 TO 5

140 SOUND 440, .7

150 SOUND 466.16, .5

160 NEXT

170 WHILECINKEY$="") : WEND ' wait for a keystroke
180 '

190 'two tones played quickly

200 SOUND 900, .1

210 SOUND 760, 1

220 WHILECINKEY$="") : WEND
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230 °

240 'random noise

250 X = INP(&H61) AND &HFC

260 I=20 ' changing I changes the noise
270 FOR N% = 0 TO 500

280 IF (RND * 100 < I) THEN OUT &H61,X OR 2 : OUT &H61,X

290 NEXT

.The Real-Time Clock

The PC/AT and the PS/2s all have a real-time clock that keeps track of
the current date and time. In the PC/AT, the real-time clock is part of the
Motorola MC146818 chip that supports the PC/AT’s nonvolatile CMOS RAM.
In the PS/2s, the real-time clock is in custom silicon. In all these machines,
the real-time clock runs off a battery so that the time and date are main-
tained even while the computer is turned off.

Using the Date and Time

When you boot a PC/AT or PS/2, the ROM BIOS start-up routines read the
time of day from the real-time clock and convert it into the corresponding
number of timer ticks. This value is used to initialize the 4-byte count
stored at 0040:006CH in the ROM BIOS data area. All versions of DOS use this
count value to determine the current time of day. Starting in version 3.0,
DOS also obtains the current date from the real-time clock and initializes its
own internal record of the date at boot-up time.

To work with the current date and time in a program, we recommend
that you use the DOS date and time services (Chapter 16) to get and set the
current values. You could also use ROM BIOS services to access the real-
time clock (Chapter 10). However, if you call the ROM BIOS to change the
date or time, DOS may not be aware of the change and may assume an
incorrect time or date.

Setting the Alarm

The real-time clock’s alarm feature generates an interrupt at a specific
time. To take advantage of this feature, you must create an interrupt handler
that performs an action when the alarm interrupt occurs. You can even
make this action independent of other programs by leaving the interrupt
handler resident in memory with a DOS Terminate-and-Stay-Resident
service. (See Chapters 16 and 17.)

The ROM BIOS provides a set of services through interrupt 1AH that
give you access to the real-time clock’s alarm feature. See Chapter 12 for
more details.
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One secret of successful programming for the PC family lies in the effective
use of the software that is built right into the machine: the ROM BIOS ser-
vices. Conceptually, the ROM BIOS services are sandwiched between the
hardware and the high-level languages (including the operating system).
They work directly with the computer’s hardware and peripheral devices,
performing some of the system’s most fundamental tasks, such as reading
and writing individual bytes of data to the display screen or disk. DOS ser-
vices and programming-language services are often built from these basic
functions and enhanced to make a particular process more efficient. You
can enhance your programs in the same way by plugging them directly into
the ROM BIOS, thereby gaining access to an extremely powerful set of tools
and using your computers in the way that IBM intended them to be used.

That last point is worth emphasizing. IBM has gone to considerable
lengths to create a clean and well-defined method for directing the opera-
tion of the computer through the ROM BIOS services. As each new PC model
is designed, IBM (and any other computer maker who is faithfully extending
the PC family) makes sure its ROM BIOS services are thoroughly compatible
with those of the other members of the family. As long as you control your
computers through the ROM BIOS, whether directly or indirectly, you are
safe from any compatibility problems. If you bypass the ROM BIOS and pro-
gram directly to the hardware, you are not only asking for trouble, but you
are also severely limiting the range and viability of your programs.

That’s not to say that you should always use ROM BIOS services when
they’re available. The input/output functions provided in DOS and in high-
level programming languages often provide the same services as the ROM
BIOS, but in a form that is easier to use within your programs. However,
when a program needs more direct access to the computer’s input/output
devices than DOS or your programming language can provide, the ROM
BIOS services are usually the answer.

The next five chapters discuss the ROM BIOS service routines. For-
tunately, the routines fall naturally into groups derived from the hardware
devices they support, so the video services, disk services, and keyboard ser-
vices can all be reviewed separately. But before you take a closer look at the
individual services, you need to find out how to incorporate them into your
programs. This chapter sets the stage by explaining what goes into writing
an interface routine, the bridge between programming languages and the
ROM BIOS services. First, a word on how the ROM BIOS operates.
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The ROM BIOS Philosophy

All ROM BIOS services are invoked by interrupts. Each interrupt instruction
selects a particular entry in the interrupt vector table in low memory. The
addresses of all ROM BIOS service routines are stored in this table. This
design makes it possible for any program to request a service without know-
ing the specific memory location of the ROM BIOS service routine. It also
allows the services to be moved around, expanded, or adapted without
affecting the programs that use the services. Although IBM has tried to
maintain the absolute memory location of some parts of the ROM BIOS, it
would be foolish to use these addresses because they may change in the
future. The standard, preferred, and most reliable way to invoke a ROM
BIOS service is to use its interrupt rather than its absolute address.

The ROM BIOS services could be supervised by one master interrupt,
but instead they are divided into subject categories, each with its own con-
trolling interrupt. This design lets each interrupt handler be easily replaced.
For example, if a hardware manufacturer created a radically different video
display that operated under a completely new ROM BIOS program, the manu-
facturer could provide the new ROM BIOS program along with the hardware.
The new ROM BIOS program might be stored in RAM, and it would replace
the one part of IBM’s ROM BIOS that was used with the old hardware. By
making the ROM BIOS modular, IBM has made it easier to improve and ex-
tend the capabilities of its computers.

The ROM BIOS Service Interrupts

The twelve ROM BIOS interrupts fall into five groups (Figure 8-1):
e Six interrupts serve specific peripheral devices.
e Two interrupts report on the computer’s equipment.
e One interrupt works with the time/date clock.
e One interrupt performs the print-screen operation.

e Two interrupts place the computer into another state altogether,
activating ROM BASIC and the system start-up routine.

As you’ll see, most of the interrupts are tied to a group of subservices
that actually do the work. For example, the video service interrupt 10H
(decimal 16) has 25 subservices that do everything from setting the video
mode to changing the size of the cursor. You call a subservice by invoking
its governing interrupt and specifying the subservice number in register
AH. This process is explained in the example at the end of this chapter.
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Interrupt
Hex Dec Use
Peripheral Devices Services
10H 16 Video-display services (see Chapter 9)
13H 19 Diskette services (see Chapter 10)
14H 20 Communications services (see Chapter 12)
15H 21 System services (see Chapter 12)
16H 22 Standard keyboard services (see Chapter 11)
17H 23 Printer services (see Chapter 12)
Equipment Status Services
11H 17 Equipment-list service (see Chapter 12)
12H 18 Memory-size service (see Chapter 12)
Time/Date Service
1AH 26 Time and date services (see Chapter 12)
Print-Screen Service
SH 5 Print-screen service (see Chapter 12)
Special Services
18H 24 Activate ROM BASIC (see Chapter 12)
19H 25 Activate bootstrap start-up routine (see Chapter 12)

Figure 8-1. The 12 ROM BIOS services.

ROM BIOS Service Operating Characteristics

The ROM BIOS services use some common calling conventions that provide
consistency in the use of registers, flags, the stack, and memory. We’ll
outline the characteristics of these operating conventions, beginning with
the segment registers.

The code segment register (CS) is automatically reserved, loaded, and
restored as part of the interrupt process. Consequently, you don’t have to
worry about your program’s CS. The DS and ES registers are preserved by
the ROM BIOS service routines, except in the few cases where they are ex-
plicitly used. The stack segment register (SS) is left unchanged, and the ROM
BIOS services depend on you to provide a working stack. (Everything
depends on a working stack!)
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The stack requirements of the ROM BIOS services are not spelled out
and can vary considerably, particularly because some services invoke other
services. Generally, however, most programs ought to be working with a
much larger stack than the ROM BIOS services need.

The ROM BIOS varies in its usage of the other 8086 registers. The
instruction pointer (IP) is preserved by the same mechanism that preserves
the code segment. In effect, the stack pointer (SP) is preserved because all
the ROM BIOS services leave the stack clean, popping off anything that was
pushed on during the service-routine execution.

As usual, the general-purpose registers, AX through DX, are con-
sidered fair game. The standard rule is not to expect any contents of these
registers to be maintained when you pass control to another routine, and
that applies to the ROM BIOS services as well. If you closely inspect the cod-
ing of the services in the IBM technical reference manuals, you will find
that one or more registers are left undisturbed in one service or another, but
you would be foolish to try to take advantage of this. As a general rule,
when a simple result is returned from a subroutine, it is left in the AX regis-
ter; this applies to both the ROM BIOS and to all programming languages.
We’ll see how often this really happens when we cover the ROM BIOS
services in detail.

The index registers (SI and DI) can be changed, exactly like the AX
through DX registers. The stack frame register (BP) can also be changed by a
few ROM BIOS service routines.

The various flags in the flag register are routinely changed as a by-
product of the instruction steps in the ROM BIOS routines. You should not
expect any of them to be preserved. In a few instances, the carry flag (CF)
or the zero flag (ZF) is used to signal the overall success or failure of a
requested operation.

These details are important but rather tedious, and there is little
reason for you to pay much attention to them. If your programs follow the
general interface rules given in the next section, and if they follow the spe-
cific requirements of your programming language (covered in Chapters 19
and 20), you may not need to be concerned with them at all.

Q NOTE: If you set out to use the ROM BIOS services in your pro-
grams, you’ll naturally be concerned about the possible conflicts
between the services and the operating conventions that your lan-
guage follows. Put your mind at ease. You will find that you do not
have to take any extraordinary precautions to protect your pro-
gramming language from the ROM BIOS, or vice versa.
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Creating an Assembly-Language Interface
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In order to make direct use of the ROM BIOS services from your programs,
you generally need to create an assembly-language interface routine to link
the programming language to the ROM BIOS. When we say ‘‘interface
routine,”” we are referring to the conventional program-development sub-
routines — subroutines that are assembled into object modules (.OBJ files)
and then linked into working programs (.EXE or .COM files in DOS). For
more on this subject, see Chapter 19.

Working with assembly language can seem a fearsome task if you are
not already comfortable with it. While there are plenty of good reasons to
be intimidated by assembly language — after all, it is the most difficult and
demanding kind of programming —it’s really not that difficult to create an
assembly-language interface routine.
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To create your own interfaces, you will need to have an assembler that is
compatible with the DOS standards for object files. All the examples we
give here are for the Microsoft Macro Assembler.

Q NOTE: Interpreted BASIC can work with machine-language
subroutines put directly into memory. Preparing the sort of
assembler subroutine that will work with BASIC can be done as
easily with DEBUG's A (assemble) command as it can with an
ordinary assembler. See Chapter 20 for more on this subject.

The Basic Form of an Interface Routine
An interface routine’s form varies with its intended use. An assembly-
language interface is a handshaker between your programming language

- Function

Dmde error
Single-step

8028680386
~ 80286,80386
- 80286,80386
80286,80386
80386 '
80386

80386 -
80286,8038¢
80386
'80286,80386

 Coprocessor segment over

~ Invalid task-state segment -
Segment not present.
_ Stack fault
‘General prote
Page fault ,
- Coprocessor error:
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and a ROM BIOS service, so it has to be tailored to meet the needs of both
ends. It matters which programming language is being used; it matters
which ROM BIOS service is being invoked; and it matters whether any data
is being passed in one direction or the other. However, the general outline
of an assembly-language interface is basically the same, no matter what you
are doing.

One of the best ways to understand how an assembly-language inter-
face is coded is to view it as five nested parts, which are outlined here:

Level 1: General assembler overhead
Level 2: Subroutine assembler overhead
Level 3: Entry code
Level 4: Get parameter data from caller
Level 5: Invoke ROM BIOS service
Level 4: Pass back results to caller
Level 3: Exit code
Level 2: Finish subroutine assembler overhead
Level 1: Finish general assembler overhead

In this outline, Levels 1 and 2 tell the assembler what’s going on, but don’t
produce any working instructions. Levels 3 through 5 produce the actual
machine-language instructions.

We’ll examine each of these levels to show you the rules and explain
what’s going on. Don’t forget that the specific requirements of an interface
routine change for different circumstances. We’ll point out the few design
elements that are universal to all routines.

Here is a simple ROM BIOS interface routine. It’s designed to be called
from a C program, but the elements of the interface design are the same
whether you use this routine as is or adapt it to another programming
language.

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT
PUBLIC _GetMemSize
_GetMemSize PROC near
push bp
mov bp,sp
int 12H

(continued)
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pop bp
ret

_GetMemSize ENDP

_TEXT ENDS
END

In the next few pages we’ll examine the construction of this routine.

Level 1: General assembler overhead
Here is an outline of a typical Level-1 section of an interface routine, with
the lines numbered for reference:

1-1 _TEXT SEGMENT byte public 'CODE’
1-2 ASSUME cs:_TEXT

(Levels 2 through 5 appear here)

1-3  _TEXT ENDS
1-4 END

Line 1-1 is a SEGMENT directive that declares the name of a logical
grouping of executable machine instructions and informs the assembler
(and any person who reads the source code) that what follows consists of
executable code. Line 1-2, the ASSUME directive, tells the assembler to
associate the CS register with any address labels in the _TEXT segment.
This makes sense because the CS register is used by the 8086 to address
executable code.

Line 1-3 ends the segment started in line 1-1, and line 1-4 marks the
end of the source code for this routine.

The names _TEXT and CODE conform to the conventions used by
virtually all C language compilers for PCs and PS/2s, as do the BYTE and
PUBLIC attributes. Alternative names and attributes are available to
advanced programmers, but for now we’ll stick with the simplest.

Level 2: Subroutine assembler overhead

Next, let’s look at an outline of a typical Level 2, the assembler overhead for
a subroutine (called a procedure in assembler parlance). The sample on the
following page shows some typical Level-2 coding.
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2-1 PUBLIC  _GetMemSize
2-2 _GetMemSize PROC near

(Levels 3 through 5 appear here)
2-3 _GetMemSize ENDP

Line 2-1 instructs the assembler to make the name of the procedure,
_GetMemSize, public information, which means that the link program can
then connect it to other routines that refer to it by name.

Lines 2-2 and 2-3 bracket the procedure, named _GetMemSize. PROC
and ENDP are mandatory and surround any procedure, with PROC defining
the beginning of the procedure and ENDP signaling the end of it. Again, the
near attribute on the PROC statement follows the conventions established for
linking assembly-language routines to C programs. In more advanced C
programs and in routines linked with programs written in languages like
FORTRAN and BASIC, you must sometimes use a different attribute, far.
(More about this in Chapter 20.)

Level 3: Entry and exit code

Levels 3, 4, and 5 contain actual executable instructions. In Level 3, the
assembly-language routine handles the housekeeping overhead required if a
subroutine is to work cooperatively with the calling program. The key to
this cooperation is the stack.

When the calling program transfers control to the subroutine, it does
so by means of a CALL instruction. (In this example, the instruction would
be CALL _GetMemSize.) When this instruction executes, the 8086 pushes a
return address —the address of the instruction following the CALL — onto
the stack. Later, the assembly-language routine can return control to the
calling program by executing a RET instruction, which pops the return
address off the stack and transfers control to the instruction at that address.

If any parameters are to be passed to the assembly-language routine,
the calling program pushes them onto the stack before it executes the CALL
instruction. Thus, when the routine gets control, the value on top of the
stack is the return address, and any parameters are found on the stack below
the return address. If you keep in mind that the stack grows from higher to
lower addresses and that each value on the stack is 2 bytes in size, you end
up with the situation depicted in Figure 8-3.

To access the parameters on the stack, most compilers and assembly-
language programmers copy the value in SP into register BP. In this way the
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values on the stack can be accessed even within a routine that changes SP by
pushing parameters or calling a subroutine. The conventional way of doing
this is shown by the code on the next page.

3-1 push bp ; preserve the current contents of BP
3-2 mov bp,sp ; copy SP to BP
(Levels 4 and 5 appear here)
3-3 pop bp
3-4 ret

After lines 3-1 and 3-2 have executed, the stack is addressable as in
Figure 8-4. (In a moment, we’ll show how useful this is.) When it’s time to
return control to the calling program, the routine restores the caller’s BP
register value (line 3-3) and then executes a RET instruction (line 3-4).

Bottom of stack
Higher addresses T
Parameter
< SP+4
Parameter
< SP+2
Return address
Lower addresses < SP

Figure 8-3. The stack at the time a subroutine is called.

Bottom of stack
Parameter
< BP+6
Parameter
< BP+4
Return address
< BP+2
Caller's BP
< BP

Figure 8-4. The stack after register BP is initialized.
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If you think about it, you’ll realize that things could be more
complicated. For example, a calling program might use either a near or a far
CALL instruction to transfer control to a subroutine. If your program uses
far subroutine calls by convention (instead of the near calls used by default
in C), the PROC directive (Line 2-2) would require the far attribute instead
of near. This would instruct the assembler to generate a far RET instruction
instead of a near RET.

Furthermore, with a far calling convention, the return address on the
stack would be 4 bytes in size instead of 2 bytes, so the first parameter
would be at address [BP + 6] instead of [BP + 4] as shown in Figure 8-4. In
this book, however, we’ll stick to the most straightforward case: near PROCs
and 2-byte return addresses.

Level 4: Get parameter data from caller

Level 4 deals with the parameters by passing them from the caller to the
ROM BIOS, and with the results by passing them from the ROM BIOS to
the caller. (Note, however, that the sample program contains no parameters
from the caller.) The caller’s parameters are on the stack, either in the form
of data or addresses. (See Chapter 20 for help with this.) The registers,
mostly AX through DX, are used for ROM BIOS input and output. The trick
here —and it can be tricky —is to use the correct stack offsets to find the
parameters. We’ll sneak up on this problem in stages.

First, you get to the parameters on the stack by addressing relative to
the address stored in BP in lines 3-1 and 3-2. (Refer to Figure 8-2 to
determine how items on the stack relate to the value in BP.) When more
than one parameter is present on the stack, you must decide which
parameter is which. Most languages push their parameters onto the stack in
the order they are written. This means that the last parameter is the one
closest to the top of the stack, at [BP + 4]. However, C uses the reverse order,
so that the parameter at [BP + 4] is the first one written in the calling
program,

Parameters normally take up 2 or 4 bytes on the stack, although 2
bytes is more common. If any of these parameters were 4 bytes in size, you
would need to adjust the subsequent references accordingly.

If data were placed on the stack, then you could get it immediately by
addressing it like this: [BP + 4]. If an address were placed on the stack, two
steps would be needed: First, you would get the address, and second, you
would use the address to get the data. A Level-4 example showing both data
([BP +4]) and address ([BP + 6]) retrieval follows on the next page.
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4-1 mov ax, [bp+4] ; value of parameterl
4-2 mov bx, [bp+6] ; address of parameter2
4-3 mov dx, [bx] ; value of parameter2
(Level 5 appears here)
4-4 mov bx, [bp+6] ; address of parameter2 (again)
4-5 mov [bx],dx ; store new value at parameter2 address

All of these MOV instructions move data from the second operand to
the first operand. Line 4-1 grabs data right off the stack and slaps it into the
AX register. Lines 4-2 and 4-3 get data by means of an address on the stack:
Line 4-2 gets the address (parking it in BX), and then line 4-3 uses that
address to get to the actual data, which is moved into DX. Lines 4-4 and 4-5
reverse this process: Line 4-4 gets the address again, and then line 4-5
moves the contents of DX into that memory location.

Q NOTE: A crucial bit of assembler notation is demonstrated here:
BX refers to what's in BX, and [BX] refers to a memory location
whose address is in BX. A reference like [BP + 6] indicates a
memory location 6 bytes past the address stored in register BP.

While sorting out these references may not be a snap, if you think it
through carefully, it works out right.

Level 5: Invoke ROM BIOS service
Level 5 is our final step: It simply invokes the ROM BIOS service.

Once all registers contain appropriate values (usually passed from
the calling program and copied into registers by means of the stack), the
routine can transfer control to the ROM BIOS using an interrupt:

5-1 int 12h

In this example, this single INT instruction does all the work for you. The
ROM BIOS returns the computer’s memory size in register AX, where C
expects the routine to leave it when the routine returns control to the calling
program. In other cases, you might need to leave a result elsewhere, as in
Lines 4-4 and 4-5, above.

Most ROM BIOS interrupts, however, provide access to several
different services. In such cases, you must specify a service number in
register AH before you execute the interrupt. For example, to access the
first video service, you would execute the commands on the following page.
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mov ah,0 ; AH=service number 0
int 10h ; ROMBIOS video services interrupt

This five-step process outlines the basic principles of nearly all
aspects of an assembly-language interface. In the following chapters, you’ll
see how this design is used in specific examples.

Advanced BIOS Interface

168

To conclude this chapter we’d like to mention the alternative BIOS interface
that IBM introduced in the PS/2 models 50, 60, and 80. This Advanced BIOS
(ABIOS) interface addresses some of the major design shortcomlngs of the
interrupt-based interface described in this chapter.

The traditional, interrupt-based ROM BIOS interface is limited in two
important ways:

e It cannot be used in protected mode in a PS/2 Model 50, 60, or 80.

e It provides poor support for multitasking, so an operating system
that offers multitasking cannot rely on the traditional ROM BIOS
interface.

IBM’s solution to these problems is the Advanced BIOS interface in the
PS/2 models 50, 60, and 80. Through the Advanced BIOS interface, BIOS ser-
vices are accessed through a set of address tables and common data areas
designed for use in protected mode as well as with a multitasking operating
system. However, the complexity of the Advanced BIOS interface makes it
better suited to supporting an operating system than to supporting applica-
tions programs. Unless you’re writing a protected-mode, multitasking
operating system, we recommend that you keep using the traditional ROM
BIOS interface that is common to all computers in the PC family.
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In this chapter, we will discuss each of the video, or screen-control, services
provided by the ROM BIOS. We have devoted most of the chapter to detailed
descriptions of each video service. Beginning on page 194, we have in-
cluded some programming hints and an assembly-language routine that
makes use of some of the video services. For a more general discussion of
video hardware in the PC family, see Chapter 4. For information on low-
memory locations used by the ROM BIOS for video status information, turn
to page 54.

Accessing the ROM BIOS Video Services

The ROM BIOS video services are all requested by generating interrupt 10H
(decimal 16). There are 25 principal services available under this interrupt.
(See Figure 9-1.) Like all other ROM BIOS services, the video services are
numbered from 00H and are selected by placing the service number in the
AH register. The services usually require you to specify additional parame-
ters in register AL, BX, CX, or DX. We’ll cover the purpose and placement of
the parameters under each service description.

Service
Hex Dec Description
00H 0 Set Video Mode.
Ol1H 1 Set Cursor Size.
02H 2 Set Cursor Position.
03H 3 Read Cursor Position.
04H 4 Read Light-Pen Position.
05H 5 Set Active Display Page.
06H 6 Scroll Window Up.
07H 7 Scroll Window Down.
08H 8 Read Character and Attribute.
09H 9 Write Character and Attribute.
O0AH 10 Write Character.
OBH 11 Set 4-Color Palette.
O0CH 12 Write Pixel.
ODH 13 Read Pixel.
OEH 14 Write Character in Teletype Mode.
OFH 15 Get Current Video Mode.
10H 16 Color Palette Interface.
Figure 9-1. The 25 video services. (continued)

171



PROGRAMMER’S GUIDE TO THE IBM PC AND PS/2

Figure 9-1. continued

Service
Hex Dec Description
11H 17 Character Generator Interface.
12H 18 ‘“Alternate Select.”’
13H 19 Write Character String.
14H 20 (PC convertible only)
15H 21 (PC convertible only)
1AH 26 Read/Write Display Combination Code.
1BH 27 Return Functionality/State Information.
ICH 28 Save/Restore Video State.

Service 00H (decimal 0): Set Video Mode

172

Service 00H (decimal 0) is used to configure your video subsystem into one
of the 20 video modes listed in Figure 9-2. For details of the video modes,
see page 72.

You may recall from our discussion in Chapter 4 that modes 00H
through 06H apply to the standard Color Graphics Adapter; mode 07H
applies to the Monochrome Display Adapter; modes ODH through 10H were
added for the Enhanced Graphics Adapter; and modes 11H through 13H

Mode Type Resolution Colors Video Subsystem

00H, 01H Text 40x25 16 CGA, EGA, MCGA, VGA
02H, 03H Text 80 x 25 16 CGA, EGA, MCGA, VGA
04H, 05H Graphics  320x200 4 CGA, EGA, MCGA, VGA
06H Graphics  640x200 2 CGA, EGA, MCGA, VGA
07H Text 80x25 Mono MDA, EGA, VGA

08H, 09H, 0AH (PCjr only)

0BH,0CH (used internally by EGA BIOS)
ODH Graphics 320 x 200 16 EGA,VGA

OEH Graphics 640x200 16 EGA,VGA

OFH Graphics 640x350 Mono EGA,VGA

10H Graphics 640x350 16 EGA,VGA

11H Graphics 640x480 2 MCGA,VGA

12H Graphics 640x480 16 VGA

13H Graphics  320x200 256 MCGA,VGA

Figure 9-2. Video modes available through ROM BIOS video service 00H.
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were introduced with the Multi-Color Graphics Array (PS/2 models 25 and
30) and Video Graphics Array (PS/2 models 50, 60, and 80).

Normally, the ROM BIOS clears the screen memory buffer when the
mode is set, even if it is set to the same mode again and again. In fact, reset-
ting the same video mode can be an easy way to clear the screen. In some
versions of DOS, in fact, the DOS command CLS clears the screen this way.
Setting the video mode also sets the color palette to default color values,
however, so don’t rely on service 00H to clear the screen if you’'re working
with colors; use video service 06H instead.

On the EGA, MCGA, and VGA, you can also tell the ROM BIOS not to
clear the screen when it sets up the video mode. Do this by adding 80H
(decimal 128) to the video mode number you specify in AL. For example, to
change to 640 X 200, 2-color mode without clearing the screen, call service
00H with AL = 86H. Use this feature with caution, though. Displayable video
data is formatted differently in different modes, so a screenful of useful data
in one video mode may become unintelligible when you switch to another
mode without clearing the screen.

See Chapter 4, page 72 for more on video modes. See page 58, memory
location 0040:0049H, for more on how a record of the mode is stored in
memory. See service OFH (decimal 15) to find out how to determine the
current video mode.

Service 01H (decimal 1): Set Cursor Size

Service 01H (decimal 1) controls the form and size of the blinking cursor
that appears in text modes. The default cursor appears as one or two
blinking scan lines at the bottom of a character display position. You can
change the default cursor size by redefining the number of lines that are
displayed.

The Color Graphics Adapter (CGA) can display a cursor that has 8
scan lines, numbered from 0 at the top to 7 at the bottom. The Monochrome
Display Adapter (MDA) and the EGA can display a cursor that has 14 scan
lines, also numbered from the top, from 0 through 13. Both the MCGA and
the VGA have default text characters that are 16 scan lines high, so the maxi-
munm size of the text cursor in default PS/2 text modes is 16 scan lines. You
set the cursor size by specifying the starting and ending scan lines. (These
are the same as the start and stop parameters of BASIC’s LOCATE state-
ment.) The start line number is loaded into the CH register and the stop line
number into the CL register. Default cursor settings are CH = 6, CL = 7 for
the CGA, CH = 11, CL = 12 for the MDA and EGA, and CH = 13, CH = 14 for
the MCGA and VGA.
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You will notice that the valid scan line numbers occupy only four of
the bits (bits 0 through 3) placed in these registers. If bit 5 of CH is set on by
specifying a value of 20H (decimal 32), the cursor will disappear. This is
one of two techniques that you can use to remove the cursor in the text
modes. The other technique is to actually move it off the screen, say to row
26, column 1. When a graphics mode is set, bit 5 is automatically set to keep
the cursor from being displayed. Because there is no true cursor in the
graphics modes, you must simulate one with the solid-block character, DFH
(decimal 223), or with a change of background attributes.

Service 02H (decimal 2): Set Cursor Position

Service 02H (decimal 2) sets the position of the cursor using row and col-
umn coordinates. In text modes, multiple display pages can exist, each one
having an independently recorded cursor position. Even though the
graphics modes have no visible cursor, they keep track of the logical cursor
position in the same way as the text modes. This logical cursor position is
used to control character 1/0.

The cursor position is specified by placing a row number in register
DH, a column number in DL, and a display page number in BH. The number-
ing for the rows and columns begins with coordinates 0,0 in the top left cor-
ner. The graphics modes also use the character row and column coordinates
to identify the cursor location, rather than pixel coordinates. The display
page number must be set to 0 in CGA-compatible graphics modes, although
the EGA and VGA both support multiple display pages in 16-color graphics
modes as well as in text modes.

See Figure 9-3 for a summary of register settings. See page 87 for
more on display pages. See service 03H for the reverse operation: Read

cursor position.
Service Number Parameters
AH =02H DH = row number

DL = column number
BH = page number

Figure 9-3. Registers values for setting the cursor position using service 02H.

174



Chapter 9: ROM BIOS Video Services

Service 03H (decimal 3): Read Cursor Position

Service 03H (decimal 3) is the opposite of services 01H and 02H. When you
specify the page number in BH, the ROM BIOS reports the cursor size by
returning the starting scan line in CH and the ending scan line in CL. In
addition, it reports the cursor position by returning the row in DH and the
column in DL. (See Figure 9-4.)

Service Number Returns

AH=03H BH = page number (set to 0 in graphics modes)
DH = row number
DL = column number
CH = starting scan line of cursor
CL = ending scan line of cursor

Figure 9-4. Values reported by video service 03H.

Service 04H (decimal 4): Read Light-Pen Position

Service 04H (decimal 4) reports the light-pen status on a CGA or EGA, spe-
cifically whether or not the pen has been triggered, and where it is on the
screen if it has been triggered.

Register AH is set to indicate triggering: If AH = 01H, the light pen has
been triggered; if AH = O0H, it has not been triggered. If the pen has been
triggered, the ROM BIOS determines the light pen’s character column and
pixel row (y-coordinate) from the video hardware. From these, the ROM
BIOS computes the character row and pixel column (x-coordinate). The
results are returned in regisfers BX, CX, and DX as shown in Figure 9-5.

Service Number Returns

AH =04H DH = character row number
DL = character column number

CH = pixel line number (CGA and EGA video modes 04H,
05H, and 06H)

CX = pixel line number (all other EGA video modes)
BX = pixel column number

Figure 9-5. Light-pen position values returned by service 04H.
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Service 0SH (decimal 5): Set Active Display Page

Service 05H (decimal 5) selects the active display page for text modes 0
through 3 and also for 16-color EGA and VGA graphics modes. You specify
the page number in register AL. (See Figure 9-6.) In text modes, page num-
bers range from 0 through 7. Don’t forget, however, that the CGA hardware
can display only four different 80-column pages, so CGA pages 4 through 7
overlap pages 0 through 3 when you’re in 80 X 25 text mode. On the EGA and
in the PS/2 video subsystems, you can also select among multiple display
pages in 16-color graphics modes.

Service Number Parameters

AH =05H AL = new display page number

Figure 9-6. The registers used to set the active display page using service O5H.

In all video modes, page 0 is used by default. Page 0 is located at the
beginning of display memory, with higher page numbers in higher memory
locations. See page 87 for more on display pages.

Service 06H (decimal 6): Scroll Window Up
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Service 06H (decimal 6) and companion service 07H are used to define a
rectangular window of text on the screen and to scroll the window’s con-
tents up or down one or more lines. To accomplish the scrolling effect,
blank lines are inserted at the bottom of the window area with service 06H
(at the top with service 07H) and the top lines of the window (the bottom
lines with service 07H) are scrolled off and disappear.

The number of lines to be scrolled is specified in AL. If AL = 00H, the
entire window is blanked. (The same thing would happen if you scrolled
more lines than the window size allowed.) The location or size of the win-
dow is specified in the CX and DX registers: CH is the top row, and DH is the
bottom row; CL is the left column, and DL is the right column. The display
attribute for the new blank lines inserted by the two services is taken
from BH. Figure 9-7 summarizes the register settings for both services 06H
and 07H.

When you fill a window with lines of text, you’ll discover that win-
dow scrolling is normally a two-stage process: When a new line is ready to
be written in the window, service 06H (or service 07H) scrolls the current
window contents. Then the new line is filled with text using the cursor-
positioning and character-writing services. The following example demon-
strates this window action.
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DEBUG ; invoke DEBUG from DOS utilities
A ; ask to assemble instructions
INT 10 ; create interrupt 10H instruction
[Return] ; finish assembling
R AX ; ask to see and change contents of AX
0603 ; specify service 06H (scroll up), using
; 3-Tine window
R CX ; ask to see and change contents of CX
050A ; specify top left corner: row 5, column 10
R DX ; ask to see and change contents of DX
1020 ; specify bottom right corner: row 16, column 32
DOL 180 ; fill screen with nonsense
G =100 102 ; execute INT 10H, then stop
Service Number Parameters
AH = 06H (scroll up) AL = number of lines to scroll
AH = 07H (scroll down) CH = row number of upper-left corner

CL = column number of upper-left corner
DH = row number of lower-right corner
DL = column number of lower-right corner
BH = display attribute for blank lines

Figure 9-7. Register values for scrolling using services 06H and 07H.

See Chapter 8 for more on assembly-language routines. See the /BM
DOS Technical Reference Manual for more on DEBUG.

Service 07H (decimal 7): Scroll Window Down

Service 07H (decimal 7) is, as we’ve already mentioned, the mirror image of
service 06H. The difference between the two services is the scrolling action.
In service 07H, the new blank lines appear at the top of the window and the
old lines disappear at the bottom. The opposite scrolling action takes place
in service 06H. See Figure 9-7 under service 06H for the register parameter
settings.

Service 08H (decimal 8): Read Character and Attribute

Service 08H (decimal 8) is used to read characters ‘‘off the screen,’’ that is,
directly out of the display memory. This service is unusually spiffy because
it works in both text and graphics modes.

In graphics modes, the same character-drawing tables used to write
characters are also used to recognize them by a pattern-matching operation.
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Even if you create your own character set in graphics mode, this service
will be able to recognize them. In text modes, of course, the ASCII character
codes are directly available in the display memory.

Service 08H returns the ASCII character code of the character in AL.
(See Figure 9-8.) In graphics modes, if the character doesn’t match any
characters in the graphics character set, the ROM BIOS returns ASCII code 0.
In text modes, the service also returns the character’s color attributes in AH.
Remember to specify a display page number in BH when you call this

service.
Service Number . Parameters Returns
AH=08H BH = active display AL = ASCII character read
page number from cursor location
AH = attribute of text character
(text modes only)

Figure 9-8. The registers used to read a character and attribute with service 08H.

See page 82 for more on text characters and attribute bytes. See page
89 for more on text- and graphics-mode characters. See Appendix C for
more on ASCII characters.

Service 09H (decimal 9): Write Character and Attribute

Service 09H (decimal 9) writes one or more copies of a single character and
its color attribute. The character is specified in AL, and the text-mode at-
tribute or graphics-mode color is specified in BL. The number of times the
character is to be written (one or more times) is placed in CX, and BH con-
tains the display page number. (See Figure 9-9.)

Service Number Parameters

AH =09H AL = ASCII character to write to screen

BL = attribute value (text modes) or foreground color
(graphics modes)

BH = background color (video mode 13H only) or display
page number (all other modes)

CX = number of times to write character and attribute

Figure 9-9. The registers used to write a text character and attribute using service 09H.
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The ROM BIOS writes the character and its color attributes as many
times as requested, starting at the current cursor location. Although the cur-
sor is not moved, duplicate characters are written at subsequent screen loca-
tions. In text mode, the duplicated characters will successfully wrap around
from line to line, which increases the usefulness of this service. In graphics
mode, the characters will not wrap around.

Service 09H is quite useful both for writing individual characters and
for replicating a character. The repeat operation is most often used to
rapidly lay out blanks or other repeated characters, such as the horizontal
lines that are part of box drawings. (See Appendix C.) When you want to
make a single copy of the character, be sure to set the count in CX to 1. If
it’s set to 0, the number of repetitions will be a lot more than you want.

Service 09H has an advantage over the similar service OEH, in that you
can control the color attributes. However, its one disadvantage is that the
cursor is not automatically advanced.

In graphics modes, the value specified in BL is the foreground
color—the color of the pixels that make up the character drawing. Nor-
mally the ROM BIOS displays the character with the specified foreground
color on a black background. If, however, you set bit 7 of the color value in
BL to 1, then the ROM BIOS creates the character’s new foreground color by
using an exclusive OR operation (XOR) to combine each of the previous
foreground pixels with the value in BL. The same feature also applies to the
character and pixel writing services, services 0AH and 0CH.

Here’s an example of what can happen when the ROM BIOS uses the
XOR operation to display a character. Imagine you’re in 320 X 200, 4-color
graphics mode and the screen is completely filled with white pixels. If you
now write a white character in the usual way, with a color value of 03H
(white) in register BL, the ROM BIOS displays a white character on a black
background. If, however, you write the same character with a color value of
83H (bit 7 set to 1), the ROM BIOS uses XOR to display a black character on a
white background.

See page 82 for more on display attributes in text modes. See page 84
for more on color attributes in graphics modes.

Service 0AH (decimal 10): Write Character

Service 0AH (decimal 10) is the same as service 09H (write character and at-
tribute to cursor location) with one exception: Service 09H lets you change
the existing screen color attribute in text mode but service 0AH does not.
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However, in graphics mode you must still specify a color in BL (see
Figure 9-10), which makes the description of this service as only a character-
writing service partly incorrect. Service 0AH has the same graphics color
rules as services 09H and 0CH: The color can be used directly or used with
XOR and the existing color. (See service 09H for an explanation.)

See page 82 for more on display attributes in text modes. See page 84
for more on color attributes in graphics modes.

Service Number Parameters

AH=0AH AL = ASCII character to write to screen
BL = foreground color (graphics modes only)

BH = background color (video mode 13H only) or display
page number (all other modes)

CX = number of times to write character

Figure 9-10. The registers used to write a character using service OAH.

Service 0BH (decimal 11): Set 4-Color Palette
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Service 0BH (decimal 11) actually consists of two subservices. You select ei-
ther subservice 00H or subservice 01H by storing the proper value in register
BH. (See Figure 9-11.) Subservice 00H lets you set the border color in CGA
alphanumeric modes or the background color in CGA 320 X 200, 4-color
graphics mode. You designate the border color in BL with a value between
00H and OFH.

Subservice 01H lets you select one of the two 4-color palettes used in
320 X 200, 4-color mode. The value in BL specifies which of the two hard-
ware palettes to use. A value of 0 designates the red-green-brown palette,
and a value of 1 selects the cyan-magenta-white palette. (See page 77 for
more on color palettes.)

This service was designed primarily for use with the CGA. Use service
10H to control colors in other video modes on the EGA, MCGA, and VGA.

Service Number Subservice Number Parameters
AH =0BH BH =00H BL = border or background color
BH=01H BL = palette number (0 or 1)

Figure 9-11. Color control in CGA-compatible video modes using service OBH.
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Service 0CH (decimal 12): Write Pixel

Service 0CH (decimal 12) writes an individual pixel. You specify the pixel’s
location on the screen by passing its column (x-coordinate) in register CX
and its row (y-coordinate) in DX. Remember that pixel rows and columns
are not the same as the character row and column you use in other services
to locate the cursor or to display a character. Pixel coordinates correspond
to individual dots, not to characters.

If you’re using a graphics mode that supports multiple display pages,
be sure to specify the display page number in register BH. (See Figure 9-12.)
Also, when you specify the pixel’s color in register AL, you have the option
of setting bit 7 of the color value to 1. As in service 09H, this tells the BIOS
to display the pixel with an XORed color value. (See service 09H for an
explanation.)

Service Number Parameters

AH=0CH AL = pixel color
BH = display page number
DX = row number of pixel
CX = column number of pixel

Figure 9-12. The registers used to write a pixel using service OCH.

See page 91 for more on pixels in graphics modes.

Service 0DH (decimal 13): Read Pixel

Service ODH (decimal 13) is the reverse of service OCH: It reads a pixel’s
color value rather than writing it. A pixel has only a single color attribute,
which is returned through service ODH. (The read-character service 08H
returns both a color and an ASCII character code.) The row is specified in
DX, the column in CX, and the display page in BH. The pixel color value is
returned in AL. (See Figure 9-13.) All high-order bits of the value returned
in AL are set to 0, as you would expect.

Service Number Parameters Returns

AH =0DH BH = display page number AL = pixel color value
DX = row number of pixel
CX = column number of pixel

Figure 9-13. The registers used to read a pixel using service ODH.
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Service OEH (decimal 14): Write Character in Teletype Mode

Service OEH (decimal 14) is the workhorse service of conventional character
output. It writes individual characters to the screen in what is known as
teletype (TTY) mode. This makes the screen act as the simplest and crudest
form of printer—exactly what is needed for routine text output. As such,
this service has no regard for such niceties as color, blinking characters, or
control over the cursor location.

With this service, the character is written at the current cursor loca-
tion and the cursor is advanced one position, wrapping to new lines or
scrolling the screen as needed. The character to be written is specified in
register AL.

In text modes, the character is displayed as in service 0AH; that is,
with the color attributes already in use at the screen location where the char-
acter is written. In graphics modes, however, you must also specify the
foreground color value to be used for the character. (See Figure 9-14.)

There are four characters that service OEH reacts to according to their
ASCII meaning: 07H (decimal 7)—beep, 08H (decimal 8) — backspace, 0AH
(decimal 10)—line feed, and ODH (decimal 13) —carriage return. All other
characters are displayed normally.

The primary advantage of this service over service 09H is that the
cursor is automatically moved; the advantage of service 09H is that you can
control the color attribute. Now, if you could only combine the two....

Service Number Parameters

AH =0EH AL = ASCII character to write
BL = foreground color (in graphics modes only)
BH = display page (IBM PC BIOS dated 10/19/81 or earlier)

Figure 9-14. The registers used to write a character in teletype mode using service OEH.

Service 0FH (decimal 15): Get Current Video Mode
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Service OFH (decimal 15) returns the current video mode and two other use-
ful pieces of information: the screen width in characters (80 or 40) and the
display page number.

The video mode number, as explained under service 00H, is returned
in AL. The screen width is returned in AH as a number of characters per
line. The display page number will be returned in BH. (See Figure 9-15.)
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Service Number

Returns

AH =0FH

AL = current display mode
AH = number of characters per line
BH = active display page

Figure 9-15. Information returned by service OFH.

See page 72 for more on video modes. See page 58, memory location
0040:0049H, for more on how a record of the mode is kept.

Service 10H (decimal 16): Color Palette Interface

Service 10H (decimal 16) was introduced with the PCjr and carried forward
in the EGA and PS/2 ROM BIOS. It consists of a set of subservices (Figure
9-16) that let you control palette colors, blinking, and (on the MCGA and
VGA) the video DAC. Be aware that different subservices are supported with
different hardware. Before you use these subservices in a program, be sure
your program ‘‘knows’’ which subsystem it’s running on. (Video service
1AH can provide this information to a program.)

Subservice Number  Description

AL =00H Update a specified palette register.

AL =01H Specify the border color.

AL =02H Update all 16 palette registers plus border.
AL =03H Select background intensity or blink attribute.
AL =07H Read a specified palette register.

AL =08H Read the border color register.

AL =09H Read all 16 palette registers plus border.

AL = 10H Update a specified video DAC color register.
AL =12H Update a block of video DAC color registers.
AL =13H Set video DAC color paging.

AL = 15H Read a specified video DAC color register.
AL =17H Read a block of video DAC color registers.
AL =1AH Get video DAC color paging status.

AL =1BH Gray-scale a block of video DAC color registers

Figure 9-16. Subservices available through video BIOS service 10H.
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Subservice 00H (decimal 0) updates one of the 16 palette registers on
an EGA or VGA. You specify the palette register number in BL and a new
palette register value in BH when you call this subservice. The VGA BIOS
also supports subservice 07H (decimal 7), which performs the complemen-
tary operation: When you call subservice 07H with a palette register number
in BL, the ROM BIOS returns that palette register’s current contents in BH.
(Subservice 07H isn’t available in the EGA BIOS because the EGA has write-
only palette registers.)

Subservice 01H (decimal 1) sets the border color on an EGA or VGA.
You pass the color value to the BIOS in register BH when you call this sub-
service. The VGA BIOS supports subservice 08H, which returns the current
border color value in BH, but again this complementary subservice isn’t
available on the EGA.

Here are two tips about setting the border color on an EGA or VGA.
First, in most EGA video modes the border area is very small, and selecting
any border color other than black results in a narrow, smeared border. On
the VGA, the border is better. Second, if compatibility with the CGA is im-
portant, remember that you can also use video service OBH (page 180) to set
the border color.

Subservice 02H (decimal 2) updates all 16 palette registers, plus the
border color, with a single ROM BIOS call. Before you call subservice 02H,
you must store all 16 palette register values plus the border color value in a
17-byte table. You then pass the address (segment and offset) of this table to
the BIOS in registers ES and DX when you call this subservice. The VGA also
provides a subservice that lets you read the palette registers back into a ta-
ble: When you call subservice 09H (decimal 9) with ES:DX pointing to a 17-
byte table, the ROM BIOS fills the table with the 16 current palette register
values and the border color.

Subservice 03H (decimal 3) lets you selectively enable or disable the
blinking attribute. The ROM BIOS uses blinking by default, but if you prefer
to have a full range of 16 background colors instead of only 8, you can use
subservice 03H to disable blinking. The value you pass in register BL deter-
mines whether blinking is enabled (BL = 01H) or disabled (BL = 00H).

Subservices 10H (decimal 16) and 15H (decimal 21) are supported
only by the MCGA and VGA BIOS. These two subservices give you direct ac-
cess to one of the 256 color registers in the video digital to analog convertor
(DAC). To update a video DAC color register, call subservice 10H with the
color register number in BX and 6-bit red, green, and blue color values in
registers DH, CH, and CL. To read a specified color register, place the color
register number in BX and use subservice 15H, which returns the RGB values
in DH, CH, and CL.
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The related subservices 12H (decimal 18) and 17H (decimal 23) oper-
ate on a block of video DAC color registers instead of only one. To use sub-
service 12H, create a table of 3-byte red-green-blue values. Then place the
segment-offset address of the table in ES and DX, the first color register
number to update in BX, and the number of registers to update in CX. When
you call subservice 12H, the ROM BIOS stores each red-green-blue value in
turn into the block of color registers you specified in BX and CX.

The complementary subservice 17H requires you to pass the address of
a table in ES:DX, along with a starting register number in BX and a register
count in CX. The ROM BIOS fills the table with the red-green-blue values it
reads from the block of color registers you specified.

On the VGA, which has both palette registers and video DAC color
registers, you can use subservices 13H (decimal 19) and 1AH (decimal 26) to
switch rapidly between different palettes. By default, the ROM BIOS con-
figures the VGA hardware so that color decoding is the same as on the EGA:
Each of the 16 palette registers contains a 6-bit value that specifies one of
the first 64 video DAC registers, and these 64 color registers specify the 64
colors available in the EGA palette.

Subservice 13H lets you use the other three color pages, or groups of
64 video DAC color registers. (See Figure 9-17.) If you call subservice 13H
with BH = 01H and BL = 01H, for example, the BIOS configures the VGA
hardware to display colors from the second group of 64 color registers
(color page 1). To use the first group (color page 0) again, you could call the
same subservice with BH = 00H and BL = 01H. If, for example, you used the
default, EGA-compatible colors in color page 0, and their gray-scale equiva-
lents in color page 1, you could switch rapidly between the two with a single
call to subservice 13H.

If you need to switch rapidly between more than four palettes, you can
use subservice 13H with BH = 01H and BL = 00H to configure the VGA color
decoding hardware to use 4-bit palette register values instead of 6-bit

Parameters Description

BL = 00H BH =00H Use four 64-register pages. '
BH=01H Use sixteen 16-register pages.

BL =01H BH=n Color page number.

(n =00H-03H if using 64-register pages
n =00H-OFH if using 16-register pages)

Figure 9-17. Video DAC color paging with service 10H, subservice 13H.
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values. In this case, each palette register value can specify one of only 16
different video DAC registers. This makes 16 color pages available, each
comprising 16 color registers. You can select any of the 16 color pages using
subservice 13H with BL = 01H.

The VGA ROM BIOS supplements subservice 13H with a complemen-
tary function, subservice 1AH. This subservice returns the color page status
in BL (16- or 64-register color pages) and BH (current color page number).

With subservice 1BH (decimal 27) on the MCGA and VGA, you can
convert the color values in a block of consecutive video DAC color registers
to corresponding shades of gray. Call this subservice with BX containing
the number of the first video DAC register to convert, and with CX con-
taining the number of registers to update.

Service 11H (decimal 17): Character Generator Interface
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Service 11H (decimal 17) first appeared in the EGA ROM BIOS. The many
subservices available in service 11H were augmented and expanded in the
PS/2 ROM BIOS to provide full support for the new video subsystems (MCGA
and VGA) introduced with the PS/2s.

To make sense of the many service 11H subservices, it helps to con-
sider them in four groups (Figure 9-18):

e Subservices in the first group (subservices 00H through 04H)
change the character set used in text modes.

e Subservices in the second group (subservices 10H through 14H)
change the text-mode character set as well as the displayed height
of text-mode characters.

e Subservices in the third group (subservices 20H through 24H) up-
date graphics-mode character sets.

e The subservice in the fourth group (subservice 30H) returns infor-
mation about the character sets currently displayed and about the
character sets available to the ROM BIOS.

Subservices 00H (decimal 0), 01H (decimal 1), 02H (decimal 2) and
04H (decimal 4) all change the character set used to display text-mode char-
acters on the EGA, MCGA, or VGA. Subservices 01H, 02H, and 04H are the
easiest to use. You need specify only which available tables in character
generator RAM should contain the character set. Thus, for example, a call to
service 11H with AL = 02H and BL = 00H instructs the ROM BIOS to use its
8 X 8 characters in the first (default) table in character generator RAM.
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If you want to define your own characters you need to use subservice
00H, as follows: Place a table of the bit patterns that define the characters in
a buffer. Then call subservice 00H with the address of the table in ES:BP, the
number of characters in CX, the ASCII code of the first character in the table
in DX, and the number of bytes in each character’s bit pattern in BH.

Subservice 03H (decimal 3) lets you select among text-mode character
sets once they are loaded into character generator RAM. The EGA and MCGA
have four such tables; the VGA has eight. The value in BL specifies which
one or two of the tables is to be used to display text-mode characters. On the
EGA and MCGA, bits 0 and 1 of BL specify one table, and bits 2 and 3 specify
a second table. If the two bit fields specify the same table, that’s the table
that will be used for all text-mode characters.

Subservice Number  Description

Load a text-mode character set:

AL =00H Load a user-specified character set.

AL =01H Load the ROM BIOS 8 x 14 character set.

AL =02H Load the ROM BIOS 8 x 8 character set.

AL =03H Select displayed character set.

AL =04H Load the ROM BIOS 8 x 16 character set (MCGA VGA
only).

Load a text-mode character set and adjust the displayed character height:

AL = 10H Load a user-specified character set.

AL=11H Load the ROM BIOS 8 x 14 character set.

AL =12H Load the ROM BIOS 8 x 8 character set.

AL =14H Load the ROM BIOS 8 x 16 character set (MCGA, VGA
only).

Load a graphics-mode character set:

AL =20H Load a CGA-compatible, user-specified character set.

AL =21H Load a user-specified character set.

AL =22H Load the ROM BIOS 8 x 14 character set.

AL =23H Load the ROM BIOS 8 x 8 character set.

AL =24H Load the ROM BIOS 8 x 16 character set (MCGA, VGA
only).

Get character generator information:
AL =30H Get character generator information.

Figure 9-18. Subservices available through video BIOS service 11H.
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Subservices 10H (decimal 16), 11H (decimal 17), 12H (decimal 18), and
14H (decimal 20) are similar to subservices 00H, 01H, 02H, and 04H. The dif-
ference is that with these higher-numbered subservices, the ROM BIOS not
only loads a character set but also adjusts the displayed character height ap-
propriately. This difference is obvious if you compare the effect of execut-
ing subservice 02H and subservice 12H to load the ROM BIOS 8 X 8 character
set. With subservice 02H, the 8 X 8 characters are used without adjusting the
displayed character height, so if you’re in a default ROM BIOS text mode,
you’ll see 25 rows of characters. With subservice 12H, the ROM BIOS adjusts
the displayed character height so that in a default ROM BIOS text mode you
see 43 rows of characters on an EGA or 50 rows of characters on a VGA.

Subservices 20H through 24H (decimal 32 through decimal 36) are re-
lated to subservices 00H through 04H in that they also load character sets
into memory. However, this third group of subservices is designed for use
only in graphics modes. Subservice 20H loads a CGA-compatible set of 8 x 8
characters into RAM. To use subservice 20H, place a table containing the bit
patterns for ASCII characters 80H through FFH into memory, and pass the
address of this table to the ROM BIOS in registers ES:BP. Subservices 21H
through 24H are similar to subservices 00H, 01H, 02H, and 04H. Call them
with 00H in BL, the number of displayed character rows in DL, and (for sub-
service 21H) the number of bytes in each character’s bit pattern in CX.

Subservice 30H (decimal 48) returns several pieces of handy informa-
tion regarding the ROM BIOS character generator. This subservice reports
the height of the displayed character matrix in CX and the number of the
bottom character row in DL. For example, if you call subservice 30H in the
default EGA text mode (80 X 25), the BIOS returns 14 in CX and 24 in DL.

Parameter Returns

BH =00H CGA-compatible 8 x 8 graphics-mode characters
(contents of interrupt 1FH vector)

BH=01H Current graphics-mode characters (contents of
interrupt 43H vector)

BH =02H ROM BIOS 8 x 14 characters

BH =03H ROM BIOS 8 x 8 characters

BH = 04H Second half of ROM BIOS 8 x 8 character table

BH =05H ROM BIOS 9 x 14 alternate characters

BH = 06H ROM BIOS 8 x 16 characters (MCGA and VGA only)

BH =07H ROM BIOS 9 x 16 alternate characters (VGA only)

Figure 9-19. Character bit pattern table addresses returned in ES:BP by subservice 30H
of video ROM BIOS service 11H.
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Subservice 30H also returns the address of any of several bit pattern
tables for the default ROM BIOS character sets. The value you pass in BH
when you call this subservice determines which address the ROM BIOS
returns in ES:BP. (See Figure 9-19.)

Service 12H (decimal 18): ‘‘Alternate Select’’

Service 12H (decimal 18) made its debut along with service 11H in the EGA
BIOS. It, too, is supported in the ROM BIOS in all PC/2 video subsystems.
IBM’s name for this service derives from the purpose of one of the subser-
vices of service 12H, namely, to select an alternate print-screen routine for
the ROM BIOS Shift-PrtSc function. The name lingers on even though ser-
vice 12H has been expanded by adding a number of unrelated subservices.
(See Figure 9-20.)

Subservice Number  Description

BL = 10H Return video configuration information.

BL =20H Select alternate print-screen routine.

BL =30H Select scan lines for VGA text modes.

BL =31H Enable/disable default palette loading.

BL =32H Enable/disable CPU access to video RAM.
BL =33H Enable/disable gray-scale summing.

BL =34H Enable/disable ROM BIOS cursor emulation.
BL =35H PS/2 display switch interface.

BL =36H Enable/disable video refresh.

Figure 9-20. Subservices available through video BIOS service 12H.

Subservice 10H (decimal 16) reports on the configuration of an EGA or
VGA. The value returned in BH indicates whether the current video mode is
color (BH = 00H) or monochrome (BH = 01H). BL contains a number be-
tween 0 and 3 that represents the amount of RAM installed on an EGA (0
means 64 KB; 1 means 128 KB; 2 means 192 KB; 3 means 256 KB). The value
in CH reflects the status of input from the EGA feature connector, and CL
contains the settings of the EGA configuration switches.

Subservice 20H (decimal 32) is provided for the convenience of users
of the EGA or a VGA adapter. It replaces the motherboard ROM BIOS print-
screen routine with a more flexible routine in the adapter ROM BIOS. Unlike
the motherboard ROM BIOS routine, the adapter BIOS routine can print a
snapshot of a text-mode screen that has more than 25 rows of characters. In
PS/2s, of course, the motherboard routine can already do this, eliminating
the need for this subservice.
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Subservice 30H (decimal 48) lets you specify how many scan lines to
display in VGA text modes. The default ROM BIOS text modes contain 400
scan lines. When you call subservice 30H, the value you pass in register AL
can instruct the ROM BIOS to use a different vertical resolution: If AL = 00H,
ROM BIOS text modes will display 200 scan lines, as they do on a CGA. If AL
= 01H, text modes will display an EGA-compatible 350 scan lines. Finally,
when AL = 02H, the ROM BIOS uses its default resolution of 400 scan lines.

When you use subservice 30H, the vertical resolution does not change
until the next time a program uses video ROM BIOS service 00H to select a
text mode. Thus, changing the vertical resolution actually requires you to
make two different ROM BIOS calls: one to specify the resolution and
another to set up the text mode.

Subservice 31H (decimal 49) lets you enable or disable palette loading
when the ROM BIOS sets up a new MCGA or VGA video mode. Calling sub-
service 31H with AL = 01H disables palette loading, so you can subsequently
change video modes without changing the colors in a previously-loaded
palette. A call with AL = 00H enables default palette loading.

Subservices 32H (decimal 50) and 35H (decimal 53) are provided for
programmers who want to use two different video subsystems in the same
PS/2 computer. In particular, these routines support the use of a VGA
alongside the built-in MCGA subsystem in a PS/2 Model 30.

Subservice 32H enables or disables buffer and port addressing accord-
ing to the value passed in AL (AL = 00H means enable; AL = 01H means
disable). This feature is important if any addresses in the two video sub-
systems overlap: Before accessing one subsystem, you must disable
addressing in the other one.

Subservice 35H provides a complete switching interface that lets you
selectively access both an MCGA and a VGA in the same computer. This -
subservice relies on the function provided through subservice 32H to inde-
pendently enable and disable each video subsystem. See Chapter 13 and the
IBM BIOS Interface Technical Reference manual for details.

Subservice 33H (decimal 51) tells the ROM BIOS whether or not to
average colors to gray scales when it establishes a new video mode on an
MCGA or VGA. A call to this subservice with AL = 01H disables the gray-
scaling; a call with AL = 00H enables gray-scaling. You can also use this
subservice to force the ROM BIOS to use a gray-scale palette even if you’re
using a color monitor.

Subservice 34H (decimal 52) enables or disables text-mode cursor
emulation on the VGA. When you call this subservice with AL = 00H, the
ROM BIOS emulates CGA text-mode cursor sizing whenever you change
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video modes or update the cursor size. When called with AL = 01H, this sub-
service disables text-mode cursor emulation.

Subservice 36H (decimal 54) lets you enable or disable VGA video
refresh. Calling this subservice with AL = 01H disables refresh, and a call
with AL = 00H enables refresh. When you disable refresh, the screen goes
blank, but reads and writes to the video buffer are somewhat faster than
when refresh is enabled. If you are writing a program that needs to run as
fast as possible, and if you don’t mind having the screen go blank while you
access the video buffer, then consider using subservice 36H to temporarily
blank the screen while you update it.

Service 13H (decimal 19): Write Character String

Service 13H (decimal 19), allows you to write a string of characters to the
display screen. Through the four subservices that make up this service, you
can specify the character attributes individually or as a group. You can also
move the cursor to the end of the string or leave it in place, depending on
which subservice you choose.

The subservice number is placed in AL, the pointer to the string in
ES:BP, the length of the string in CX, the starting position where the string is
to be written in DX, and the display page number in BH.

Subservices 00H (decimal 0) and 01H (decimal 1) write a string of
characters to the screen using the attribute specified in register BL. With
subservice 00H, the cursor is not moved from the location specified in regis-
ter DX; with subservice 01H, the cursor is moved to the location following
the last character in the string.

Subservices 02H (decimal 2) and 03H (decimal 3) write a string of
characters and attributes to the screen, writing first the character and then
the attribute. With subservice 02H, the cursor is not moved from the location
specified in register DX; with subservice 03H, the cursor is moved to the
location following the last character in the string.

Service 13H is available only in the PC/AT, EGA, PS/2s, and later ver-
sions of the PC/XT ROM BIOS.

Service 1AH (decimal 26): Read/Write Display Combination Code

Service 1AH (decimal 26) was introduced in the ROM BIOS in the PS/2s, but
it is also part of the ROM BIOS of the VGA. This service returns a 2-byte
code that indicates which combination of video subsystems and video dis-
plays is found in your computer. The display combination codes recognized
by this ROM BIOS service are listed in Figure 9-21. Service 1AH lets you
select either of two subservices using the value in register AL; subservice
00H or subservice 01H.
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Subservice 00H (decimal 0) returns a 2-byte display combination code
in register BX. If your computer has two different video subsystems, the
value in BL indicates which one is active; that is, which is currently being
updated by the video ROM BIOS. The value in BH indicates the inactive sub-
system. If your computer has only video subsystem, the value in BH is zero.

Subservice 01H (decimal 1) performs the reverse function of subser-
vice 00H. It lets you change the current display combination code known to
the ROM BIOS. Don’t use this subservice, however, unless you know exactly
what you’re doing. It’s a rare program indeed that requires you to change
the ROM BIOS’s idea of what the video hardware actually is.

Code Video Subsystem

00H (No display)

O1H MDA

02H CGA

03H (Reserved)

04H EGA with color display

05H EGA with monochrome display
06H Professional Graphics Controller
07H VGA with monochrome display
08H VGA with color display
09H,0AH (Reserved)

OBH MCGA with monochrome display
OCH MCGA with color display

OFFH - (Unknown)

Figure 9-21. Display combination codes returned by video BIOS service I1AH.

Service 1BH (decimal 27): Return Functionality/State Information
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Service 1BH (decimal 27) is available in all PS/2s as well as with the VGA. It
returns a great deal of detailed information regarding the capabilities of the
ROM BIOS as well as the current ROM BIOS and video hardware status.

Service 1BH returns this information in a 64-byte buffer whose ad-
dress is passed in registers ES:DI. In addition to this address, you must also
specify an ‘‘implementation type’’ value of 0 in register BX. (Presumably
future IBM video products will recognize implementation type values other
than 0.)

The BIOS fills the buffer with information about the current video
mode (the mode number, character columns and rows, number of colors
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available) as well as about the video hardware configuration (total video
memory available, display combination code, and so on). See the IBM BIOS
Interface Technical Reference manual for details on the buffer format.

In the first 4 bytes of the buffer, the ROM BIOS returns a pointer to a
table of “‘static’’ functionality information. This table lists nearly all of the
features the ROM BIOS and the video hardware can support: the video
modes available, support for palette switching, RAM-loadable character
sets, light-pen support, and many other details.

When you write a program that runs on a PS/2 or in a system with a
VGA adapter, service 1BH offers a simple and consistent way for your pro-
gram to determine what the video subsystem’s current and potential capa-
bilities are. Unfortunately, you can’t rely on this service if your program
must be compatible with non-PS/2 computers. Neither the PC motherboard
ROM BIOS nor the EGA BIOS supports this service. A program can determine
whether service 1BH is supported by examining the value returned by this
service in AL; this value is 1BH if the service is supported.

Service 1CH (decimal 28): Save/Restore Video State

Service 1CH (decimal 28) is provided by the ROM BIOS only in the PS/2
models 50, 60, and 80, and with VGA adapters. (In other words, where you
find a VGA you also find service 1CH.) This BIOS service lets you preserve
all information that describes the state of the video BIOS and hardware. The
ROM BIOS can preserve three types of information: the video DAC state, the
BIOS data area in RAM, and the current values in all video control registers.

You can select three different subservices with the value you pass in
register AL: subservices 00H, 01H, and 02H.

Subservice 00H (decimal 0) is designed to be called before subser-
vices 01H or 02H. Subservice 00H requires you to specify which of the three
types of information you want to preserve, by setting one or more of the
three low-order bits of the value in CX. When this service returns, BX con-
tains the size of the buffer you will need to store the information.

Subservice 01H (decimal 1) saves the current video state information
in the buffer whose address you pass in ES:BX. Then you can change video
modes, reprogram the palette, or otherwise program the ROM BIOS or video
hardware.

Subservice 02H (decimal 2) lets you restore the previous video state.
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Comments and Example
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In cruising through the ROM BIOS video services, you’ve seen how they
work individually. Once you have that information in mind, the next ques-
tion usually is: Given a choice between using the ROM BIOS services di-
rectly or using higher-level services such as the DOS services or the services
built into your programming language, which is best? The general advice
that we always give is to use the highest-level services that will accomplish
what you want to do. In this case, there is no specific reason for you to avoid
using the ROM BIOS video services— you can’t do any great harm by using
them. But in the next chapter on the diskette services, we’ll argue the case
the other way, advising you to avoid using the ROM BIOS diskette services
because more risk is associated with them.

The video capabilities of the PC models are remarkable, and the ROM
BIOS services give you full use of them. The DOS services, as you’ll see in
Chapters 14 through 18, are rather weak and provide only the simplest char-
acter services. Likewise, many programming languages (for example, Pas-
cal and C) only provide a dressed-up version of the DOS services and
nothing more. So, if you need to use the PC’s fancy screen capabilities and
if you aren’t using a language such as BASIC that provides the services you
need, you should be using the ROM BIOS services. Getting control of the dis-
play screen is one of the very best reasons for using the ROM BIOS services.

Using the ROM BIOS services directly usually calls for an assembly-
language interface, so we’ll give you an example of how one can be set up.
For the example, we’ll set up a module in a format that would be called by
C. We’ll make the module switch to video mode 1 (40-column text in color)
and set the border color to blue.

Here is the assembly module (see Chapter 8, page 161, for general
notes on the format):

_TEXT SEGMENT byte public 'CODE’
ASSUME cs:_TEXT
PUBLIC _Blue40
—Blue40 PROC near
push bp ; save previous BP value
mov bp,sp ; use BP to access the stack
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; set video mode

mov ah,0 ; BIOS service number
mov al,1 ; video mode number
int 10h ; call BIOS to set 40x25 text mode

; set border color

mov ah,0Bh ; BIOS service number
mov bh,0 ; subservice number
mov b1,1 ; color value (blue)
int 10h ; call BIOS to set border color
pop . bp ; restore previous BP value
ret

—Blue40 ENDP

_TEXT ENDS
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We’re now going to cover the disk services provided by the ROM BIOS. To
understand the logical structure of the contents of a disk, see Chapter 5,
particularly pages 106 through 121. For information about the higher-level
disk services provided by DOS, see Chapters 15 through 18.

Generally speaking, disk operations are best left to disk operating sys-
tems. If you decide to use any of the ROM BIOS disk services, we recom-
mend that you read the section entitled ‘‘Comments and Examples’’ on
page 212 of this chapter.

The ROM BIOS Disk Services

198

The original IBM PC ROM BIOS offered only six different disk services. As
the diskette and fixed-disk subsystems of the PC and PS/2 family have
become increasingly sophisticated, the number of ROM BIOS services that
support disk I/O has increased. To keep the ROM BIOS software modular and
flexible, IBM separated the support routines for fixed-disk subsystems from
the diskette support routines. Nevertheless, the number of BIOS disk ser-
vices has grown from six on the original IBM PC to 22 in the PS/2s. (See
Figure 10-1.)

All ROM BIOS disk services are invoked with interrupt 13H (decimal
19) and selected by loading the service number into the AH register. Disk
drives are identified by a zero-based number passed in DL, with the high-
order bit set to 1 to indicate a fixed disk. Thus the first diskette drive in the
computer is identified by drive number 00H, and the first fixed disk is desig-
nated by drive number 80H.

The ROM BIOS uses a set of descriptive parameter tables called disk-
base tables to gain information about the capabilities of the disk controller
hardware and the disk media. The ROM BIOS maintains the segmented ad-
dresses of the disk-base tables it uses in interrupt vectors: The address of
the table for the current diskette drive is in the interrupt 1EH vector
(0000:0074H); addresses of tables for the first and second fixed drives are in
interrupt vectors 41H (0000:0104H) and 46H (0000:0118H).

For most programmers, the disk-base tables are an invisible part of the
disk services. However, some disk-base parameters may occasionally need
to be changed for special purposes. For this reason we include a brief de-
scription of the disk-base table toward the end of this chapter.

The following sections describe each of the ROM BIOS services.
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Service Description Diskette Fixed Disk
00H Reset Disk System. X X
01H Get Disk Status. X X
02H Read Disk Sectors. X X
03H Write Disk Sectors. X X
04H Verify Disk Sectors. X X
0SH Format Disk Track. X X
06H Format PC/XT Fixed-Disk Track. X
07H Format PC/XT Fixed Disk. X
08H Get Disk-Drive Parameters. X X
09H Initialize Fixed-Disk Parameter Tables. X
0AH Read Long. X
OBH Write Long. X
O0CH Seek to Cylinder. X
ODH Alternate Fixed-Disk Reset. X
10H Test for Drive Ready. X
11H Recalibrate Drive. X
15H Get Disk Type. X X
16H Get Diskette Change Status. X

17H Set Diskette Type. X

18H Set Media Type for Format. X

19H Park Heads.

1AH Format ESDI Unit.

Figure 10-1. The ROM BIOS disk services.

Service 00H (decimal 0): Reset Disk System
Service 00H resets the disk controller and drive. This service does not affect
the disk itself. Instead, a reset through service 00H forces the ROM BIOS
disk-support routines to start from scratch for the next disk operation by
recalibrating the disk drive’s read/write head — an operation that positions
the head on a certain track. This reset service is normally used after an
error in any other drive operation.

When you call service 00H for a fixed-disk drive, the ROM BIOS also
resets the diskette-drive controller. If you want to reset the fixed-disk

controller only, use service ODH. (See page 207.)

Service 01H (decimal 1): Get Disk Status

Service 01H (decimal 1) reports the disk status in register OAH. The status is
preserved after each disk operation, including the read, write, verify, and
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format operations. By preserving the disk status, an error-handling or error-
reporting routine can be completely independent of the routines that operate
the disk. This can be very useful. Under the right circumstances, you can
rely on DOS or your programming language to drive the disk (a wise choice;
see ‘‘Comments and Examples’’ on page 212), and at the same time have
your program find out and report the details of what went wrong. See
Figure 10-2 for details of the status byte.

Value (hex)  Meaning Value (hex) Meaning

00H No error 10H Bad CRC or ECC

01H Bad command 11H ECC corrected data error (F)

02H Address mark not found 20H Controller failed

03H Write attempted on 40H Seek failed
write-protected disk (D) 80H Time out

04H Sector not found AAH Drive not ready (F)

05H Reset failed (F) BBH Undefined error (F)

06H Diskette removed (D) ccH Write fault (F)

07H Bad parameter table (F) EOH Status error (F)

08H DMA overrun FFH Sense operation failed

09H DMA across 64 KB boundary

0AH Bad sector flag (F)

OBH Bad cylinder (F)

OCH Bad media type (D)

ODH Invalid number of sectors on format (F)

OEH Control data address mark detected (F)

OFH DMA arbitration level out of range (F)

(F) = fixed disk only
(D) = diskette only

Figure 10-2. The value of the disk status byte returned in register AH by service O1H.

Service 02H (decimal 2): Read Disk Sectors
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Service 02H (decimal 2) reads one or more disk sectors into memory. If you
want to read more than one sector, every sector must be on the same track
and read/write head. This is largely because the ROM BIOS doesn’t know
how many sectors might be on a track, so it can’t know when to switch from
one head or track to another. Usually, this service is used for reading either
individual sectors or an entire trackful of sectors for bulk operations such as
DISKCOPY in DOS. Various registers are used for control information in a
read operation. They are summarized in Figure 10-3.
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Parameters Status Results

DL = drive number If CF =0, then no errorand AH=0
DH = head number If CF = 1, then error and AH contains
CH = cylinder number (D) service O1H status bits

low-order 8 bits of cylinder number (F)

CL = sector number (D)
high-order 2 bits of cylinder number
plus 6-bit sector number (F)

AL = number of sectors to be read
ES:BX = address of buffer

(F) = fixed disk only
(D) = diskette only

Figure 10-3. The registers used for control information by the read, write, verify, and
format services.

DL contains the drive number, and DH contains the diskette side or
fixed-disk read/write head number.

CH and CL identify, for diskettes, the cylinder and sector number to
be read. CH contains the cylinder number, which should be less than the
‘total number of cylinders on the formatted diskette. (See Chapter 5 for a ta-
ble of standard IBM formats.) Of course, the cylinder number can be higher
with non-IBM formats or with some copy-protection schemes. CL contains
the sector number.

For fixed disks, there may be more than 256 cylinders, so the ROM
BIOS requires you to specify a 10-bit cylinder number in CH and CL: You
must place the 8 low-order bits of the cylinder number in CH. The 2 high-
order bits of CL contain the 2 high-order bits of the cylinder number. The 6
low-order bits of CL designate the sector number to be read. Don’t forget
that sectors are numbered from 1, unlike drives, cylinders, or heads (sides).

AL contains the number of sectors to be read. For diskettes, this is nor-
mally either 1, 8, 9, 15, or 18. We are warned by IBM not to request 0 sectors.

ES:BX contains the buffer location. The location of the memory area
where the data will be placed is provided by a segmented address given in
this register pair.

The data area should be big enough to accommodate as much as is
read; keep in mind that while normal DOS sectors are 512 bytes, sectors can
be as large as 1024 bytes. (See the format service that follows.) When this
service reads more than one sector, it lays the sectors out in memory one
right after another.
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CF (the carry flag) contains the error status of the operation. The
result of the operation is actually reported through a combination of the
carry flag and the AH register. If CF = 0, no error occurred, AH will also be
0, and, for a diskette, the number of sectors read will be returned in AL. If
CF = 1, an error did occur, and AH will contain the status value detailed
under service 01H, the status service.

When using service 02H with a diskette drive or any other active dis-
kette service, remember that the diskette-drive motor takes some time to
reach a working speed and that none of these services waits for this to hap-
pen. Although our own experience with the ROM BIOS diskette services sug-
gests that this is rarely a problem, IBM recommends that any program using
these services try three times before assuming that an error is real and that
it use the reset service between tries. The logic of the suggested operation is
as follows (partly expressed in BASIC):

10 ERROR COUNT = 0

20 WHILE ERROR.COUNT < 3

30 ' do read/write/verify/format operation

40 ' error checking here: if no error goto 90
50  ERROR.COUNT = ERROR.COUNT + 1

60 ' do reset operation

70 WEND

80 ' act on error

90 ' carry on after success

Be sure to see the section on page 209 for the effect of the disk-base
table on the reset operation.

Service 03H (decimal 3): Write Disk Sectors

Service 03H (decimal 3) writes one or more sectors to a disk — the reverse
of service 02H. All registers, details, and comments given for service 02H
also apply to service 03H. (Also see Figure 10-3.) The disk sectors must be
formatted before they can be written to.

Service 04H (decimal 4) : Verify Disk Sectors
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Service 04H (decimal 4) verifies the contents of one or more disk sectors.
This operation is not what many people think it is: No comparison is made
between the data on the disk and the data in memory. The verification
performed by this service simply checks that the sectors can be found and
read and that the cyclical redundancy check (CRC) is correct. The CRC acts
as a sophisticated parity check for the data in each sector and will detect
most errors, such as lost or scrambled bits, very reliably.
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Most programmers use the verify service to check the results of a
write operation after using service 03H, but you can verify any part of a disk
at any time. The DOS FORMAT program, for example, verifies each track
after it is formatted. However, many people regard verification as an
unnecessary operation because the disk drives are so reliable and because
ordinary error reporting works so well. Even DOS doesn’t verify a write
operation unless you ask it to with the VERIFY ON command.

Q NOTE: It's worth pausing here to note that there is nothing
unusual or alarming about having ‘‘bad tracks’ marked on a disk,
particularly a fixed disk. In fact, it is quite common for a fixed disk
to have a few bad patches on it. The DOS FORMAT program notices
bad tracks and marks them as such in the disk’s file-allocation
table. Later, the bad-track marking tells DOS that these areas
should be bypassed. Bad tracks are also common on diskettes; with
a diskette, unlike a fixed disk, you have the option of throwing away
the defective media and using only perfect disks.

The verify service operates exactly as do the read and write services
and uses the same registers. The only difference between them is that the
verify operation does not use any memory area and therefore does not use
the register pair ES:BX.

Service 05H (decimal 5) : Format Disk Track

Service 05H (decimal 5) formats one track. The format service operates as
do the read and write services except that you need not specify a sector
number in CL. All other parameters are as shown in Figure 10-3.

Because formatting is done one full track at a time, you cannot format
individual sectors. However, on a diskette you can specify individual
characteristics for each sector on a track.

Every sector on a diskette track has 4 descriptive bytes associated with
it. You specify these 4 bytes for each sector to be formatted by creating a
table of 4-byte groups and passing the table’s address in the register pair
ES:BX. When you format a disk track, the 4-byte groups are written to the
diskette immediately in front of the individual sectors in the track. The 4
bytes of data associated with a sector on the disk are known as address
marks and are used by the disk controller to identify individual sectors
during the read, write, and verify operations. The 4 bytes are referred to as
C for cylinder, H for head, R for record (or sector number), and N for
number of bytes per sector (also called the size code).
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204

When a sector is being read or written, the diskette controller searches
the diskette track for the sector’s ID, the essential part of which is R, the
record or sector number. The cylinder and head parameters are not actually
needed in this address mark because the read/write head is positioned
mechanically at the proper track and the side is selected electronically, but
they are recorded and tested as a safety check.

The size code (N) can take on any one of the four standard values
shown in Figure 10-4. The normal setting is code 2 (512 bytes).

Sectors are numbered on the diskette in the order specified by R. On
diskettes, the sectors are normally numbered in numeric sequence (unless
rearranged for copy protection), but on fixed disks the order of the sectors
can be rearranged (interleaved), either for better performance or to create
timing differences for copy-protection purposes. The actual interleave used
on a fixed disk depends on the capabilities of the disk-controller hardware.
For example, the PC/XT’s fixed disk has its sectors interleaved so that logi-
cally consecutive sectors are physically located six sectors apart.

N Sector Size (bytes) Sector Size (KB)
0 128 s

1 256 Ya

2 512 'L

3 1024 1

Figure 10-4. The four standard sizes of the N size code.

To format a diskette track using service 05H, perform the following
steps:

1. Call service 17H to inform the ROM BIOS what kind of diskette is to
be formatted. (See page 208 for more about service 17H.) This
service needs to be called only once.

2. Call service 18H to describe the diskette media to the ROM BIOS.
(See page 209.)

3. Create a table of address marks for the track. There must be a
4-byte entry in the table for each sector. For example, for track 0, -
side 1 of a typical nine-sector DOS diskette, the table would contain
nine entries:

0112 0122 0132 ...0192

4. Call service 05H to format the track.



Chapter 10: ROM BIOS Disk Services

The method for formatting a fixed-disk track is somewhat different.
You should omit the calls to services 17H and 18H (steps 1 and 2 above)
" because there is no need to describe the disk media to the ROM BIOS. Also,
with a PC/AT or PS/2, the table whose address you pass in 3 step has a format
that consists only of alternating flag bytes (00H = good sector, 80H = bad
sector) and sector number (R) bytes. With a PC/XT, you don’t need a table at
all. Instead, you call service 05H with an interleave value in AL, and the
ROM BIOS does the rest.

You may want to verify the formatting process by following each call
to service 05H with a call to service 04H.

When a diskette track is formatted, the diskette drive pays attention to
the diskette’s index hole and uses it as a starting marker to format the track.
The index hole is ignored in all other operations (read, write, or verify), and
tracks are simply searched for by their address marks.

Nothing in this format service specifies the initial data value written
into each formatted sector of a diskette. That is controlled by the disk-base
table. (See page 209.)

QO NOTE: Service 05H should not be used with ESDI drives in PS/2s.
Use service 1AH instead.

Using Service 05H for Copy Protection

Diskette tracks can be formatted in all sorts of ways, but DOS can only read
certain formats. Consequently, some copy-protection schemes are based on
an unconventional format that prevents the ROM BIOS or the operating sys-
tem from successfully reading and copying data. You can choose from sev-
eral different copy-protection methods:

e You can rearrange the order of the sectors, which alters the access
time in a way that the copy-protection scheme can detect.

e You can squeeze more sectors onto a track (10 is about the outside
limit for 512-byte sectors on a 360 KB diskette).

e You can simply leave out a sector number.

e You can add a sector with an oddball address mark (for example,
you can make C = 45 or R = 22).

e You can specify one or more sectors to be an unconventional size.

Any of these techniques can be used either for copy protection or for
changing the operating characteristics of the diskette. Depending on what
options are used, a conventionally formatted diskette may have its copy-
protection characteristics completely hidden from DOS.

205



PROGRAMMER’S GUIDE TO THE IBM PC AND PS/2

Service 06H (decimal 6): Format PC/XT Fixed-Disk Track

This service is provided only in the PC/XT fixed-disk ROM BIOS. This ser-
vice commands the XT’s fixed-disk controller to format a track in which the
disk media is defective. The disk controller records which sectors are defec-
tive in a table located in a reserved cylinder. The register parameters are the
same as those shown in Figure 10-3, except that register AL contains a sector
interleave value and no address need be specified in ES:BX.

Service 07H (decimal 7): Format PC/XT Fixed Disk

This service, like service 06H, is supported only in the PC/XT fixed-disk
ROM BIOS. It formats the entire fixed-disk drive, starting at the cylinder
number specified in CH and CL. Register parameters for service 07H are the
same as for service 05H (Figure 10-3), except that register AL contains a sec-
tor interleave value and no head number need be specified in register DH.

Service 08H (decimal 8): Get Disk-Drive Parameters

In the PC/AT and PS/2 BIOS, service 08H (decimal 8) returns disk-drive
parameters for the drive whose number you specify in DL. DL reports the
number of disk drives attached to the disk controller, so diskette and fixed-
disk drive counts are reported separately. DH reports the maximum head
number, CH returns the maximum cylinder number, and CL returns the
highest valid sector number plus the 2 high-order bits of the maximum
cylinder number.

For diskette drives, the PC/AT ROM BIOS (after 1/10/84) and the PS/2
ROM BIOS also report the drive type in BL: 01H = 360 KB, 5'% inch; 02H = 1.2
MB, 5' inch; 03H = 720 KB, 3! inch; 04H = 1.44 MB, 3! inch.

Service 09H (decimal 9): Initialize Fixed-Disk Parameter Tables
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Service 09H (decimal 9) establishes the disk-base tables for two fixed-disk
drives for the PC/AT or PS/2 ROM BIOS. Call this service with a valid fixed-
disk drive number in DL and with the interrupt 41H and 46H vectors contain-
ing the addresses of disk-base tables for two different fixed-disk drives.
Because fixed disks are nonremovable, this service should only be used to
install a “‘foreign” disk drive not recognized by the ROM BIOS or the
operating system. For more details, see the IBM BIOS Interface Technical
Reference Manual.

Q NOTE: Do not use service 09H for PS/2 ESDI drives.
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Service 0AH and 0BH (decimal 10 and 11): Read and Write Long

Service 0AH (decimal 10) reads, and service OBH (decimal 11) writes,
“‘long’’ sectors on PC/AT or PS/2 fixed disks. A long sector consists of a
sector of data plus a 4- or 6-byte error correction code (ECC) that the fixed-
disk controller uses for error checking and error correction of the sector’s
data. These services use the same register parameters as parallel services
02H and 03H.

Q NOTE: The 1BM BIOS Interface Technical Reference Manual
states that services 0AH and OBH are ‘‘reserved for diagnostics,” so
stay away from these services unless you have a very good reason
for using them.

Service 0CH (decimal 12): Seek to Cylinder

Service 0CH (decimal 12) performs a seek operation that positions the disk
read/write heads at a particular cylinder on a fixed disk. Register DL pro-
vides the drive ID, DH provides the head number, and CH and CL provide
the 10-bit cylinder number.

Service 0DH (decimal 13): Alternate Fixed-Disk Reset

For fixed-disk drives, this service is the same as service 00H (reset disk sys-
tem) except that the ROM BIOS does not automatically reset the diskette-
drive controller. This service is available only in the PC/AT and PS/2 ROM
BIOS; it should not be used with the PS/2 ESDI drives.

Service 10H (decimal 16): Test for Drive Ready

Service 10H (decimal 16) tests to see if a fixed-disk drive is ready. The drive
is specified in register DL and the status is returned in register AH.

Service 11H (decimal 17): Recalibrate Drive

Service 11H (decimal 17) recalibrates a fixed-disk drive. The drive is speci-
fied in register DL and the status is returned in register AH.

Service 15H (decimal 21): Get Disk Type

Service 15H (decimal 21) returns information about the type of disk drive
installed in a PC/AT or PS/2. Given the drive ID in register DL, it returns in
register AH one of four disk-type indicators. If AH = 00H, no drive is present
for the specified drive ID; if AH = 01H, a diskette drive that cannot sense
when the disk has been changed (typical of many PC and PC/XT disk drives)
is installed; if AH = 02H, a diskette drive that can sense a change of disks
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(drives like the AT’s high-capacity diskette drives) is installed; finally, if
AH = 03H, a fixed-disk drive is installed. When the drive type is 3, the regis-
ter pair CX:DX contains a 4-byte integer that gives the total number of disk
sectors on the drive.

Service 16H (decimal 22): Diskette Change Status

In the PC/AT and PS/2 ROM BIOS, service 16H (decimal 22) reports whether
the diskette in the drive specified in DL was changed. The status is reported
in AH (Figure 10-5).

Remember several important points about service 16H. First, before
you use this ROM BIOS service, call service 15H to ensure that the diskette-
drive hardware can sense when a diskette is changed. Also, you should fol-
low a call to service 16H with a call to service 17H (Set Diskette Type)
whenever you detect a diskette change.

Keep in mind that the hardware can only detect whether the diskette-
drive door was opened; it cannot tell whether a different physical diskette
was placed in the drive. You must still read data from the diskette to deter-
mine whether a different diskette is actually in the drive. Data such as a vol-
ume label, the root directory, or a file allocation table can help to uniquely
identify a diskette.

Value Meaning

AH =00H No diskette change.

AH=01H Service called with invalid parameter.
AH =06H Diskette has been changed.

AH = 80H Diskette drive not ready.

Figure 10-5. Status values returned in AH by diskette service 16H.

Service 17H (decimal 23): Set Diskette Type
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In the PC/AT and PS/2 ROM BIOS, service 17H (decimal 23) describes the type
of diskette in use in a specified drive. Call this service with a drive ID in
register DL and a diskette-type ID in AL. (See Figure 10-6.) The ROM BIOS
resets the diskette change status if it was previously set. It then records the
diskette type in an internal status variable that can be referenced by other
ROM BIOS services.
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Value Meaning

AL =01H 320/360 KB diskette in 360 KB drive

AL =02H 360 KB diskette in 1.2 MB drive

AL =03H 1.2 MB diskette in 1.2 MB drive

AL =04H 720 KB diskette in 720 KB drive (PC/AT or PS/2) or 720 KB

or 1.44 MB diskette in 1.44 MB drive (PS/2)

Figure 10-6. Diskette-type ID values for diskette service 17H.

Service 18H (decimal 24): Set Media Type for Format

Service 18H (decimal 24) describes the number of tracks and sectors per
track to the ROM BIOS before it formats a diskette in a specified drive.
These values are placed in registers CH, CL, and DL when you call this ser-
vice (see Figure 10-3). This service is available only in the PC/AT and PS/2
ROM BIOS.

Service 19H (decimal 25): Park Heads

Service 19H (decimal 25) parks the drive heads for the PS/2 fixed disk whose
drive ID you specify in register DL. Calling this function causes the disk
controller to move the drive heads away from the portion of the disk media
where data is stored. This is a good idea if you plan to move the computer
because it may prevent mechanical damage to the heads or to the surfaces of
the disk media. On the Reference Diskette that accompanies every PS/2, IBM
supplies a utility program that uses this ROM BIOS service to park the heads.

Service 1AH (decimal 26): Format ESDI Unit

This service is provided only in the ROM BIOS of the ESDI (Enhanced Small
Device Interface) adapter for high-capacity PS/2 fixed disks. It formats a
fixed disk attached to this adapter. See the IBM BIOS Interface Technical Ref-
erence Manual for more details.

Disk-Base Tables

As we mentioned near the beginning of this chapter, the ROM BIOS main-
tains a set of disk-base tables that describe the capabilities of each diskette
drive and fixed-disk drive in the computer. During system startup, the ROM
BIOS associates an appropriate disk-base table with each fixed-disk drive.
(In the PC/AT and PS/2s, a data byte in the nonvolatile CMOS RAM desig-
nates which of several ROM tables to use.) There is no reason to change the
parameters in the fixed-disk tables once they have been set up by the ROM
BIOS. Doing so may lead to garbled data on the disk.
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The situation is different in the case of diskette drives. The parameters
in the disk-base table associated with a diskette drive may need to be up-
dated to accommodate different diskette formats. We’ll spend the next few
pages describing the structure of a disk-base table for a diskette drive and
showing how a modified table can be useful.

The disk-base table comprises the 11 bytes shown in Figure 10-7.

Bytes 0 and 1 are referred to as the specify bytes. They are part of the
command strings sent to the diskette-drive controller, which in IBM’s
technical reference manuals is also called the NEC (Nippon Electric Com-
pany) controller. The 4 high-order bits of byte 0 specify the step-rate time
(SRT), which is the time the drive controller allows for the drive heads to
move from track to track. The default ROM BIOS SRT value for diskette
drives is conservative; for some drives, DOS reduces this value to speed up
drive performance.

Byte 2 specifies how long the diskette motor is to be left running after
each operation. The motor is left on in case the diskette is needed again.
The value is in units of clock ticks (roughly 18.2 ticks per second). All ver-
sions of the table have this set to 37 (25H) —meaning that the motor stays on
for about 2 seconds.

Offset Use

00H Specify byte 1: step-rate time, head-unload time

01H Specify byte 2: head-load time, DMA mode

02H Wait time until diskette motor turned off

03H Bytes per sector: 0 = 128; 1 = 256; 2 =512; 3=1024
04H Last sector number

05H Gap length between sectors for read/write operations

06H Data length when sector length not specified

07H Gap length between sectors for formatting operations
08H Data value stored in formatted sectors

09H Head-settle time

0OAH Motor start-up time

Figure 10-7. The use of the 11 bytes in the disk-base table for a diskette drive.

Byte 3 gives the sector length code — the same N code used in the for-
mat operation. (See page 203 under service 05H.) This is normally set to 2,
representing the customary sector length of 512 bytes. In any read, write, or
verify operation, the length code in the disk base must be set to the proper
value, especially when working with sectors of unconventional length.
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Byte 4 gives the sector number of the last sector on the track.

Byte 5 specifies the gap size between sectors, which is used when
reading or writing data. In effect, it tells the diskette-drive controller how
long to wait before looking for the next sector’s address marking so that it
can avoid looking at nonsense on the diskette. This length of time is known
as the search gap.

Byte 6 is called the data transfer length (DTL) and is set to FFH (deci-
mal 255). This byte sets the maximum data length when the sector length is
not specified.

Byte 7 sets the gap size between sectors when a track is formatted.
Naturally, it is bigger than the search gap at offset 5. The normal format
gap-size value varies with the diskette drive. For example, the value is 54H
for the PC/AT’s 1.2 MB drive and 6CH for 3'4-inch PS/2 diskette drives.

Byte 8 provides the data value stored in each byte of the sectors when
a diskette track is formatted. The default value is F6H, the division symbol.
You can change it to anything you want, if you can think of a good reason
to do so.

Byte 9 sets the head-settle time, which is how long the system waits for
vibration to end after seeking to a new track. This value also depends on the
drive hardware. On the original PC, the value was 19H (25 milliseconds), but
the ROM BIOS default for the PC/AT 1.2 MB drive and the PS/2 diskette drives
is only OFH (15 milliseconds).

Byte 0AH (decimal 10), the final byte of the disk-base table, sets the
amount of time allowed for the diskette-drive motor to get up to speed and
is measured in /s seconds.

It’s fun to tinker with the disk-base values; there are enough of them
to give you an opportunity for all sorts of excitement and mischief. To do
this, you need to write a program that builds your customized disk-base
table in a buffer in memory. Then tell the ROM BIOS to use your table by
carrying out the following steps:

1. Save the segmented address of the current disk base table. (This is
the value in the interrupt 1EH vector, 0000:0078H.)

2. Store the segmented address of your modified table in the interrupt
1EH vector.

3. Call ROM BIOS disk service 00H to reset the disk system. The ROM
BIOS will reinitialize the diskette-drive controller with parameters
from your table.

When you’re finished, be sure to restore the address of the previous
disk-base table and reset the disk system again.

211



PROGRAMMER'’S GUIDE TO THE IBM PC AND PS/2

Comments and Examples

212

In the last chapter, where we covered the ROM BIOS video services, we were
able to recommend that you make direct use of the ROM BIOS services when
DOS or your programming language does not provide the support you need.
But in the case of the ROM BIOS disk services, things are different.

For the disk operations that a program would normally want per-
formed, the manipulation and supervision of disk input/output should be left
to DOS and performed either through the conventional file services of a pro-
gramming language or through the DOS services. (See Chapters 14 through
18.) There are several reasons for this. The main reason is that it is far easier
to let DOS do the work. The DOS facilities take care of all fundamental disk
operations, including formatting and labeling disks, cataloging files, and
basic read and write operations. Most of the time it isn’t necessary to go any
deeper into the system software. However, there are times when you may
want to work with disk data in an absolute and precise way, usually for copy
protection. This is when you should use the ROM BIOS services.

For our example, we’ll use C to call a couple of subroutines that use
ROM BIOS functions 02H and 03H to read and write absolute disk sectors. We
start by defining how we want the interface to look from the C side, which
the following program illustrates. If you are not familiar with C and don’t
want to decipher this routine, you can pass it by and still get the full benefit
by studying the assembly-language interface example that follows it.

main()
{
unsigned char Buffer[512]; /* a 512-byte buffer for reading */
/* or writing one sector */

int Drive;
int C.H.R; /* address mark parameters */
int StatusCode; /* status value returned by BIOS */

StatusCode = ReadSector( Drive, C, H, R, (char far *)Buffer );
StatusCode = WriteSector( Drive, C, H, R, (char far *)Buffer );

This C fragment shows how you would call the ROM BIOS read and
write services from a high-level language. The functions ReadSector() and
WriteSector() are two assembly-language routines that use interrupt 13H to
interface with the ROM BIOS disk services. The parameters are familiar: C,
H, and R are the cylinder, head, and sector numbers we described
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earlier. The C compiler passes the buffer address as a segment and offset
because of the explicit type cast (char far *).

The form of the assembly-language interface should be familiar if you
read the general remarks in Chapter 8 on page 161 or studied the example in
Chapter 9 on page 194. The assembly-language routines themselves copy the
parameters from the stack into the registers. The trick is in how the cylinder
number is processed: The 2 high-order bits of the 10-bit cylinder number are
combined with the 6-bit sector number in CL.

_TEXT SEGMENT byte public 'CODE’
ASSUME  cs:_TEXT

PUBLIC _ReadSector

_ReadSector PROC near ; routine to read one sector
push bp
mov bp,sp ; address the stack through BP
mov ah,2 ; AH = ROM BIOS service number 02h
call DiskService
pop bp ; restore previous BP
ret
—ReadSector ENDP

PUBLIC _WriteSector

_WriteSector PROC near ; routine to write one sector
push bp
mov bp,sp
mov ah,3 ; AH = ROM BIOS service number 03h
call DiskService
pop bp
ret

_WriteSector ENDP

DiskService PROC near ; Call with AH = ROM BIOS service number
push ax ; save service number on stack
(continued)
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DiskService

—TEXT

mov
mov
mov
mov
and
les

ror
ror

and

mov
or

pop
mov
int

mov
xor

ret
ENDP

ENDS

d1, [bp+4]
ax, [bp+6]
dh, [bp+8]
c1,[bp+10]
c1,00111111b
bx, [bp+12]

ah,1
ah,1

ah,11000000b
ch,al
cl,ah

ax
al,1
13h

al,ah
ah,ah

. ..

-

e

.. we

DL = drive ID

AX = cylinder number

DH = head number

CL = sector number

1imit sector number to 6 bits
ES:BX -> buffer

move bits 8 and 9
of cylinder number
to bits 6 and 7 of AH

CH = bits 0-7 of cylinder number
copy bits 8 and 9

of cylinder number

to bits 6 and 7 of CL

AH = ROM BIOS service number
AL = 1 (# of sectors to read/write)
call ROM BIOS service

leave return status
# in AX

Note how the code that copies the parameters from the stack to the
registers is consolidated in a subroutine, DiskService. When you work with
the ROM BIOS disk services, you’ll find that you can often use subroutines
similar to DiskService because most of the ROM BIOS disk services use

similar parameter register assignments.
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Although the ROM BIOS services for the keyboard are not as numerous or as
complicated as those for the display screen (Chapter 9) and for diskette
drives (Chapter 10), the ROM BIOS keyboard services are important enough
to warrant their own chapter. All other ROM BIOS services are gathered
together in Chapter 12.

Accessing the Keyboard Services

The keyboard services are invoked with interrupt 16H (decimal 22). As with
all other ROM BIOS services, the keyboard services are selected according to
the value in register AH. Figure 11-1 lists the ROM BIOS keyboard services.

Service Description

O00H Read Next Keyboard Character.
01H Report Whether Character Ready.
02H Get Shift Status.

03H Set Typematic Rate and Delay.
05H Keyboard Write.

10H Extended Keyboard Read.

11H Get Extended Keystroke Status.
12H Get Extended Shift Status.

Figure 11-1. The ROM BIOS keyboard services.

Service 00H (decimal 0): Read Next Keyboard Character
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Service 00H (decimal 0) reports the next keyboard input character. If a char-
acter.is ready in the ROM BIOS keyboard buffer, it is reported immediately.
If not, the service waits until one is ready. As described on page 134, each
keyboard character is reported as a pair of bytes, which we call the main
and auxiliary bytes. The main byte, returned in AL, is either 0 for special
characters (such as the function keys) or else an ASCII code for ordinary
ASCII characters. The auxiliary byte, returned in AH, is either the character
ID for special characters or the standard PC-keyboard scan code that iden-
tifies which key was pressed.

If no character is waiting in the keyboard buffer when service 00H is
called, the service waits — essentially freezing the program that called it—
until a character does appear. The service we’ll discuss next allows a pro-
gram to test for keyboard input without the risk of suspending program
execution.
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Contrary to what some versions of the IBM PC Technical Reference
Manual suggest, services 00H and 01H apply to both ordinary ASCII charac-
ters and special characters, such as function keys.

Service 01H (decimal 1): Report Whether Character Ready

Service 01H (decimal 1) reports whether a keyboard input character is
ready. This is a sneak-preview or look-ahead operation: Even though the
character is reported, it remains in the keyboard input buffer of the ROM
BIOS until it is removed by service 00H. The zero flag (ZF) is used as the sig-
nal: 1 indicates no input is ready; 0 indicates a character is ready. Take care
not to be confused by the apparent reversal of the flag values— 1 means no
and 0 means yes, in this instance. When a character is ready (ZF = 0), it is
reported in AL and AH, just as it is with service 00H.

This service is particularly useful for two commonly performed pro-
gram operations. One is test-and-go, where a program checks for keyboard
action but needs to continue running if there is none. Usually, this is done to
allow an ongoing process to be interrupted by a keystroke. The other com-
mon operation is clearing the keyboard buffer. Programs can generally
allow users to type ahead, entering commands in advance; however, in
some operations (for example, at safety-check points, such as “‘OK to
end?”’) this practice can be unwise. In these circumstances, programs need
to be able to flush the keyboard buffer, clearing it of any input. The key-
board buffer is flushed by using services 00H and O1H, as this program
outline demonstrates:

call service 0lH to test whether a character is available in the
keyboard buffer
WHILE (ZF = 0)
BEGIN
call service 00H to remove character from keyboard buffer
call service 01H to test for another character
END

Contrary to what some technical reference manuals suggest, services
00H and 01H apply to both ordinary ASCII characters and special characters,
such as function keys.

Service 02H (decimal 2): Get Shift Status

Service 02H (decimal 2) reports the shift status in register AL. The shift
status is taken bit by bit from the first keyboard status byte, which is kept at
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Bit
76543210 Meaning

D G Insert state: 1 = active
XL CapsLock: 1 = active
XL NumLock: 1 = active
XL ScrollLock: 1 = active
XL 1 = Alt pressed
..... X. . 1 = Ctrl pressed
...... X. 1 = Left Shift pressed
....... X 1 =Right Shift pressed

Figure 11-2. The keyboard status bits returned to register AL using keyboard service 02H.

memory location 0040:0017H. Figure 11-2 describes the settings of each bit.
(See page 137 for information about the other keyboard status byte at
0040:0018H.)

Generally, service 02H and the status bit information are not par-
ticularly useful. If you plan to do some fancy keyboard programming, how-
ever, they can come in handy. You’ll frequently see them used in programs
that do unconventional things, such as differentiating between the left and
right Shift keys.

Service 03H (decimal 3): Set Typematic Rate and Delay
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Service 03H (decimal 3) was introduced with the PCjr, but has been sup-
ported in both the PC/AT (in ROM BIOS versions dated 11/15/85 and later) and
in all PS/2s. It lets you adjust the rate at which the keyboard’s typematic
function operates; that is, the rate at which a keystroke repeats automati-
cally while you hold down a key. This service also lets you to adjust the
typematic delay (the amount of time you can hold down a key before the
typematic repeat function takes effect).

To use this service, call interrupt 16H with AH = 03H, and AL = 05H.
BL must contain a value between 00H and 1FH (decimal 31) that indicates
the desired typematic rate (Figure 11-3). The value in BH specifies the type-
matic delay (Figure 11-4). The default typematic rate for the PC/AT is 10
characters per second; for PS/2s it is 10.9 characters per second. The default
delay for both the PC/AT and PS/2s is 500 ms.
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00H =30.0 OBH =10.9 16H=4.3

01H =26.7 OCH=10.0 17H=4.0

02H =24.0 ODH=9.2 18H=3.7

03H =21.8 OEH = 8.6 19H=3.3

04H =20.0 OFH=28.0 1AH=3.0

0SH=18.5 10H=175 1BH=2.7

06H =17.1 11H=6.7 ICH=25

07H =16.0 12H=6.0 IDH=23

08H =15.0 13H=5.5 1IEH=2.1

09H =13.3 14H=5.0 1IFH=2.0

0AH=12.0 15H=4.6 20H through FFH - Reserved
Figure 11-3. Values for register BL in keyboard service 03H. The rates shown are in
characters per second.

00H =250

01H =500

02H =750

03H = 1000

04H through FFH - Reserved

Figure 11-4. Values for register BH in keyboard service 03H. The delay values shown are
in milliseconds.

Service 05H (decimal 5): Keyboard Write

Service 05H (decimal 5) is handy because it lets you store keystroke data in
the keyboard buffer as if a key were pressed. You must supply an ASCII
code in register CL and a keyboard scan code in CH. The ROM BIOS places
these codes into the keyboard buffer following any keystroke data that may
already be present there.

Service 05H lets a program process input as if it were typed at the
keyboard. For example, if you call service 05H with the following data, the
result is the same as if the keys R-U-N-Enter were pressed:

CH = 13H, CL = 52H, call service 05H (the R key)
CH = 16H, CL = 55H, call service 05H (the U key)
CH = 31H, CL = 4EH, call service 05H (the N key)
CH = 1CH, CL = ODH, call service 05H (the Enter key)
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If your program did this when it detected that the F2 function key was
pressed, the result would be the same as if the word RUN followed by the
Enter key had been typed. (If you use BASIC, this should sound familiar.)

Beware: The keyboard buffer can hold only 15 character codes, so you
can call service 05H a maximum of 15 consecutive times before the buffer
overflows and the function fails.

Service 10H (decimal 16): Extended Keyboard Read

Service 10H (decimal 16) performs the same function as service 00H, but lets
you take full advantage of the 101/102-key keyboard: It returns ASCII
character codes and keyboard scan codes for keys that don’t exist on the
older 84-key keyboard. For example, the extra F11 and F12 keys found on
the 101/102-key keyboard are ignored by service 00H but can be read using
service 10H.

Another example: On the 101/102-key keyboard, an extra Enter key
appears to the right of the numeric keypad. When this key is pressed,
service O0H returns the same character code (0DH) and scan code (1CH) as it
does for the standard Enter key. Service 10H lets you differentiate between
the two Enter keys because it returns a different scan code (EOH) for the
keypad Enter key.

Service 11H (decimal 17): Get Extended Keystroke Status

Service 11H (decimal 17) is analogous to service 01H, but it, too, lets you use
the 101/102-key keyboard to full advantage. The scan codes returned in
register AH by this service distinguish between different keys on the
101/102-key keyboard.

Service 12H (decimal 18): Get Extended Shift Status
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Like services 10H and 11H, service 12H (decimal 18) provides additional
support for the 101/102-key keyboard. Service 12H expands the function of
service 02H to provide information on the extra shift keys provided on the
101/102-key keyboard. This service returns the same value in register AL as
service 02H (Figure 11-2), but it also returns an additional byte of flags in
register AH (Figure 11-5).

This extra byte indicates the status of each individual Ctrl and Alt
key. It also indicates whether the Sys Req, Caps Lock, Num Lock, or Scroll
Lock keys are currently pressed. This information lets you detect when a
user presses any combination of these keys at the same time.
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Bit
76543210 Meaning

X. ... Sys Req pressed
XL Caps Lock pressed
XL Num Lock pressed
XL Scroll Lock pressed
Lo X Right Alt pressed
..... X. . Right Ctrl pressed
...... X. Left Alt pressed
....... X Left Ctrl pressed

Figure 11-5. Extended keyboard status bits returned in register AH by keyboard service
12H.

Comments and Example

If you are in a position to choose between the keyboard services of your
programming language or the ROM BIOS keyboard services, you could
safely and wisely use either one. Although in some cases there are
arguments against using the ROM BIOS services directly, as with the diskette
services, those arguments do not apply as strongly to the keyboard services.
However, as always, you should fully examine the potential of the DOS
services before resorting to the ROM BIOS services; you may find all you
need there, and the DOS services are more long-lived in the ever-changing
environments of personal computers.

Most programming languages depend on the DOS services for their
keyboard operations, a factor that has some distinct advantages. One
advantage is that the DOS services allow the use of the standard DOS editing
operations on string input (input that is not acted on until the Enter key is
pressed). Provided that you do not need input control of your own, it can
save you a great deal of programming effort (and user education) to let DOS
handle the string input, either directly through the DOS services or
indirectly through your language’s services. But if you need full control of
keyboard input, you’ll probably end up using the ROM BIOS routines in the
long run. Either way, the choice is yours.

Another advantage to using the DOS keyboard services is that the DOS
services can redirect keyboard input so that characters are read from a file
instead of the keyboard. If you rely on the ROM BIOS keyboard services, you
can’t redirect keyboard input. (Chapters 16 and 17 contain information on
input/output redirection.)
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For our assembly-language example of the use of keyboard services,
we’ll get a little fancier than we have in previous examples and show you a
complete buffer flusher. This routine will perform the action outlined under
keyboard service 01H, the report-whether-character-ready service.

_TEXT SEGMENT byte public ‘'CODE’
ASSUME  cs:_TEXT

PUBLIC _kbclear

_kbclear PROC near
push bp
mov bp.sp
LO1: mov ah,1 ; test whether buffer is empty
int 16h
Jjz L02 ; if so, exit
mov ah,0
int 16h ; otherwise, discard data
Jjmp LO1 ; .. and loop
L02: pop bp
ret
_kbclear ENDP
_TEXT ENDS

The routine works by using interrupt 16H, service O1H to check
whether the keyboard buffer is empty. If no characters exist in the buffer, -
service 01H sets the zero flag, and executing the instruction JZ L02 causes
the routine to exit by branching to the instruction labeled L02. If the buffer
still contains characters, however, service 01H clears the zero flag, and the
JZ L02 instruction doesn’t jump. In this case the routine continues to the
instructions that call service 00H to read a character from the buffer. Then
the process repeats because the instruction JMP LO1 transfers control back to
label LO1. Sooner or later, of course, the repeated calls to service 00H empty
the buffer, service 01H sets the zero flag, and the routine terminates.

Among the new things this buffer-flusher routine illustrates is the use
of labels and branching. When we discussed the generalities of assembly-
language interface routines in Chapter 8, we mentioned that an ASSUME CS
statement is necessary in some circumstances, and you see one in action
here.
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The ASSUME directive in this example tells the assembler that the
labels in the code segment (that is, labels that would normally be addressed
using the CS register) do indeed lie in the segment whose name is _TEXT.
This may seem obvious, since no other segments appear in this routine.

Nevertheless, it is possible to write assembly-language routines in
which labels in one segment are addressed relative to some other segment;
in such a case, the ASSUME directive would not necessarily reference the
segment within which the labels appear. In later chapters you’ll see
examples of this technique, but here the only segment to worry about is the
_TEXT segment, and the ASSUME directive makes this fact explicit.
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Service 90H (decimal 144): Device Busy 242

Service 91H (decimal 145): Interrupt Complete 243

Printer Services 243

Service 00H (decimal 0): Send 1 Byte to Printer 243
Service 01H (decimal 1): Initialize Printer 244
Service 02H (decimal 2): Get Printer Status 244

Other Services 244

Interrupt O5H (decimal 5): Print-Screen Service 245
Interrupt 11H (decimal 17): Equipment-List Service = 246
Interrupt 12H (decimal 18): Memory-Size Service 247
Interrupt 18H (decimal 24): ROM BASIC Loader Service 247
Interrupt 19H (decimal 25): Bootstrap Loader Service = 247
Interrupt 1AH (decimal 26): Time-of-Day Services 248
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In this chapter, we’ll be covering all ROM BIOS services that are either not
important enough or not complex enough to warrant their own chapters:
RS-232 serial communications services, system services, ROM BIOS hooks,
and printer services. We’ll also cover some services that are odd enough to
be considered miscellaneous, even in a chapter of miscellany.

RS-232 Serial Communications Services

This section discusses the RS-232 asynchronous serial communications port
services in the ROM BIOS. Before we begin describing the ROM BIOS ser-
vices in detail, you need to know a few important things about the serial
communications port, particularly the terminology. We assume you have a
basic understanding of data communications, but if you discover that you
don’t understand the following information, turn to one of the many
specialty books on communications for some background information.

Many words are used to describe the RS-232 data path in and out of the
computer. One of the most common is port. However, this use of the word
port is completely different from our previous use of the word. Throughout
most of this book, we have used port to refer to the addressable paths used
by the 8088 microprocessor to talk to other parts of the computer within the
confines of the computer’s circuitry. All references to port numbers, the
BASIC statements INP and OUT, and the assembly-language operations IN
and OUT refer to these addressable ports. The RS-232 asynchronous serial
communications port differs because it is a general-purpose 1/0 path, which
can be used to interconnect many kinds of information-processing equip-
ment outside the computer. Typically, the serial ports are used for telecom-
munications (meaning a telephone connection through a modem) or to send
data to a serial-type printer.

Four serial communications services are common to all IBM models.
These services are invoked with interrupt 14H (decimal 20), selected
through register AH, and numbered 00H through 03H. (See Figure 12-1.) The
PS/2 ROM BIOS contains two additional services that provide extended sup-
port for the more capable PS/2 serial port.

The original design of the IBM personal computers allowed up to
seven serial ports to be added, although a computer rarely uses more than
one or two. The PS/2 ROM BIOS explicitly supports only four serial ports.
No matter how many serial ports exist, the serial port number is specified
in the DX register for all ROM BIOS serial communications services. The
first serial port is indicated by 00H in DX.
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Service Description

00H Initialize Serial Port.

01H Send Out One Character.

02H Receive One Character.

03H Get Serial Port Status.

04H Initialize Extended Serial Port.

05H Control Extended Communication Port.

Figure 12-1. The RS-232 serial port services available through interrupt 14H
(decimal 20).

Service 00H (decimal 0): Initialize Serial Port
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Service 00H (decimal 0) sets the various RS-232 parameters and initializes
the serial port. It sets four parameters: the baud rate, the parity, the number
of stop bits, and the character size (also called the word length). The
parameters are combined into one 8-bit code, which is placed in the AL
register with the format shown in Figure 12-2. The bit settings for each code
are shown in Figure 12-3. When the service is finished, the communication
port status is reported in AX, just as it is for service 03H. (See service 03H

for the details.)
Bit
76543210 Use
XXX. .. .. Baud-rate code
XX, L. Parity code
..... X. . Stop-bit code
...... XX Character-size code

Figure 12-2. The bit order of the serial port parameters passed in register AL to
service 00H.

Q NOTE: Although it is painfully slow, 300 baud used to be the
most commonly used baud rate for personal computers using
modems. A rate of 1200 baud is now the most common, particularly
for serious applications that require faster transmission, but
widespread use of at least 2400 baud communications is inevitable.
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BAUD RATE PARITY
Bit Bit
7 6 5 Value Bits per Second 4 3 Value Meaning
0 0 O 0 110 0 o0 0 None
0 0 1 1 150 0 1 1 0Odd parity
0 1 0 2 300 1 0 2 None
0 1 1 3 600 1 1 3 Even parity
1 0 0 4 1200
1 0 1 5 2400
1 1 0 6 4800 CHARACTERSIZE
1 1 1 7 9600 Bit
1 0 Value Meaning
STOP BITS 0 0 0 Not used
0 1 1 Not used
Bit ) 1 0 2 7-bit*
2 Value Meaning 1 1 3 8-bit
0 0 One
1 1 Two * There are only 128 standard ASCII characters, so

8-bit characters.

Figure 12-3. The bit settings for the four serial port parameters for service 00H.

Service 01H (decimal 1): Send Out One Character

Service 01H (decimal 1) transmits one character out the serial port specified
in DX. When you call service 01H, you place the character to be transmitted
in AL. When service 01H returns, it reports the status of the communica-
tions port. If AH = 00H, then the service was successful. Otherwise bit 7 of
AH indicates that an error occurred, and the other bits of AH report the type
of error. These bits are outlined in the discussion of service 03H, the status
service.

The error report supplied through this service has one anomaly:
Because bit 7 reports that an error has occurred, it is not available to indi-
cate a time-out error (as the details in service 03H would suggest). Conse-
quently, when this service or service 02H reports an error, the simplest and
most reliable way to check the nature of the error is to use the complete
status report given by service 03H, rather than the less-complete status code
returned with the error through services 01H and 02H.
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Service 02H (decimal 2): Receive One Character

Service 02H (decimal 2) receives one character from the communications
line specified in DX and returns it in the AL register. The service waits for a
character or any signal that indicates the completion of the service, such as
a time-out. AH reports the success or failure of the service in bit 7, as ex-
plained in the discussion of service 01H. Again, consider the advice under
service 01H for error handling and see service 03H for the error codes.

Service 03H (decimal 3): Get Serial Port Status

Service 03H (decimal 3) returns the complete serial port status in the AX
register. The 16 status bits in AX are divided into two groups: AH reports the
line status (which is also reported when errors occur with services 01H and
02H), and AL reports the modem status, when applicable. Figure 12-4 con-
tains the bit codings of the status bits. Some codes report errors, and others
simply report a condition.

Q NOTE: One special bit of information about the time-out error
(AH, bit 7) is worth noting: The earliest version of the ROM BIOS for
the original PC had a programming error that caused a serial-port
time-out to be reported as a transfer-shift-register-emptylbreak-
detect-error combination (bits 01010000 rather than 10000000). This
has been corrected on all subsequent versions of the ROM BIOS, but
it has caused many communications programs to treat these error
codes skeptically. You may want to keep this in mind. See page 62
for details on identifying the ROM BIOS version dates and machine

ID codes.
Bit Bit
76543210 Meaning(whensettol) 76543210 Meaning(whensettol)
AH Register (line status) AL Register (modem status)
... 00 Time-out error 1....... Received line signal detect
P Transfer shift register empty P Ring indicator
P Transfer holding registerempty . . 1. . . . . Data-set-ready
. 1. .. . Break-detecterror ... 1. ... Clearto-send
. 1. . . Framingerror .. .. 1. .. Deltareceive line signal detect
..... 1. . Parity error . . ... 1. . Trailing-edge ring detector
...... 1.  Overrunerror . . . . .. 1. Deltadata-set-ready
....... 1 Dataready . . . . ... 1 Deltaclear-to-send

Figure 12-4. The bit coding for the status bytes returned in register AX by service 03H.
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Service 04H (decimal 4): Initialize Extended Serial Port

Service 04H (decimal 4) is available only in the PS/2 ROM BIOS. It expands
the capabilities of service 00H to provide support for the PS/2’s improved
serial ports. If you compare service 04H with service 00H, you’ll find that
the four serial port initialization parameters passed in AL in service 00H are
separated into four registers in service 04H (Figure 12-5). Also, service 04H
returns both modem and line status in register AX, exactly as service 03H
does. Because service 04H has these expanded capabilities, you should gen-
erally use it instead of service 00H for PS/2 serial port initialization.

BREAK (register AL) STOP BITS (register BL)
Value Meaning Value Meaning
00H Nobreak 00H One
01H Break 01H Two (for word length = 6, 7, or 8)

1'% (for word length = 5)

PARITY (register BH) .
WORD LENGTH (register CH)
Value Meaning
Value Meaning

00H None
01H Odd O00H 5 bits
02H Even O01H 6 bits
03H Stick parity odd 02H 7 bfts
04H Stick parity even 03H 8 bits

BAUD RATE (register CL)

Value Meaning Value Meaning

00H 110baud  O5SH 2400 baud
01H 150 baud  06H 4800 baud
02H 300baud O07H 9600 baud
03H 600 baud O8H 19,200 baud
04H 1200 baud

Figure 12-5. Register values for serial port initialization with interrupt 14H, service 04H.
(Register DX contains a serial port number between 0 and 3.)
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Service 05H (decimal 5): Control Extended Communications Port

This service, provided only by the PS/2 ROM BIOS, lets you read from or
write to the modem control register of a specified serial communications
port. When you call service 05H with AL = 00H and a serial port number in
DX, service 05H returns with register BL containing the value in the modem
control register of the specified serial port. When you call service 05H with
AL = 01H, the ROM BIOS copies the value you pass in register BL into the
modem control register for the specified port. In both cases, service 05H
returns the modem status and line status in registers AL and AH, as does ser-
vice 03H.

Miscellaneous System Services
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The miscellaneous system services provided through interrupt 15H are in-
deed miscellaneous. (See Figure 12-6.) Many are intended primarily for
writers of operating-system software. Most application programmers will
find little use for these services in their programs, because the functions
provided are better carried out by calls to the operating system than they
are through the ROM BIOS. Some of these services, such as the pointing-
device interface (subservice C2H), provide functionality not otherwise avail-
able in the ROM BIOS or in DOS; others are obsolete and virtually unusable.

Service Description

00H - Turn On Cassette Motor.

01H Turn Off Cassette Motor.

02H Read Cassette Data Blocks.

03H Write Cassette Data Blocks.

21H Read or Write PS/2 Power-On Self-Test Error Log.
4FH Keyboard Intercept.

80H Device Open.

81H Device Close.

82H Program Termination.

83H Start or Cancel Interval Timer.

84H Read Joystick Input.

85H Sys Req Keystroke.

86H Wait During a Specified Interval.

87H Protected-Mode Data Move.

88H Get Extended Memory Size.

89H Switch to Protected Mode.

Figure 12-6. Miscellaneous system services available through (continued)
interrupt 15H.
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Figure 12-6. continued

Service Description

90H Device Busy.

91H Interrupt Complete.

COH Get System Configuration Parameters.
ClH Get Extended BIOS Data Segment.
C2H Pointing-Device Interface.

C3H Enable/Disable Watchdog Timer.

C4H Programmable Option Select.

The four cassette tape services are used when working with the
cassette tape connection, which is a part of only two PC models: the original
PC and the now-defunct PCjr. The cassette port was created with the
original PC on the assumption that a demand might exist for it. None did,
and it has remained almost totally unused. Nevertheless, IBM does support
the use of the cassette port, both through the ROM BIOS services discussed
here and through BASIC, which lets you read and write either data or BASIC
programs on standard audio cassette tape.

The cassette port never proved worthwhile, however. Nobody sells PC
programs on tape, and nobody has found much use for the cassette port,
given the convenience of diskettes and hard disks.

Service 00H (decimal 0): Turn On Cassette Motor

Service 00H (decimal 0) turns on the cassette motor, which is not an
automatic operation of the ROM BIOS services as it is with the diskette
services. Any program that is using this service can expect a slight delay
while the motor starts.

Service 01H (decimal 1): Turn Off Cassette Motor

Service 01H (decimal 1) turns off the cassette motor. This is not an auto-
matic operation of the ROM BIOS services as it is with the diskette services.

Service 02H (decimal 2): Read Cassette Data Blocks

Service 02H (decimal 2) reads one or more cassette data blocks. Cassette
data is transferred in standard-size 256-byte blocks, just as diskette data
normally uses a standard 512-byte sector. The number of bytes to be read is
placed in the CX register. Although data is placed on tape in 256-byte
blocks, any number of bytes can be read or written. Consequently, the
number of bytes placed in the CX register need not be a multiple of 256. The
register pair ES:BX is used as a pointer to the memory area where the data is
to be placed.
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After the service is completed, DX contains the actual number of bytes
read, ES:BX points to the byte immediately after the last byte transferred,
and the carry flag (CF) is set or cleared to report the success or failure of
the operation. On failure, AH returns an error code. (See Figure 12-7.)

Code Meaning

01H Cyclical redundancy check (CRC) error
02H Lost data transitions: bit signals scrambled
04H No data found on tape

Figure 12-7. The error code returned by service 02H in register AH if the CF indicates a
failure to read the data blocks.

Service 03H (decimal 3): Write Cassette Data Blocks

Service 03H (decimal 3) writes one or more cassette data blocks of 256 bytes
each. (See service 02H.) As with service 02H, the CX register gives the count
of bytes requested, and ES:BX points to the data area in memory. If the
amount of data being written is not a multiple of 256 bytes, the last data
block is padded out to full size.

After the service is completed, CX should contain 00H, and ES:BX
should point just past the last memory byte that was written.

Curiously, no error signals are provided for this service, essentially
because a cassette tape recorder can’t inform the computer of any
difficulties. This forces the ROM BIOS to write data in blind faith that all is
well. Needless to say, it would be a good idea to read back any data written,
just to check it.

Service 21H (decimal 33): Read or Write PS/2 POST Error Log

Service 21H (decimal 33) is used internally by the ROM BIOS power-on self-
test (POST) routines in PS/2s with the Micro Channel bus to keep track of
hardware initialization errors. You will rarely, if ever, find use for this ser-
vice in your own applications.

Service 83H (decimal 131): Start or Cancel Interval Timer
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This service lets a program set a specified time interval and lets the pro-
gram check a flag to show when the interval expires. The program should
call this service with AL = 00H, with the address of a flag byte in registers
ES and BX, and with the time interval in microseconds in registers CX and
DX. The high-order 16 bits of the interval should be in CX; the low-order 16
bits in DX.
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Initially, the flag byte should be 00H. When the time interval elapses,
the ROM BIOS sets this byte to 80H. The program can thus inspect the flag
byte at its own convenience to determine when the time interval has elapsed:

Clear the flag byte
Call service 83H to start the interval timer
WHILE (flag byte = 00H)

BEGIN

(do something useful)

END

The ROM BIOS interval timer uses the system time-of-day clock,
which ticks about 1024 times per second, so the timer’s resolution is
approximately 976 microseconds.

Service 84H (decimal 132): Read Joystick Input

Service 84H (decimal 132) provides a consistent interface for programs that
use a joystick or a related input device connected to IBM’s Game Control
Adapter. When you call this service with DX = 00H, the ROM BIOS reports
the adapter’s four digital switch input values in bits 4 through 7 of register
AL. Calling service 84H with DX = 01H instructs the BIOS to return the
adapter’s four resistive input values in registers AX, BX, CX, and DX.
Service 84H is not supported on the IBM PC or in the original PC/XT BIOS
(dated 11/08/82). Be sure to check the computer’s model identification and
ROM BIOS revision date before you rely on this BIOS service in a program.

Service 86H (decimal 134): Wait During a Specified Interval

Like service 83H, service 86H (decimal 134) lets a program set a specified
time interval to wait. Unlike service 83H, however, service 86H suspends
operation of the program that calls it until the specified time interval has
elapsed. Control returns to the program only when the wait has completed
or if the hardware timer is unavailable.

Service 87H (decimal 135): Protected-Mode Data Move

A program running in real mode can use service 87H to transfer data to or
from extended (protected-mode) memory on a PC/AT or PS/2 Model 50, 60,
or 80. This service is designed to be used by a protected-mode operating
system. The IBM-supplied VDISK utility also uses this function to copy data
to and from a virtual disk in extended memory. See the IBM BIOS Interface
Technical Reference Manual for details.
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Service 88H (decimal 136): Get Extended Memory Size

Service 88H (decimal 136) returns the amount of extended (protected-mode)
memory installed in a PC/AT or PS/2 Model 50, 60, or 80. The value, in
kilobytes, is returned in register AX.

The amount of extended memory is established by the ROM BIOS POST
routines. It includes extended memory installed beyond the first megabyte;
that is, memory starting at 10000:0000H. Lotus/Intel/Microsoft ‘‘expanded’’
memory is not included in the value returned by service 88H.

Service 89H (decimal 137): Switch to Protected Mode

Service 89H (decimal 137) is provided by the ROM BIOS as an aid to con-
figuring an 80286-based computer (PC/AT, PS/2 Model 50 or 60) or an 80386-
based computer (PS/2 Model 80) for protected-mode operation. This ROM
BIOS service is intended for operating systems that run in protected mode.
To use this service, you must be thoroughly acquainted with protected-
mode programming techniques. See the IBM BIOS Interface Technical Refer-
ence Manual for details.

Service COH (decimal 192): Get System Configuration Parameters

Service COH (decimal 192) returns the address of a table of descriptive infor-
mation pertaining to the hardware and BIOS configuration of a PC/AT (in
ROM BIOS versions dated 6/10/85 and later) or PS/2. Figure 12-8 shows the
structure of the table. You can find the meaning of the model and submodel
bytes in Chapter 3, page 64.

Offset Size Contents

0 2 bytes Size of configuration information table
2 1 byte Model byte

3 1 byte Submodel byte

4 1 byte ROM BIOS revision level

5 1 byte Feature information byte:

Bit7: Fixed-disk BIOS uses DMA Channel 3
Bit6: Cascaded interrupt level 2 (IRQ2)
Bit5: Real-time clock present

Bit4: BIOS keyboard intercept implemented
Bit3:  Wait for external event supported
Bit2: Extended BIOS data area allocated
Bit1:  Micro Channel bus present

Bit0: (Reserved)

Figure 12-8. System configuration information returned by service COH.
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Service C1H (decimal 193):
Get ROM BIOS Extended Data Segment

Service C1H (decimal 193) returns the segment address of the ROM BIOS ex-
tended data area. The ROM BIOS clears the carry flag and returns the seg-
ment value in register ES if an extended BIOS data segment is in use.
Otherwise, service C1H returns with the carry flag set.

The ROM BIOS uses the extended data area for transient storage of data.
For example, when you pass the address of a pointing-device interface sub-
routine to the BIOS, the BIOS stores this address in its extended data area.

Service C2H (decimal 194): Pointing-Device Interface

Service C2H (decimal 194) is the ROM BIOS interface to the built-in PS/2
pointing-device controller. This interface makes it easy to use an IBM PS/2
mouse.

To use the interface, you must write a short subroutine to which the
ROM BIOS can pass packets of status information about the pointing device.
Your subroutine should examine the data in each packet and respond appro-
priately, for example by moving a cursor on the screen. The subroutine
must exit with a far return without changing the contents of the stack.

To use the ROM BIOS pointing-device interface, carry out the follow-
ing sequence of steps:

1. Pass the address of your subroutine to the BIOS (subservice 07H).
2. Initialize the interface (subservice 05H).
3. Enable the pointing device (subservice 00H).

At this point, the BIOS begins sending packets of status information to
your subroutine. The BIOS places each packet on the stack and calls your
subroutine with a far CALL so that the stack is formatted when the subrou-
tine gets control as in Figure 12-9. The low-order byte of the X and Y data
words contains the number of units the pointing device has moved since the
previous packet of data was sent. (The Z data byte is always 0.) The status
byte contains sign, overflow, and button information. (See Figure 12-10.)
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Status

< SP+10
X data

< SP+38
Y data

< SP+6
Z data

< SP+4

Return address
<+ SP

Figure 12-9. Pointing-device data packet.

Bit Meaning

0 Set if left button pressed

1 Set if right button pressed
2-3 (Reserved)

4 Set if X data is negative

5 Setif Y data is negative

6 Set if X data overflows

7 Set if Y data overflows

Figure 12-10. Status byte in pointing-device data packet.

When you use service C2H, the value you pass in register AL selects
one of eight available subservices. (See Figure 12-11.) The actual register
contents for each subservice are in Chapter 13, page 284.

Subservice Description

00H Enable/disable pointing device.
01H Reset pointing device.

02H Set sample rate.

03H Set resolution.

Figure 12-11. Subservices available in the BIOS pointing-device interface (continued)
(interrupt 15H, service C2H).
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Figure 12-11. continued

Subservice Description

04H Get pointing-device type.

05H Initialize pointing device.

06H Extended commands.

07H Pass device-driver address to ROM BIOS.

Service C3H (decimal 195): Enable/Disable Watchdog Timer

Service C3H (decimal 195) provides a consistent interface to the watchdog
timer in the PS/2 models 50, 60, and 80. It lets an operating system enable the
watchdog timer with a specified timeout interval or disable the timer.
Because the watchdog timer is intended specifically for use in operating-
system software, this ROM BIOS service will rarely be useful in your
applications.

Service C4H (decimal 196): Programmable Option Select

Like many other interrupt 15H services, service C4H (decimal 196) is
intended for use by operating system software. This service provides a
consistent interface to the Programmable Option Select feature of the Micro
Channel architecture in the PS/2 models 50, 60, and 80.

ROM BIOS Hooks

The ROM BIOS in the PC/AT and in the PS/2s provides a number of hooks.
These hooks are implemented as interrupt 15H ‘‘services,”’ but to use them
you must write an interrupt 15H handler that processes only these services
and passes all other interrupt 15H service requests to the ROM BIOS. (See
Figure 12-12.) This arrangement lets different components of the BIOS
communicate with each other and with operating-system or user-written
programs in a consistent manner.

The ROM BIOS hooks are intended primarily for use in operating
systems and in programs written to augment operating-system or BIOS
functions. However, neither DOS nor OS/2 uses these BIOS hooks, and few
program applications have reason to. Still, you might find it worthwhile to
examine what the ROM BIOS hooks do, if only to get an idea of how the ROM
BIOS is put together and how an operating system can interact with it.
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mov ah,ServiceNumber

int 15h — Executed within ROM BIOS

UserHandler PROC far ; interrupt 15H vector
; points here

cmp ah,ServiceNumber

Je Service — User-written interrupt 15H handler
Jjmp (to previous INT 15H handler)

Service:
(do something useful)

iret
UserHandler ENDP

Figure 12-12. How the ROM BIOS hooks can be used.

Service 4FH (decimal 79): Keyboard Intercept
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In the PC/AT ROM BIOS (dated 06/10/85 and later) and in the PS/2 ROM BIOS,
the keyboard interrupt handler (that is, the handler for hardware interrupt
09H) executes interrupt 15H with AH = 4FH and with AL equal to the key-
board scan code. This action has little effect: The ROM BIOS interrupt 15H,
service 4FH (decimal 79) handler returns with the carry flag set, and the in-
terrupt 09H handler continues processing the keystroke.

If you write an interrupt handler for interrupt 15H, however, you can
hook service 4FH and process keystrokes yourself. Install your handler by
storing its segmented address in the interrupt 15H vector. (Be sure to save
the previous contents of the interrupt 15H vector.) Your interrupt 15H han-
dler would do the following:

IF (AH<>4FH)

Jjump to default interrupt 15H handler
ELSE

process keyboard scan code in AL

set or reset carry flag

exit from interrupt handler
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If your handler processes the scan code in AL, it must either set or
reset the carry flag before it returns control to the ROM BIOS interrupt 09H
handler. Setting the carry flag indicates that the BIOS interrupt 09H handler
should continue processing the scan code in AL: Clearing the carry flag
causes the BIOS handler to exit without processing the scan code<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>